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Abstract: A substantial number of humans are at risk for infection by vector-borne flaviviruses, re-

sulting in considerable morbidity and mortality worldwide.  These viruses also infect wildlife at a 

considerable rate, persistently cycling between ticks/mosquitoes to small mammals and reptiles to 

non-human primates and humans.  Substantially increasing evidence of viral persistence in wild-

life continue to be reported.  In addition to in humans, viral persistence has been shown to establish 

in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines.  Although a 

considerable amount of research has centered on the potential roles defective virus particles, au-

tophagy and/or apoptosis induced evasion of the immune response, and the precise mechanism of 

these features in flavivirus persistence have yet to be elucidated.  In this review, we present find-

ings that aid in understanding how vector-borne flavivirus persistence is established in wildlife.  

Research studies to be discussed include determining the critical roles universal flavivirus non-

structural proteins played in flaviviral persistence, the advancement of animal models of viral per-

sistence, and studying host factors that allow vector-borne flavivirus replication without destructive 

effects on infected cells. These findings underscore the viral–host relationships in wildlife animals 

and could be used to elucidate the underlying mechanisms responsible for the establishment of viral 

persistence in these animals. 
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1. Introduction 

Understanding the mechanisms that underlie flavivirus persistence in wildlife and hu-

mans will be critical to comprehension of persistent arboviral flavivirus infections.  Ar-

boviruses are arthropod-borne viruses. Arthropod is a word used to describe ticks and 

mosquitoes.  Flavivirus infections constitute substantial human and non-human pri-

mate morbidity and mortality worldwide. Furthermore, incidence is increasing, and in-

fections are being appreciated in previously non-endemic locations, presumably due to 

increasing rapidity of world-wide travel and deforestation practices [1-3].  Flaviviruses 

originating from tick and mosquito vectors comprise a crucial number of wildlife infec-

tions [4-6].  For example, some predominate tick-borne flaviviruses include Omsk hem-

orrhagic fever virus, Kyasanur forest disease virus, Alkhurma virus, Powassan virus 

(POWV), and deer tick virus (DTV) [7-9]. 

 

Mosquito-borne flaviviruses are best known through studies on Japanese encephalitis 

virus (JEV), yellow fever virus (YFV), West Nile virus (WNV), Zika virus (ZIKV), and 

dengue virus (DENV) serotypes 1–5. Infections with all these viruses can lead to severe 

disease symptomologies, prolonged debilitating neurological consequences, birth de-

fects, hemorrhagic fever, and even death [10-13].  
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Viral persistence is a staple of arthropod-borne flavivirus pathogenesis.  Mosquito-

borne and tick-borne viruses are cycled between arthropod and vertebrate hosts (Figures 

1 and 2) and are predominately maintained without detrimental effects on host biology.  

In the natural world, tick-borne flaviviruses, such as POWV and TBEV, cycle between a 

range of hard-bodied (ixodid) ticks, soft-bodied (aramid) ticks and small vertebrates 

such as rodents, leporids, and some carnivores, such as wolves [13-15].  Similarly, mos-

quito-borne flaviviruses, such as Usutu virus (USUV), WNV and JEV, primarily cycle 

between mosquitoes and small mammals, birds, and reptiles (Figure 2; [16-19]).  In ad-

dition, there is well documented evidence that persistence of mosquito-borne fla-

viviruses and tick-borne flaviviruses also occurs in cell culture. [5, 20-24].   

 

Flavivirus particles, regardless whether tick-borne or mosquito-borne, are spherical and 

enveloped.  These particles that contain an RNA, 12kb of positive sense genome that 

encodes a single polyprotein that is cleaved into 10 proteins predominately by theNS2b-

3 protease, except for the maturation digestion of the maturation digestion of prM into 

pr and a fully mature M.  Once the virus particle is uncoated following infection, fla-

vivirus RNA genomes are replicated.  Following replication of the RNA genome, the 

polyprotein is translated consisting of three structural proteins (capsid (C), precursor 

membrane/membrane (prM), and envelope (E)) and seven nonstructural proteins desig-

nated: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [25-27] (Figure 3 ).   

Due to the complex nature of flavivirus transmission between arthropods and verte-

brates, it is likely that the process of flaviviral persistence is also very complex.  There-

fore, the justification for this review is to discuss the current state of affairs in flavivirus 

persistence research, describe the host cell factors that play critical roles in the establish-

ment of flavivirus persistence, useful, yet unconventional detection approaches, and po-

tential research endeavors into this crucial area of viral pathogenesis. 

2. Flavivirus Infection and Persistence in Wildlife 

Small mammals, marsupials, reptiles, and birds serve as the principal vertebrate hosts 

for vector-borne flaviviruses [28, 29].  Interestingly, larger animals such as deer goats, 

and sheep, also serve as hosts, but more in an incidental capacity.  It is worth noting 

that WNV in humans is thought to be associated with avian infection [30].  However, 

WNV migration from the Eastern United States to the West Coast by 2003 was undoubt-

edly due to infection and persistence of this virus in migratory birds, reptiles, and am-

phibians [31].  In addition to non-human primates, dengue infection has occurred in 

pigs, marsupials, bats, birds, horses, bovid, rodents and canines [32, 33].  There is po-

tential enzootic transmission, but regular dengue virus spillback cannot be excluded. 

Except for bats, acute dengue infection among animals is still limited in evidence [34, 

35].  Like WNV, the newly emerging mosquito-borne Usutu virus (USUV) is also trans-

mitted between mosquito arthropods and avian species [36].  USUV has also been 

shown to transmit between mosquitoes and canines, deer and boars, as well as bats, ro-

dents, and [37].  Also, for mosquito arboviruses incredibly little is known about the na-

ture of the vertebrate host [38].  Therefore, more work into the elucidation of host-spe-

cies interactions is essential to the determination of flavivirus persistence in wildlife.   

 

Small mammals, especially rodents, are the predominate vertebrate reservoirs and hosts 

for tick-borne flaviviruses [39, 40]. In Europe, the most prevalent hosts are and bank vole 
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and the yellow-necked mouse, due to their ability to develop levels of viremia that are 

adequate for the infection of ticks that feed on them, thus allowing these animals to 

maintain tick-borne flaviviruses [41-43]. In Poland, captured bank voles, on average, dis-

played a TBEV seroprevalence rate of approximately 15% [44].  In North America, a 

number of wildlife animals, such as deer, squirrels, mice, and skunk are significant res-

ervoirs of DTV and POWV [45-47].  Serological studies detected DTV prevalence in 

6.2% of the red-backed voles found in Alaska and Siberia [48].  These findings show 

tick-borne flaviviruses display a broad range of distribution, seemingly regardless of 

geographical location. 

 

DTV in has previously shown relatively high serological prevalence in Peromyscus truei 

and Peromyscus maniculatus mice [39, 45, 48], suggesting persistent infection may have 

occurred.  Larger animals, such as deer, may preserve tick-borne flaviviruses at levels 

that permit persistence and tick-mediated transmission [7, 49-51].  Even though deer are 

an essential source of nutrients for ticks, only low viral titers are achieved and are not 

directly involved in tick-borne flavivirus transmission.  Nonetheless, deer play a critical 

role in flaviviral persistence because of their ability to support tick populations [39, 52, 

53]. 

 

Research suggests that the principal reservoirs of mosquito-borne flaviviruses are non-

human primates and avian species, often referred to as a “sylvatic cycle”[32, 54].  Addi-

tional mammals generally serve as accidental hosts, but not always as this still requires 

additional research [10].  When viremia is substantial, these animals possess the ability 

to pass these viruses on to female mosquitoes.  For JEV, the major amplifying hosts are 

avian and swine, to include wild hogs [55-57]which attain high levels of viremia.    

 

In locations where swine are in short supply, avian species (e.g. herons and egrets) be-

come the predominant amplifying hosts for JEV-and source of transmission for mos-

quito species that transmit this flavivirus to wildlife [58-60].  Persistence of JEV antibod-

ies in pigeons have been detected for a period equivalent to 15 months [61].  However 

more research is needed to determine if there is a correlation between antibody persis-

tence and viral persistence.  Furthermore, a critical role in JEV infection has been deter-

mined in number of avian species.  Nonetheless, evidence directly linking JEV infection 

of avian to persistence in these species is in short supply [62]. 

 

As we alluded to earlier in this review, avian species also serve as exceptional amplifica-

tion hosts for WNV.  The predominate advantage here is that migratory birds can 

transport viruses great distances, due to the ability of birds to remain viremic for a num-

ber of days [63-65].  Furthermore, an incredibly high mortality rate (~100%) is associ-

ated with WNV infection many bird species [66, 67].  Almost surprisingly, some avian 

species can carry WNV for a longer time before developing antibodies or succumbing to 

disease symptoms [68].  For example, 37% of house sparrows that were infected with 

WNV tested positive for WNV RNA by RT-PCR [69].  Furthermore, 97% of house spar-

rows and 100% of finches tested seroconverted [69].  An interesting finding to note here 

is that research also has shown avian species that develop neutralizing WNV antibodies 

are protected from reinfection [70], suggesting absolute WNV clearance.  However, this 
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does not provide any correlation or contradiction between WNV infection and WNV-

established viral persistence. 

 

Blue-gray pigeons were the first avian species to show WNV persistence and have be-

come a model system for the study of WNV persistence [69, 71].  In Blue-gray pigeons 

WNV could be was isolated from these reservoirs for up to 100 days post-infection, and 

WNV antigens were detected in hepatocytes up to 180 days post-infection [72-74]. Amer-

ican robins are competent reservoirs of WNV and St. Louis encephalitis virus (SLEV)[75, 

76, 77].  Therefore, one can presume sufficient evidence for persistent infection by WNV 

in some avian species has been obtained, but not for all bird species.  However, many 

mechanistic details need to be elucidated before further claims can be made. 

Like avian species, antibodies of flaviviruses described above, have been identified in 

turtles, snakes, and crocodiles from different regions throughout the world [78, 79], and 

it is known that alligators and crocodiles can be infected with WNV.  Conversely no 

reports suggest that reptiles possess persistent mosquito-borne flaviviruses infection, 

even though these animals have demonstrated facilitation of the transmission of these 

mosquito-borne viruses, especially WNV. 

 

From the presented investigations it is obvious various animal species can sponsor per-

sistent vector-borne flaviviruses infection.  However, additional research is essential for 

further elucidation of the exact role persistent infections by vector-borne diseases play in 

the overall organization of viral maintenance. 

3. Mechanisms of Flavivirus Persistence 

In this section, we will examine information linked to the instigation and preservation of 

flavivirus persistence.  Since literature regarding wildlife-related animal models are not 

available, our discussion in this section will be limited to studies involving in vivo cell 

culture and murine models as they apply to the elucidation of molecular mechanisms 

responsible for the manifestation of flavivirus persistence. 

 

Infection of mammalian cell cultures with tick-borne flaviviruses results in the activation 

of a series of universal defense and antiviral systems, as are precise factors designed to 

limit or restrict virus replication.  As with a number of other viruses, some of these cel-

lular factors include those involved in mitochondrial-activated signaling and the induc-

tion of inflammatory factors: interleukins, type I interferon (e.g. IFN-α/IFN-β), and type 

III interferon (e.g. IFN-κ) [80-84].  For instance, TRIM79α, an IFN-induced tripartite mo-

tif protein, restricts TBEV replication by inducing lysosome-dependent degradation of 

the flavivirus NS5 protein, an RNA-dependent RNA polymerase (RdRp) that is critical 

for virus replication [85, 86].  This degradative event appears to be specific to tick-borne 

viruses, making the detection of TRIM79α overexpression a potential target for differen-

tiating between mosquito-borne and tick-borne infections in wildlife populations. 

 

Flavivirus truncated NS1 proteins have also shown a means to modify cell death.  Syl-

vatic vector-borne flaviviruses, such as TBEV Sofjin strain, YFV, DENV, Murray valley 

encephalitis (MVE), and WNV, produce truncated NS1 proteins, at high multiplicity of 
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infection [87]. Degradation of TBEV-NS1 proteins also restricts TBEV replication [88].  

However, research in this area is very limited.  In general, vector borne flavivirus NS1 

proteins differ in structural composition and cellular localization.  In the cytoplasm of 

the cell, NS1 proteins are detected as a monomer [89].  In the ER and cellular mem-

brane, NS1 proteins are detected as a homodimer [90].  Some protein molecules are se-

creted and form a hexamer outside the cell [91, 92].  Diverse protein structures indicate 

diverse NS1 protein functions.  This may even indicate diversity in NS1 protein pro-

cessing, structure, and function, among wildlife species. 

 

Activation of cellular antiviral factors and systems often lead to cell death, which is 

thought to be primarily facilitated through apoptotic pathways [93], and programmed 

cell death-induced by tick-borne flaviviruses have been described a number of cell types 

such as in hepatocytes, neurons, Kupffer cells, neuroblastoma cells, and epithelial cells 

[94].  Similar pathways have also been shown to result from mosquito-borne virus in-

fection [95, 96].  These observations indicate that tick-borne and mosquito-borne fla-

viviruses may initiate and establish viral persistence by similar mechanisms. 

 

Inhibition or escape of a host’s antiviral response plays a critical role in viral persistence.  

IFN production is induced within hours of flavivirus infection [22, 97].  However, be-

cause viral RNA replication complexes are enclosed in vesicle-like structures, IFN gene 

expression is delayed due to the inability of tors to recognize flavivirus RNA [98, 99].  

Furthermore, vector-borne flaviviruses can directly affect the expression of IFN signals 

by inhibiting the transcription of IFN genes and interferon-stimulated genes [100, 101].  

Moreover, humoral and cell-mediated immune responses can be inhibited by arboviral 

flaviviruses [102, 103].  For example, assessment of WNV infection of hamsters (a ge-

netic cousin voles) has suggests WNV neutralizing antibody production may decrease 

spread of this virus to the hosts central nervous system [104-107].  Conversely, WNV 

variant-mediated antibody evasion could result in evasion of T cell recognition [107], but 

a precise role in viral persistence has yet to be determined.   

 

Another feature of antibodies that needs to be considered is antibody dependent en-

hancement (ADE).  ADE occurs because during secondary flavivirus infection, cross-

reactive, yet non-neutralizing antibodies may lead to opsonization of this antibody on 

virus particles, resulting in enhanced uptake by various immune cells such as monocytes 

(in the case of DENV), resulting in amplified virus replication [103, 108].  Elucidating 

potential implications of ADE in establishing flavivirus persistence may be crucial to 

understanding flavivirus evasion of T-cell responses. 

 

The flavivirus E protein is believed to be accountable for induction of cytopathic effect 

[109], considering it promotes cell to cell fusion [110].  However, some flaviviral non-

structural proteins may also play a role in the initiation of cytopathic effect.  For exam-

ple, IFN-independent cytopathic effect is facilitated by the DENV NS2A protein [111, 

112]. NS2B-NS3 protease precursor and NS3 protease have also been shown to induce 

apoptosis through interaction with caspase 8 [113-115].  Also, of note, intracellular ex-

pression of DENV NS1 alone is capable of initiating apoptosis [116, 117].  These obser-

vations indicate a central role for apoptotic cascades in the induction of cytopathic effect, 

leading to flavivirus persistence. 
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Elucidating potential structure and functions specific viral proteins expressed to block 

viral-induced cell death have been incomplete [118].  However, one key phenotype of 

note involves viral protein expression that limits cell death during acute infection poten-

tially enhancing the commencement of persistent infection. For example, flavivirus 

NS4A (Figure 3) was shown to promote suppression of cell death through the induction 

of phosphatidylinositol 3-kinase (PI3K)-dependent autophagy [119].  JEV infection acti-

vates PI3K which is thought to afford protection from the initial stages of cell death [120, 

121].  WNV pathogenesis is also dependent on the PI3K pathway.  Treatment of cul-

tured cells with 3-methyladenine (3-MA), a PI3K inhibitor, enhanced WNV in a dose 

dependent manner [122], showing the impact autophagy may have on mosquito-borne 

flavivirus persistence in wildlife.  However, more research is needed to determine if 

this hypothesis is valid, and whether it occurs in a species-dependent manner.  Tick-

borne flaviviruses are also dependent on the PI3K pathway to maintain persistent infec-

tion.  For example, the PI3K-AKT pathway has been implicated in TBFV persistence 

through assessing AKT suppression mediated by Langat virus (LGTV) infection [50].  

Therefore, it can be surmised that suppression of PI3K-AKT is essential for maintenance 

of flavivirus persistence in wildlife populations.  

 

Substantial attention has been focused on defective interfering (DI) virus particles, 

which have been shown to inhibit replication of the wild-type flaviviruses [123-126].  

The DI virus particles contain truncated viral genomes that can be transcribed to a very 

high copy number and compete with wild-type viral genomes during encapsulation and 

assembly stages of virus replication [127].  Furthermore, these defective particles also 

compete with wildtype flaviviruses in infected cells.  However, potential roles of vec-

tor-borne flaviviruses DI particles in persistence are not transparent.   

 

For TBEV, the C protein is reported to tolerate internal deletions that favor attenuation 

and immunogenicity [73, 128].  Another tick-borne flavivirus, LGTV, also produces DI 

particles [129].  In this study, after 15 passages of LGTV, DIs constituted approximately 

35%of the total LGTV population.  Furthermore, at this point, the predominant DI pop-

ulation included a genome that in which nucleotides 1058 to 2881 had been ablated.  

This defective vRNA genome encoded an intact polyprotein possessing a truncated fu-

sion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1.  

The role of this DI in establishing persistence of this virus, and potentially other tick-

borne flaviviruses, still needs to be elucidated. 

Mosquito-borne flaviviruses also produce DI particles as part of their replication cycle, 

with WNV and DENV being the most studied to date.  Fragments of dengue virus RNA 

containing only the key regulatory elements at the 3′ and 5′ ends of the genome were 

detected in sera of patients infected with either of the four DENV serotypes [126]. Identi-

cal RNA fragments were detected in the supernatant from cultures of Aedes mosquito 

cells that were infected by the addition of sera from dengue patients.  This result sug-

gest sub-genomic RNAs might be transmitted between human and mosquito hosts in 

defective interfering (DI) viral particles, potentially giving insight into how mosquito-

borne viruses remain persistent in host cells. 

Previously in this review, we described the potential roles various structural forms of 

flavivirus NS1 plays in maintenance of flavivirus persistence in wildlife populations. 

Additionally, expression of the truncated form of NS1 has also been shown to possess a 
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link to DI virus particle production and persistent infection.  For example, a truncated 

Murray Valley encephalitis virus (MVE) NS1 protein was detected during persistent 

MVE infection of mammalian cells.  However, this form of NS1 was not detected dur-

ing acute infection [73, 130].  Moreover, truncated NS1 in MVE virus appears to be the 

result of DI vRNA present in infected cells.  What is significant about these vRNA tran-

scripts is they possess a substantial internal deletion, resulting in a significant reduction 

of the wild-type MVE titer [131].  This result gives additional insight into the role of 

truncated NS1 and DI in wildlife populations. However, an immediate role for MVE DI 

particles in preserving persistent infection was established.   

 

Analysis of Tick-borne encephalitis virus Far Eastern subtype (Sofjin virus) associated a 

39-kDa truncated form of NS1 with acutely and persistently infected cells [132].  Alt-

hough DI particles and truncated NS1 may be commonly observed in persistent fla-

vivirus infections, it is not at all transparent that they are autonomously adequate for the 

establishment and maintenance of persistent infections in vitro or in vivo. 

 

For WNV, DI particles marginally influence pathogenesis in mice, while inhibiting trans-

mission in mosquitoes and exotic birds [133].  Studies regarding DI-induced WNV per-

sistence in other animal hosts, such as additional avian species and reptiles, would be 

quite significant in the elucidation of WNV persistence in wildlife as these hosts are in 

the same sylvatic cycle. 

 

Surveillance of mice and hamsters infected with mosquito-borne flaviviruses obtained 

from urine of other infected animals do not show symptoms of chronic infection and 

become persistently infected, suggesting virus attenuation [134].  Research has sug-

gested this attenuation may be the result of several mutations in flavivirus genes: C, E, 

NS1, NS2A, NS2B, and NS5, and may be associated with WNV, JEV, and DENV persis-

tence in wildlife species [135-137].   Therefore, the question remains: what mutations in 

flavivirus genes are responsible for the establishment of persistence by vector-borne fla-

viviruses?  Furthermore, are these mutations wildlife species-specific? 

 

Mechanisms that do not directly necessitate viral protein products, i.e. activate host anti-

viral mechanisms instead, may also play a critical role in viral persistence.  JEV express 

noncoding short RNAs that suppress host cells dsRNA sensing mechanisms through 

inhibition of IRF3 phosphorylation [97, 138, 139].  WNV delays pathogen recognition 

receptor activity by activating IRF3 in a RIG-I-dependent manner [140], although eluci-

dation of the mechanisms surrounding this mode of escape and evasion remains elusive.  

Membrane-bound vesicles that encapsulate dsRNA of TBEV-expressing dsRNA have 

been discovered [141].  These results have been further investigated in cultured cells. 

However, elucidation of the role interferon-regulated proteins in TBEV persistence has 

been chiefly investigated in human cell lines and may not reflect the same in cultured 

cells of other species.  As the suppression of mechanistic alterations to flavivirus recog-

nition pathways are instituted for the establishment of flaviviral persistence.  
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Several host genes that may play roles in the development of flavivirus persistence in 

wildlife animal hosts have been suggested.  These include proto-oncogenes, like Bcl-2, 

and murine-derived alleles, like Flvrm, Flvr, and Flvs.  Over stimulation of Bcl-2 has 

been reported to block apoptosis and promote JEV persistence in cultured cell [115, 142].  

This suggests that control of apoptosis is likely to play a critical role in the establishment 

of viral persistence.  Moreover, Flvrm, a oligoadenylate synthetase gene that potentially 

promotes resistance to flavivirus infection, appears to be present in some laboratory 

mice strains [143, 144].  Mice that are susceptible to flavivirus infection tend to carry 

possess Flvs [145,146].  Flvr has been identified in wild mice and could, in part, aid in 

the elucidation of flavivirus persistence [147].  The expression of additional genes may 

play a critical role in the varied susceptibility observed in different mouse strains to fla-

vivirus infection.  Furthermore, isolation and characterization of these genes from wild-

life species could give further insight into the establishment of flavivirus persistence in 

the wild. 

 

The establishment of flavivirus persistence in wildlife hosts may also be exacerbated by 

forms of immunosuppression.  Very little is known of arbovirus-mediated immunosup-

pression in wildlife species, so we must limit our discussions to human infections and 

few bodies of research involving murine models.  Arbovirus infection may establish 

persistence in organ transplant patients, due to the use of immunosuppressive therapies 

[148].  In B6 mice, transient immunosuppression with cyclophosphamide leads to WNV 

reemergence [149], suggesting aspects of host immune response serve to restrict replica-

tion of WNV during persistence.  However, determining these immune functions in this 

case are further complicated by the observation that WNV can persist for as long as 16 

months, even in the presence of over-stimulated humoral immune response in C57BL/6 

mice [73, 149]. Moreover, WNV persistence was reported in the brains of CD8+ T cell-

deficient rodents [150-152], but antibody response  was not affected by CD8+ T cell defi-

ciency.  Therefore, CD8+ T cell response only describes a small piece of the role immu-

nosuppression may play in flavivirus persistence. 

 

Precise immune system factors that could facilitate or regulate flavivirus infection per-

sistence remain to be elucidated.  Infection of host arthropod cells by arthropod-borne 

flaviviruses has not received the same level of attention.  This may be due, at least in 

part, because acute infection is not accompanied by the same level of cytopathic re-

sponse observed in mammalian cells.  Regarding tick-borne flaviviruses, very little is 

known about how these flaviviruses persist in the ticks, but possibly evolved mecha-

nisms of modifying and/or eluding tick immune responses [153].  Detailed studies of 

persistent tick-borne flaviviruses infection in arthropod cell lines using biochemical and 

molecular biology-based techniques and methods will yield useful and interesting data.  

The mechanisms surrounding the establishment of mosquito-borne flavivirus persis-

tence in mosquitoes also remains an ideal topic of scientific investigation.  A mosquito-

born flavivirus, St. Louis encephalitis virus persists in Culex pipiens midguts for several 

hours before infecting cells that are responsible for maintaining the midgut [154, 

155,156].  This brings to light interesting questions regarding the role of mosquito mid-

gut cells in the establishment of flavivirus persistence in mosquitoes. 

 

Versatile roles for miRNAs (MicroRNAs) in multiple biological processes are continually 

elucidated.  However, little is known about the effect ts miRNA expression may have 

on flavivirus persistent infection.  A miRNA array analysis of Japanese encephalitis 
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virus (JEV)-infected cells was performed to search for persistent infection-associated 

miRNAs in comparison to acute infection [157]. Among all differentially expressed miR-

NAs, the miR-125b-5p is most significantly increased [157]. 

 

Clearly, research into the mechanisms surrounding flavivirus persistence in vectors, 

such as mosquitoes and ticks, have been inadequate in volume performed and are essen-

tial to completing the picture of how flavivirus persistence may occur.  It is apparent 

that flavivirus and host cell-derived molecules play critical roles in the commencement 

and conservation of persistent infection in individual cells, and the host organism, as a 

whole.  Lastly, environmental and ecological factors, such as climate change, may be 

driving forces in vector-borne flavivirus persistence and should certainly be investigated 

thoroughly. 

4. Detection 

 

Previous sections focused on the transmission through wildlife however detection of 

vector-borne flavivirus infections should also be addressed.  Vector-borne viruses that 

cross between multiple hosts mediated by arthropod vectors, such as ticks and mosquitos, 

utilize parasitism relationships between the host and these vectors, making the need for 

close monitoring ever more essential [158].  Careful monitoring of vector-borne fla-

viviruses following zoonoses can be useful in determining mechanisms essential in estab-

lishing flavivirus persistence in host species populations. 

 

Early detection of vector-borne flavivirus infection is largely focused on collection to 

extract viral RNA for molecular detection and genotyping.  Mosquito and tick vectors are 

collected and processed for reverse transcription-polymerase chain reaction (RT-PCR) to 

detect viral RNA. RT-PCR utilizes heat cycles to denature viral RNA, an annealing primer 

to target and extend a specific sequence [159, 160]. Genotyping of the RT-PCR samples 

utilize a form of quantitative PCR (qPCR) that includes the addition of a fluorescent 

marker to identify key fragments in the RNA sequence [159]. In short, PCR-based detec-

tion of viral RNA can be useful in early detection of flavivirus infections starting in com-

mon viral vectors and wildlife containing the tick-borne or mosquito-borne flavivirus in 

question.  The results obtained can be used to determine RNA copy/titer as it relates to 

the persistence of the flavivirus being analyzed. 

 

Once the flavivirus is transmitted from vector to hosts the need for monitoring 

switches from vector to host.  Realistically, in most areas of the world the focus on detec-

tion of flaviviruses in vectors occurs only after an outbreak of infections following the 

onset of symptoms known to have wildlife vectors [159-161].  Lack of entomological sur-

veillance in wildlife populations allows for flaviviruses to go undetected, eventually re-

sulting in established persistence of various wildlife-based diseases, and eventual trans-

mission to human hosts.  

 

In medical and research facilities around the globe, conformation of viral activity is 

typically detected through antibody tests or RT-PCR [162].  Antibodies found in the 

bloodstream such as immunoglobulins G and M (IgG and IgM) can be quantified through 

enzyme-linked immunosorbent assays (ELISA) and specifically the neutralizing antibod-

ies that correspond to the infection can be confirmed [163].  Typically, IgG and IgM are 

present in serum samples.  However, IgM antibodies are short term reactions to infec-

tions and last up to 10 months from initial infection while IgG antibodies are considered 

to last a lifetime [162].  It should be noted that there is a period shortly after initial infec-

tion that a host has yet to begin production of viral antibodies, and thus the possibility of 
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a negative antibody test is not always indicative of a negative diagnosis.  Therefore, an-

tibody tests should be confirmed with RT-PCR detection methods when applicable [164].  

 

Advances in viral antibody sensitivity in clinical settings have occurred exponen-

tially in response to recent advances in nanotechnology.  ELISAs mentioned previously 

are the most frequently utilized methods that detect and quantify critical concentrations 

of flavivirus-specific antibodies.  However current methods require specialized condi-

tions for storage and use.  Marker enzymes requiring low temperatures and/or preserva-

tion through solvents that serve as suitable alternatives are on the rise [165].  A promising 

alterative rooted in low-cost, high sensitivity and easy miniaturization is the use of nano-

particles.  Bioconjugation of stable colloids of metal nanoparticles, like silver (Ag) or gold 

(Au)nanoparticles, to label immunoreagents is one such approach [165, 166].  The bio-

conjugates of Ag nanoparticles, for example, are prepared alongside flavivirus-specific 

antibodies and it is the silver that acts as a direct signaling marker through silver chloride 

reduction on a gold-carbon composite electrode (GCCE) which is easily monitored 

through cathodic linear sweep voltammetry or CLSV [165, 166].  This method increases 

flavivirus detection sensitivity and selectivity, without requiring specialized storage con-

ditions.  However, additional engineering is needed to increase the compatibility of de-

tection apparatus to allow for virus detection in the wild.  

 

The issues surrounding detection apparatus portability may be solved by altering 

nanoparticle bioconjugates.  Nanoparticles are also utilized in various rapid detection 

methods often marketed as a rapid, cost effect way of actively tracking viral infections. 

Scientists have been successful in coupling DNAzyme activation with salt-induced aggre-

gation of metal nanoparticles like gold-based particles in a manner that allows for the 

recognition of cyclization sequences specific to key viruses such as dengue virus [167].   

 

5. Potential Areas of Future Research Endeavors 

 

Every vector-borne virus studied to date that causes disease in humans antagonizes 

interferon type 1 (IFN-1) signaling by disrupting the JAK-STAT signaling pathway [168], 

suggesting suppression of this pathway will interrupt vector-borne flavivirus persistence.  

Thus far, we discussed significant literature with relevance to flavivirus persistence in 

wildlife populations.  Understanding how flaviviruses persist in wildlife species could 

aid in the advancement of therapeutic treatments that could suppress the potential for 

transmission to human populations.  Unfortunately, applicable animal models are lim-

ited.  Therefore, we suggest the development of animal models based directly on fla-

vivirus infections that have been detected in wildlife species.  For example, investigations 

with guinea pigs and ferrets for immunologic investigation with JEV have been success-

fully performed [169], suggesting their use as an animal models for the study of flavivirus 

persistence.  In fact, for a significant amount of time, ferrets have served as a powerful 

model system for the study of influenza pathogenesis due to this animal’s ability to exhibit 

symptoms consistent with influenza virus infection.  Therefore, it stands to reason that 

ferrets may make for an excellent animal model for the study of vector-borne flaviviruses 

in wildlife.  

 

Despite the amount of research that has been performed to date in flavivirus persis-

tence, sustained research is essential to understanding the pathogenesis and persistence 

of these significant wildlife-based pathogens.  For example, the defined roles of specific 

viral proteins and cell-based molecules and their interactions during the formation and 

maintenance of persistent infection is very inadequate.  Furthermore, for flaviviruses to 

persist in infected cells whether in vitro or in vivo, precise host defenses need to be eluded 

or suppressed.  In short, several basic questions need to be addressed: are cellular factors 
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responsible for establishment of flavivirus persistence or are viral proteins the culprits? 

Which factors, specifically? Or are both viral and host proteins responsible, but at different 

instances of the infection and persistence process?  

 

A potential role NS1 plays in establishing viral persistence has been described earlier 

in this review as it applies to the ability of flaviviruses to influence defective interfering 

virus particle production. NS1 may also play another potentially vital role in establishing 

viral persistence: interferon (INF) - type 1 antagonism.  Interestingly, flavivirus NS1 pro-

teins have been shown to possess several roles in pathogenesis; from vascular leakage in 

DENV infection to reducing deactivation of extracellular viruses by binding to the C4 (e.g. 

TEBV NS1)[170], to bind a component of the complement system to inhibit INF activity.  

However, in other virus families, such as orthomyxoviruses (e.g. influenza A) and para-

myxoviruses (e.g. respiratory syncytial virus), their respective NS1 proteins have demon-

strated a role in INF type 1 antagonism [171-174].  Therefore, it stands to reason that NS1 

proteins originating from flaviviruses circulate among wildlife populations (e.g. DENV 

and WNV) may play a significant role in INF antagonism.  Moreover, it bares mentioning 

that Zika virus NS1 proteins from PVABC-59 and Dakar-41525 strains suppress INF-β 

induction by 40 % and 30 %, respectively [175].  Zika virus has yet to show significant 

presence in wildlife, as opposed to other vector-borne flaviviruses in this review and is 

thus beyond the scope of this review to mention any further. 

 

The flavivirus non-structural protein 5 (NS5) an N-terminal methyltransferase 

(MTase) domain tasked with creating the cap1 structure at the 5′ end of nascently synthe-

sized vRNA genomes which promotes translation [176]and suppresses viral RNA detec-

tion by host immune responses [177].  Flavivirus non-structural protein 5 (NS5), has 

shown to be the most potent IFN antagonists for all illness-causing flaviviruses to target 

diverse steps of the type I IFN signaling pathway [101], suggesting a role for NS5 in the 

establishment of flavivirus-mediated infection persistence.  The role of tick-borne virus 

NS5 proteins in the antagonism of interferons during infection has been established [178].  

However, its IFN antagonism in the framework of vector-borne flaviviruses persistence 

has not been completely investigated.  However, significant progress has been made in 

the role NS5 plays in altering INF signaling, which can lead to enhanced vector-borne 

flavivirus persistence.   

 

Interestingly, STAT 2 is a favorite target of flavivirus NS5 proteins for the modulation 

of IFN signaling cascades to establish flavivirus persistence.  ZIKV NS5 induces STAT2 

degradation.  STAT2 is essential for the development of transcription complexes in-

volved in type I and III IFN signaling.  These transcription complexes promote intracel-

lular accumulation of STAT-containing complexes leading to STAT1-STAT1 dimer for-

mation, resulting in augmented IFN-γ-induced gene expression [101].  DENV NS5 binds 

to STAT2, inhibiting its phosphorylation, and resulting in reduced transcription of Inter-

feron-Stimulating Genes (ISG).  The mechanism of this NS5-mediated inhibition has yet 

to be elucidated, but IFN-induced suppression has been mapped to the RNA-dependent 

RNA polymerase binding domain [179].  Even though DENV NS5 does not directly in-

teract with STAT1, IFN-α-mediated STAT1 phosphorylation is reduced [179], suggesting 

the involvement of additional host cell factors.  YFV NS5 also targets STAT2 as part of its 

IFN-I suppression mechanism [101].  This is achieved through YFV NS5 binding to 

STAT2 but is solely dependent on host cell provocation with type I or III IFNs [180]).  This 

stimulation event encourages several intracellular events required for NS5-STAT2 associ-

ation association with STAT2 [180].  Interestingly, WNV displays a similar mode of ac-

tion against INF type 1, through activity against the JAK-STAT pathway as has been de-

scribed for DENV NS5, suggesting similar pathways are utilized to achieve viral persis-

tence for both DENV and WNV. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 August 2021                   



 

 

Also of note is the mosquito-borne flaviviruses NS4B protein, which inhibits 

JAK/STAT-mediated IFN-α/β induction [181, 182].  Also, mutations in NS2A of the WNV 

strain Kunjin virus result in amplified intracellular IFN concentrations, suggesting NS2A-

mediated antagonism of IFN antagonistic is a possibility [183, 184].  IκB kinase ε (IKKε) 

and TANK-binding kinase-1 (TBK-1) are two predominate kinases responsible for IRF3 

activation are also targeted by flaviviruses.  The DENV2 protease, NS2B3, interacts with 

IKKε, preventing IRF3 phosphorylation and subsequent nuclear translocation [185].  Fur-

thermore, TBK-1 can be inhibited by the flavivirus non-structural proteins NS2A and 

NS4B, as determined in all DENV strains tested, by NS4A of solely DENV1, and by NS4B 

of WNV [186].  Expression of these non-structural proteins in infected cells has been 

shown to inhibit TBK-1 autophosphorylation, and subsequently IRF3 phosphorylation 

and type I IFN transcription [97, 186].  Altogether, these studies demonstrate that mos-

quito-borne flaviviruses, such as DENV and WNV are invested in antagonizing essential 

cellular proteins that produce type I IFN.  Nevertheless, more research is required to fully 

understand the mechanisms involved, and how these mechanisms facilitate the establish-

ment of flavivirus infection persistence in wildlife hosts.  Also, interesting would be the 

elucidation of pathways critical for switching or molecular/genetic alterations that may be 

critical for the transmission of flaviviruses from arthropod vector to wildlife host. 

 

Precise identification of host immune responses that are eluded and/or controlled in 

specific wildlife species is critical.  This may include identification of pro-apoptotic pro-

teins involved in the establishment of flavivirus persistence.  Understanding these mech-

anisms in arthropod vectors that transmit these viruses are critical as well.  Bcl-2 overex-

pression in BHK and CHO cells resulted in the inhibition of apoptosis and JEV persistence, 

even though a direct link to viral effect on Bcl-2 activity was not determined [142].  Re-

sults revealed overexpression of Bcl-2 in BHK-21 cells, although not inhibiting virus 

yields, delayed the process of DENV-induced apoptosis, thereby permitting surviving 

cells to become persistently infected [187].  It would be advantageous to understand 

which, and how, vector-borne flavivirus proteins interact with the Bcl-2 pathway in mos-

quitoes and ticks, as well as wildlife animals.  Overexpression of tBax, a powerful inducer 

of cellular apoptosis, in mosquito C6/36 cells resulted in the inhibition of DENV infection 

[188, 189].  Undeniably, other host cell pathways could be involved in the establishment 

or blockage of flavivirus persistence. 

 

Intimate connections of persistent flavivirus infection in the tick and mosquito vec-

tors also need to be elucidated.  The biology surrounding flavivirus persistence in ticks 

and wildlife species is completely divergent.  Regarding ixodid tick vectors, identifying 

genomic of proteomic targets that may play a role in viral persistence is imperative to 

elucidation.  When known, these vector mechanisms might find the useful in efforts to 

control natural flavivirus persistence cycles in ticks.  For instance, these mechanism(s) 

could involve specific mutations that may render the virus less detectable by immune re-

sponses in infected cells.   

 

An important question for transmission and flaviviral persistence mechanism dy-

namics is why arthropod vectors are not killed by vector-borne virus infection.  Analysis 

of vector-borne flavivirus-mediated IFN antagonism has been predominately performed 

to date in the context of human disease.  Even studies in animal systems are typically 

performed in humanized mice [190, 191].  This is not conducive to the assessment of ar-

thropod-borne persistence in wildlife species.  Therefore, a more conscious effort should 

be made for the study of vector-borne flaviviruses in the wildlife species they cause dis-

ease.  This should include more-mammalian-based (non-human) cell culture research, 

and rigorous fluid and tissue sampling programs geared towards the specific collection 

of samples from flaviviruses detected and analyzed for viral persistence. 
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Taken together, these findings suggest the INF-induced JAK-STAT pathway is the 

predominant player in the establishment of vector-borne flavivirus persistence. 

 

Lastly, establishing animal models of vector-borne flaviviruses persistence is critical 

for full elucidation of the mechanisms surrounding the interplay between viral persistence 

and host responses.  Wildlife species that serve as natural host reservoirs are vital to the 

development of these models.  To be clear, murine models are not what is being inferred 

here since these models have failed to answer important questions surrounding virus-host 

ecology.  Therefore, future research should unite studies that encompass the molecular 

virology of vector-borne flaviviruses, molecular cell biology, accurate animal models, and 

studies involving virus–host interactions. 

 

6. Conclusion 

 

Persistent vector-borne infections in wildlife species serve as a reservoir for transmis-

sion to human hosts.  For these infections, no FDA approved therapy exist, leaving only 

the immune response to eliminate or contain viral spread.  However, ongoing viral ac-

tivity in the absence of inhibitory immunity triggers outbreaks and even pandemics that 

lead to pathology in both reservoirs and downstream hosts via transmission by arthropod 

vectors, such as ticks and mosquitoes.  Viral mechanisms contributing to persistence ap-

pear to include immune evasion strategies, through inhibition of interferon-mediated 

JAK/STAT pathway signaling and production of defective inhibitory virus particles, and 

through the activity of flavivirus nonstructural proteins expressed during virus replica-

tion.  Understanding the pathophysiology of these viral infections and the cellular mech-

anisms by which they establish persistence is key to development of therapeutic ap-

proaches that can eliminate these persistent infections without immune suppression.  

Furthermore, it is important to consider that chronic, persistent infections of wildlife spe-

cies could contribute to re-emergence of pathogens in human host populations, with the 

current SARS-CoV-2 pandemic and the speculation of the pathogen’s origin in bat popu-

lations serving as a current example of the significance of this [192], and a reminder of 

why continual study of viral persistence, especially flaviviruses, in wildlife populations is 

so critical. 
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Figure 1. Schematic Representation of the Tick-Borne Flavivirus Wildlife Transmission Cycle. Black arrows 

show the transmission cycle of tick-borne flaviviruses from Ixodid and Argasis ticks to predominate and inter-

mediate hosts, as discussed in this review. 
 

 
Figure 2. Schematic Representation of the Tick-Borne Flavivirus Wildlife Transmission Cycle. Schematic Rep-

resentation of the Mosquito-Borne Flavivirus Wildlife Transmission Cycle.  Black arrows show the transmission 

cycle of mosquito-borne flaviviruses from mosquitoes (e.g. Culex sp.) to predominate and intermediate hosts, as 

discussed in this review. Unlike tick-borne infections, the transmission cycle for mosquito-borne viruses can 

differ greatly. For example, the transmission cycle for West Nile virus (as shown above) differs from that of 

dengue virus (DENV).  DENV tends to circulate in two relatively distinct transmission cycles vectored by Aedes 

sp. mosquitoes.  DENV infection of humans results in a sufficiently high viremia to support infection of feeding 

mosquitoes. DENV may also replicate in a sylvatic cycle, which is more relevant to this review. 
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Figure 3: Schematic Diagram of the Vector-borne Flavivirus Genome.  A representation of the approximately 

11kb flavivirus genome (in blue), capped and polyadenylated, and subsequent translation protein product (in 

red) are  shown to illustrate the important flavivirus replication functions.  These features and functions are 

consistent between tick-borne and mosquito-borne flaviviruses. Functions of the flavivirus genes as they pertain 

to the establishment of viral persistence in host cells are described in the text. UTR = untranslated region, 

AAAAA(n) = polyadenylation. 
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