

Article

Remaining Useful Life Prediction from 3D Scan Data with Ge-
netically Optimized Convolutional Neural Networks
Giovanni Diraco 1*, Pietro Siciliano2, and Alessandro Leone3

1 National Research Council of Italy, IMM—Institute for Microelectronics and Microsystems, 73100 Lecce,
Italy; giovanni.diraco@cnr.it

2 National Research Council of Italy, IMM—Institute for Microelectronics and Microsystems, 73100 Lecce,
Italy; pietro.siciliano@le.imm.cnr.it

3 National Research Council of Italy, IMM—Institute for Microelectronics and Microsystems, 73100 Lecce,
Italy, alessandro.leone@cnr.it

* Correspondence: giovanni.diraco@cnr.it; Tel.: +39 832 422 531

Abstract: In the current industrial landscape, increasingly pervaded by technological innovations,
the adoption of optimized strategies for asset management is becoming a critical key success factor.
Among the various strategies available, the “Prognostics and Health Management” strategy is able
to support maintenance management decisions more accurately, through continuous monitoring of
equipment health and “Remaining Useful Life” forecasting. In the present study, Convolutional
Neural Network-based Deep Neural Network techniques are investigated for the Remaining Useful
Life prediction of a punch tool, whose degradation is caused by working surface deformations dur-
ing the machining process. Surface deformation is determined using a 3D scanning sensor capable
of returning point clouds with micrometric accuracy during the operation of the punching machine,
avoiding both downtime and human intervention. The 3D point clouds thus obtained are trans-
formed into bidimensional image-type maps, i.e., maps of depths and normal vectors, to fully ex-
ploit the potential of convolutional neural networks for extracting features. Such maps are then pro-
cessed by comparing 15 genetically optimized architectures with the transfer learning of 19 pre-
trained models, using a classic machine learning approach, i.e., Support Vector Regression, as a
benchmark. The achieved results clearly show that, in this specific case, optimized architectures
provide performance far superior (MAPE=0.058) to that of transfer learning which, instead, remains
at a lower or slightly higher level (MAPE=0.416) than Support Vector Regression (MAPE=0.857).

Keywords: Remaining Useful Life; Deep Neural Network; Convolutional Neural Network; Genetic
Optimization; Neural Network Optimization; Support Vector Regression; Depth Maps; Normal
Maps; 3D Point Clouds.

1. Introduction
Over recent years, asset maintenance has received increasing attention in the litera-

ture. If considering that appropriate maintenance management has a direct effect on re-
ducing costs and increasing system reliability, availability, and safety [1], it is easy to un-
derstand how asset maintenance is a critical success factor in the current industrial revo-
lution 4.0 [2]. More specifically, the adoption of optimized maintenance strategies has
proven to improve tool utilization and productivity, assuring product quality and opera-
tional excellence [3].

With the main objective of reducing unexpected breakdowns and possibly cata-
strophic consequences, maintenance strategies can be roughly classified under [4]: 1) cor-
rective maintenance, 2) preventive maintenance, and 3) prognostics and health manage-
ment (PHM). In the case of corrective maintenance, machine tools are operated until the
tool breaks down, and repairs are made at the time of failure. However, on the other hand,
if a critical breakdown occurs, it may cause serious machinery damages. The preventive
maintenance aims to prevent the aforementioned problems by scheduling inspection and

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202108.0272.v1
http://creativecommons.org/licenses/by/4.0/

repair interventions at regular time intervals or operation cycles. In this case, the bigger
downside is the waste of time and the replacement costs for components that often are
still working. Contrary to previous strategies, PHM relies on the continuous monitoring
of equipment health conditions to predict the degradation status, in terms of remaining
useful life (RUL), supporting thus more accurate maintenance management decisions.

The prediction of RUL, definable as the "length from the current time to the end of
the useful life" as suggested in [5], can be achieved by at least three types of approaches
[6]: model-based, data-driven, and hybrid. The model-based approaches (also known as
physics-based) refer to mathematical formulations able to model the physical degradation
process for the purpose of estimating RUL. In the case of data-driven approaches, instead,
RUL is estimated from degradation data collected by monitoring sensors, and processed
using traditional statistical or machine learning (ML) techniques or even more "advanced"
ones based on deep neural networks (DNNs) [7]. However, very often the choice of the
appropriate approach depends on the specific problem at hand. Thus, aiming to exploit
the strengths of both approaches, data-driven and model-based, they are combined in the
hybrid approaches by using some kind of fusion scheme [6].

Exploiting the laws of nature to model system degradation, model-based approaches
are generally quite accurate. Nevertheless, the implementation of a faithful model for pre-
dicting RUL is an expensive and time-consuming process; it may be feasible for simple
parts, but may not be for complex components or systems due to the limited understand-
ing of their behavior under all operating conditions. Such disadvantages combined with
the risk of not achieving the desired results, make model-based approaches definitely less
attractive than data-driven ones [8].

The various data-driven methods revolve around the processing of features obtained
from monitoring sensor data. Consequently, the most important distinction differentiat-
ing among such methods lies in the way features are obtained, that is, either by traditional
handcrafted methods or by learned representations. The methods belonging to the first
category utilize representative features, extracted and selected by hand (i.e., handcrafted)
on the basis of expert domain knowledge, and then classified or evaluated via regression
using appropriate statistical or ML techniques.

The disadvantages of these methods are that handcrafted features are representative
only of a specific component or system under certain conditions, while, on the other hand,
the process of feature extraction and selection is time-consuming and laborious, relying
often on strong prior domain knowledge [9]. Moreover, as shown by [10], the performance
of ML algorithms is limited by data representation.

In the case of learned representations, on the contrary, representative features of deg-
radation states can be automatically discovered from sensor data by using Deep Learning
(DL) techniques [7, 11]. Up to now, a lot of fruitful research results involving many differ-
ent fields, ranging from image recognition to natural language processing, have been re-
ported in the DL literature [12]. Although, recently, an increasing number of research
studies exploiting DL has appeared in the RUL literature, there is still less availability of
optimized DL models and architectures compared to other fields.

In the present study, a new DL model based on convolutional neural network (CNN)
is proposed for the RUL prediction of punching tools. The main contributions are (i) rep-
resentation of punch deformation with depth and normal vector maps (DNVMs) obtained
from 3D scan point clouds; (ii) CNN-based RUL prediction with network architecture op-
timized using genetic algorithm (GA); (iii) validation of the proposed method with real
data sets representing three different deformation modes.

The remaining of this paper is organized as follows: Section 2 covers a brief literature
review of DL-based RUL prediction; Section 3 presents the materials and methods
adopted for design, implementation and experimental validation; the empirical results are
provided in Section 4 and detailed discussed on Section 5; finally, some conclusions are
drawn in Section 6.

3. Related works

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Complex real-world data are very useful in many machine-learning applications, in-
cluding RUL prediction, but they are also cumbersome to process, transmit and store, due
to their high-dimensional nature. More effective and low-dimensional features can be ob-
tained from high-dimensional data by using representation learning techniques. The year
2006 marked an important turning point in this research area, since earlier widely-used
methods such as principal component analysis (PCA) [13, 14] and linear discriminant
analysis (LDA) [15] have given way to more advanced DL methods [16]. DL architectures,
in contrast to shallow ones, are composed by multiple data transformation layers, provid-
ing higher hierarchical abstraction levels and thus more useful for classification, detection
and prediction tasks.

One of the most common DL approach is the stacked sparse auto-encoder (SAE), in
which a network of multiple encoder layers is used to transform high-dimensional data
into low-dimensional features and, conversely, a network of multiple decoder layers re-
covers back the original data. Specifically, the RUL of an aircraft engine was predicted by
Ma et al. [17] by using SAE to extract performance degradation features. Sun et al. [18]
addressed the problem of deep transfer learning with SAE networks for predicting RUL
of cutting tool. They investigated three different transfer strategies, i.e., weight transfer,
feature transfer, and weight update, to transfer a trained SAE to a new object tool under
operation without providing supervised training information. The authors claimed that
deep transfer learning improves performance of RUL prediction also in case of few his-
torical failure data for training. Ren at al. [19] proposed a DL-based framework for bearing
RUL prediction using deep auto-encoder and time-frequency-wavelet joint features to
representing the bearing degradation process. As the authors pointed out, the advantages
offered by the deep autoencoder method were twofold, i.e., automatic feature selection
and over fitting problem prevention thanks to reducing network parameters.

Another neural network class arousing considerable research interest in feature
learning is represented by the Restricted Boltzmann Machine (RBM). It is an energy-based
neural network with two layers of stochastic binary neurons, one is the visible layer and
the other one is the hidden layer. The main issues when dealing with RBM (even stacked
in multiple layers) is the model parameter initialization (e.g, learning rate, momentum,
number of hidden units, mini-batch size , etc.) and how to regularize the model to avoid
over fitting and improve the learning process. Liao et al. [20] addressed the regularization
problem by suggesting a new term allowing to train an RBM to output a feature space that
better represents degradation patterns in RUL prediction. Although one RBM layer was
used, they pointed out that their method can be extended by stacking multiple RBM layers
in a deeper neural network architecture.

Haris et al. [21] addressed the problem of find optimal hyperparameters for a Deep
Belief Network (DBN), which is a generative model composed of multiple RMB layers, at
the purpose to predict the RUL of supercapacitors. To this end, they proposed a combina-
tion of Bayesian and HyperBand optimization, and showed the universality of their model
by training it on different degradation profiles with the same hyperparameters.

Aiming to predict RUL of complex engineering system whose malfunctions may be
caused by multiple faults, Jiao et al. [22] proposed a RUL prediction framework for mul-
tiple fault modes consisting of three main modules: DBN-based extraction of degradation
features where original data were preprocessed with a gap metric; fault identification un-
der multiple fault conditions by support vector data description (SVDD) monitoring; RUL
estimation via particle filter (PF) and adaptive failure threshold.

Ma et al. [23] assessed the health condition of a bearing rig by using a discriminative
DBN model composed of four layers. They obtained the model parameters, i.e., the num-
ber of neurons of the two hidden layers and the learning rate, by using the ant colony
optimization (ACO) algorithm. The data consisted of vibration signals collected at 10 min
intervals with a sampling frequency of 10 kHz. The degradation prediction was formu-
lated as a classification problem with five classes representing the bearing conditions dur-
ing the evolution process.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Zhang et al. [24] proposed a DBN-based ensemble method for RUL prediction in
which multiple DBNs were evolved using a multi-objective evolutionary algorithm inte-
grated with the traditional DBN training technique. They used DBNs with three hidden
layers, whose optimization parameters were the number of neurons, the weight cost, and
learning rates. They evaluated their method on the turbofan engine degradation problem
provided by NASA, i.e., the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) data sets, composed of multivariate temporal data coming from 21 sensors.

Another DL model recently investigated in RUL prediction is the CNN [25], a type
of multi-layer feed-forward network originally conceived to recognize visual patterns
from images [26], whose feature learning capabilities are enabled through the combina-
tion of multiple convolution and pooling layers. Babu et al. [27] reported the first attempt
of predicting RUL using CNN-based feature learning combined with linear regression
from multi-channel time series data. As the authors pointed out, the multiple layers com-
posing the DL architecture effectively learned local salience representations of multi-chan-
nel signals (provided as two-dimensional input) also in different scales. They showed
good RUL estimation performance on two publicly available data sets, the NASA C-
MAPSS data set and the PHM 2008 Data Challenge data set.

Since sensor data involved in RUL estimation are traditionally arranged in a time-
series form, either uni- or multi- variate, the use of Recurrent Neural Networks (RNNs)
has been suggested to better deal with the sequential nature of these data [28]. However,
as it is well-known, RNNs suffer from a vanishing/exploding gradient in presence of long-
term time dependency. To overcome this drawback, Zheng et al. [29] suggested to esti-
mate RUL with a Long Short-Term Memory (LSTM) network, which is a type of RNN able
to effectively model sequential data, without suffering of long-term time dependency
problems. To validate their LSTM model for RUL estimation, they used the C-MAPSS data
Set, the PHM 2008 Challenge data set and the Milling data set.

Aiming to exploit the power of CNN to learn discriminative features from two-di-
mensional inputs, Li et al. [30] proposed a CNN deep learning architecture based on a
time window approach able to handle multi-variate temporal information. To validate the
effectiveness of their approach, they estimated the RUL of aero-engines using the NASA
C-MAPSS data set. The achieved prediction performance was significantly better than the
CNN approach presented by Babu et al. [27], and also comparable with the LSTM ap-
proach of Malhotra et al. [31] but employing simpler architecture and lower computing
load.

The approaches reviewed so far receive as input time series of sensor data (e.g., vi-
bration signals, engine data, physical properties, etc.), usually organized as 1D arrays, but
often also as 2D arrays in the case of multi-channel data (i.e., multivariate time series). A
special case of 2D representation is image data, traditionally used for visual inspection to
assess component or system conditions. Recently, image data were used to automatically
predict fault or degradation of machine components, with better results for larger enough
data sets [32].

Since large data set are not always available within PHM applications, the problem
of insufficient images for training CNN models has been addressed through transfer
learning by Marei et al. [33], using microscope images of cutting tool flank. Essentially,
transfer learning allows to reuse in a new domain, knowledge acquired from a similar or
different domain. In practice, DL models pre-trained on large general-purpose image data
sets (e.g., ImageNet [34], ILSVRC: ImageNet Large Scale Visual Recognition Challenge
[35], CIFAR-10/CIFAR-100 [36], and so on) can be fine-tuned using available image data
to perform prediction on new problems. However, the underlying assumption for transfer
learning to work well is that the feature distributions across the two domains are the same.

DL models require an accurate setting of multiple DNN architectural parameters,
which is a time-consuming and experience-intensive task. The parameter setting problem
has been tackled by Mo et al. [37], adopting an evolutionary algorithm to find the optimal
parameter configuration. Furthermore, they proposed a multi-head CNN structure fol-
lowed by a LSTM network, pointing out the superiority of multi-head CNN models over

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

single-head multi-channel ones, since the former keep separate the extracted features
whereas the latter mix them all together losing specialized features. They demonstrated
the effectiveness of their solution using time series data from the NASA C-MAPSS data
set.

In real-world settings, the collection of machinery health information might be chal-
lenging due to some kind of restrictions (e.g., small component size and narrow camera
field-of-view, component partially hidden inside the machine, and so on), giving rise to
partial or incomplete data. This problem, referred to as the partial observation problem,
has been addressed by Li et al. [38] presenting a supervised attention mechanism for fea-
ture learning based on CNN and LSTM, followed by a regression layer for estimating the
RUL of an industrial cutting wheel from images.

4. Materials and methods
This section details the materials and methods used in this study to predict the RUL

of a punch tool from 3D scan data. More specifically, the next subsections deal with the
following aspects: 1) the data acquisition system and experimental setup, 2) the 3D scan-
ning process (i.e., pre-processing of 3D point clouds and feature extraction), 3) the adopted
metrics to evaluate RUL prediction performance, 4) the DNN architectures generated by
genetic optimization, 5) the genetic optimization technique, and 6) the Support Vector Re-
gression (SVR) approach used as classic ML benchmark.

4.1. Experimental Setup and Data Acquisitions
The present study focuses on RUL prediction of punch tools mounted on a punching

machine, like the one shown in Figure 1, used to process pump workpieces by making a
punch on their upper end. The RUL prediction is based on 3D scan data acquired by a

Figure 1. Punching machinery: A) punch tool and pump workpiece, B) Gocator® 3210 3D scanning sensor.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Figure 2. Punch tool 3D model. A) Full view of the punch tool with working region circled with a
dashed red line. B) Detail of the working region. C) 3D point cloud with grayscale patches of the
working region obtained from a 3D scan snapshot.

Gocator® 3210 [39] sensor, tightly clamped on the punching machine structure (Figure
1.B). The 3D scan sensor, equipped with a stereo camera of two megapixels and a blue
LED projector, provides 3D point clouds in a single snapshot for accurate noncontact
measurements down to 35 μm.

The punch tool consists of two cylindrical ends, of which the one having a larger
diameter serves to clamp it to the machine, while the other is the working region. The 3D
model of the punch tool is provided in Figure 2, in which the working region is high-
lighted by a dashed red line (Figure 2.A). During the machining cycles, the working sur-
face of the punch (Figure 2.B) undergoes progressive deformations (Figure 2.C). 3D scans
of these surface deformations, suitably processed using ML algorithms, can be exploited
to predict the RUL of the punch tool.

 During the experimentation phase, three identical punch tools were brought to the
end of their life cycle, subjecting them to different loads. The first punch tool, P1, was
operated with an incremental load ranging from a minimum of 10 kN to a maximum of
15 kN, obtaining a total of 714 scans performed every 50 pressing cycles. The second
punch tool, P2, was tested with an incremental load ranging from 20 to 28 kN, for a total
of 521 scans performed every 60 pressing cycles. The third punch, P3, was subjected to an
incremental load ranging from 15 to 20 kN, generating a total of 779 scans captured every
50 pressing cycles. In such a way, a total amount of 2014 scans were produced in approx-
imately six months.
4.2. 3D Scan Preprocessing
3D scans obtained as discussed above were preprocessed in the form of 3D point clouds.
Due to reflections from metallic surface, raw 3D point clouds may be corrupted by arte-
facts, i.e., spurious 3D points. To overcome this issue, the first preprocessing step was to

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

segment each raw point cloud into clusters, considering a minimum Euclidean distance
between 3D points from different clusters, as represented in Figure 3. Then, the clusters
were filtered based on the number of 3D points, keeping the two clusters with the greater
number of points. The resulting 3D point cloud, provided in Figure 4, is composed of two
main segments. The points located at y<10 form the working surface, whereas those lo-
cated at y>30 represent the so-called best-fit surface used in the following step for point
cloud registration.

Figure 3. 3D point cloud segmented using the Euclidean distance between 3D points from differ-
ent clusters. Segmented clusters are represented in different colors.

Figure 4. Filtered 3D point cloud after segmentation. Two main segments are visible.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Although the 3D scan system is firmly clamped to the machine structure, continuous
vibrations can produce slight misalignments between 3D point clouds. A rigid registration
step was utilized to correct such misalignments. The semi-cylindrical surface with the
largest diameter shown in Figure 4 (i.e., 3D points with y>30) was used as best-fit reference
surface for registration, since this surface was the least subject to deformation during
punching operations. The iterative-closest-point (ICP) algorithm, originally suggested by
Besl and McKay [40], was used to register the best-fit surfaces of segmented point clouds.

Substantially, the ICP algorithm is an optimization process whose main goal is to find
the locally best (in a least-square sense) rigid transformation by means of singular value
decomposition (SVD) [41]. More specifically, the iterative process consists of the following
main steps: 1) projection of the two point-clouds under registration, 2) estimation of the
optimal rigid transformation via SVD, 3) application of the transformation to a subset of
randomly selected points, 4) evaluation of the alignment via least median estimator [42],
5) if the alignment error is smaller than a prefixed threshold, the rigid transformation is
applied to the whole point clouds, otherwise, the above steps are repeated.

Once registered, the point cloud was cropped to take only the working region, thus
highlighting the surface deformation, as shown in Figure 5. In addition, in order to further
highlight the working surface deformations, for each point belonging to the cropped point
cloud the surface normal vector was considered [43], obtaining the normal representation
shown in Figure 6.

Figure 5. Working surface cropped from registered point cloud.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Figure 5. Surface normal vector representation of the working region obtained form the cropped
point cloud provided in Figure 4.

Figure 6. A) Depth map. Red color represents short distances and blue long ones. B) Normal map.
Dark-red color represents vectors parallel to z-axis (i.e., pointing out of the image plane) and light-
blue perpendicular ones.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Figure 7. Longitudinal profile extraction. A) Longitudinal point-cloud region (red points) from
which the longitudinal profile is estimated. B) Estimated longitudinal profile (red curve) from the
point cloud projection on the YZ plane.

To exploit the most of DNN feature extraction capabilities, depth and normal vector
representations were transformed into two-dimensional maps, reported in Figure 6, i.e.,
depth map (Figure 6.A) and normal vector map, or normal map (Figure 6.B), respectively.

The RUL prediction based on DFL was compared with that based on traditional ML
methods (e.g., SVR). To do so, alongside the two-dimensional deformation representa-
tions mentioned above, one-dimensional representations were also considered, i.e., longi-
tudinal profiles of the punch tool. The extraction process of longitudinal profiles, shown
in Figure 7, consisted of three main steps. Firstly, a profile region was selected from the
cropped point cloud by taking points 𝑃 = (𝑥, 𝑦, 𝑧) such that 𝑥 ∈ [−𝑥௣, 𝑥௣] (Figure 7.A).
Secondly, the selected point-cloud region was projected onto the YZ plane. Thirdly, the
longitudinal profile was estimated averaging the projected region along the Z-axis direc-
tion (Figure 7.B).
4.3. Evaluation Metrics

Three different evaluation metrics were adopted in this study, i.e., scoring function
(SF), root mean square error (RMSE), and mean absolute percentage error (MAPE). The
first two metrics were selected since they are commonly adopted in the literature on RUL

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

prediction [30], while the third was considered as it allows for more subtle evaluations
than the other two.

Given a total number 𝑁 of sampled machining cycles (i.e., 3D scans), let 𝑝௜ be the
RUL at the machining cycle 𝑖, 𝑝௜

ᇱ the estimated version of 𝑝௜ , and 𝐸௜ = 𝑝௜
ᇱ − 𝑝௜ the pre-

diction error, the SF is defined as follows:

𝑆𝐹 = ∑ 𝑓௜
ே
௜ୀଵ ,

where 𝑓௜ = ቐ
𝑒ି

ಶ೔
భయ − 1, 𝑖𝑖𝑓 𝐸௜ < 0

𝑒
ಶ೔
భబ − 1, 𝑖𝑖𝑓 𝐸௜ ≥ 0

 .
(1)

Furthermore, the RMSE is defined as follows:

𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ 𝐸௜

ଶே
௜ୀଵ , (2)

and, finally, MAPE is given by:

𝑀𝐴𝑃𝐸 =
ଵ

ே
∑ ቚ

ா೔

௣೔
ቚே

௜ , for 𝑝௜ > 0. (3)

4.4. DNN Architectures
The DNNs used in this study to capture the representation information from prepro-

cessed inputs, i.e. depth and normal maps provided as color images, were based on CNN
[44]. Both single- and double- head DNNs were investigated, whose general architectures

Figure 8. Single-head general architecture of CNN-based DNN for processing either depth or nor-
mal maps provided as color image inputs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Figure 9. Double-head general architecture of CNN-based DNN for processing both depth and
normal maps provided as color image inputs.

are shown in Figure 8 and Figure 9, respectively. Basically, they are composed by an input
layer receiving depth or normal maps, resized to 60×60 pixels color (3-channels) images,
followed by 𝐾଴ (𝐾ଵ and 𝐾ଶ in the double-head case) blocks including the following four
layers: 1) convolution, 2) batch normalization, 3) rectified linear unit (ReLU), and 4) global
average pooling.

CNN feature learning is based on the convolution operation implemented by apply-
ing a kernel to input images (i.e., local receptive field) whose response provides the so-
called feature map. Let 𝐼 = (𝐼ଵ, 𝐼ଶ, 𝐼ଷ) be an input image, W a kernel of size 𝑠 × 𝑠 (a square
kernel was considered in this study, but in general it may have a rectangular size) whose
𝑠ଶ weights are adjusted in feedforward way, the feature map computed at (𝑥, 𝑦) ∈ 𝐼 is
given as follows:

𝐹(𝑥, 𝑦) = ∑ 𝐼௛(𝑥 − 𝑖, 𝑦 − 𝑗)𝑊(𝑖, 𝑗)௦
௜,௝ୀଵ , with ℎ = 1,2,3; (4)

where the summation is the convolution operation as the kernel 𝑄 slides over the image
channel 𝐼௛ . During the feedforward process, the output of a generic convolution layer at
(𝑥, 𝑦) is given as follows:

𝑂௛(𝑥, 𝑦) = 𝜑൫∑ 𝐼௛(𝑥 − 𝑖, 𝑦 − 𝑗)𝑊(𝑖, 𝑗)௦
௜,௝ୀଵ + 𝑏൯, with ℎ = 1,2,3; (5)

where 𝜑(∙) is the activation function used to introduce nonlinearity to feature maps, and
𝑏 is term. In this study, the ReLU activation function was used which performs an ele-
ment-wise threshold operation, i.e., sets to zero any input value less than zero:

𝜑(𝜈) = ൜
𝜈, 𝑖𝑖𝑓 𝜈 ≥ 0
0, 𝑖𝑖𝑓 𝜈 < 0

 . (6)

The batch normalization layer, inserted between convolution and nonlinear activa-
tion (ReLU) layers, allows to speed up training and regularize the network reducing ini-
tialization sensitivity, i.e., facilitates the convergence to good local minima without cum-
bersome initial parameter setting. Given an input element 𝑧௜௝ the batch normalization
layer provides the following normalization:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

𝑧̂௜௝ =
𝑧௜௝ − 𝜇

√𝜎ଶ + 𝜖
, (6)

where 𝜇 and 𝜎 are, respectively, mean and variance estimated over spatial, time and ob-
servation dimensions for each channel independently, whereas 𝜖 is a constant used to
improve numerical stability if variance is too small.

The average pooling layer performs down-sampling by providing as output average
values of its input, and thus reducing the connection number to the next layer, that helps
to mitigate overfitting. The pool size adopted in this study was the same of the corre-
sponding convolution layer in each CNN block, whereas the stride (i.e., step size with
which the pooling layer scans through the input) was fixed at 2. The effect of the dropout
layer is to turn off (set to zero), with probability 𝑝, a certain number of input elements
randomly chosen. Such dropout operation has been shown to help prevent network over-
fitting [45]. In this study, the dropout layer was adopted only in the double-head case with
𝑝 = 𝑑ଵ and 𝑝 = 𝑑ଶ in the two heads, respectively (Figure 9).

The global average pooling layer provides further down-sampling by fully averaging
the feature map. It is usually used before the final fully connected layer to reduce the size
of activations, i.e., less weights, thus leading to a lower network size. The purpose of fully
connected layer is to combine features to identify larger patterns. Thus, all neurons in fully
connected layer are connected to all neurons of previous layer.

In case of classification problems, the last fully connected layer provides the features
to perform classification, thus its output size is equal to the number of classes being clas-
sified. In case of regression problem, the output size is equal to the number of regression
variables, which is one in this study. In both single- and double- head architectures, the
continuous RUL value was finally estimated in the regression layer by minimizing the
loss (i.e., not-normalized half mean squared error) that, in the case of this study with only
one regression variable, reduces to 𝐸௜

ଶ.
Generally, the learning process is casted as an optimization problem of minimizing

the loss function. In this study, the stochastic gradient descent (SGD) [46] was used as
optimization scheme. In SGD training, a mini-batch is stochastically selected at each time
step, instead of using the entire training set, thus improving computing speed. Two rele-
vant SGD parameters are initial learning rate 𝜂 and momentum 𝜆. If 𝜂 is too low the
training process takes a long time, whereas if it is too high the training might result subop-
timal or divergent.

The momentum is a technique used in conjunction with SGD that adjusts the contri-
bution of gradients at previous steps to determine the direction to proceed, instead of us-
ing only the gradient at the current step. If 𝜆 is equal to zero there is no contribution from
previous steps, whereas if 𝜆 is one the contribution from previous steps is maximal. In
this study, the network hyperparameters (𝑆ଵ, 𝑁ଵ, … , 𝑆௄ , 𝑁௄ , 𝜂, 𝜆) in the single-head case,
and (𝑆ଵଵ, 𝑁ଵଵ, … , 𝑆ଵ௄, 𝑁ଵ௄ , 𝑑ଵ, 𝑆ଶଵ, 𝑁ଶଵ, … , 𝑆ଶ௄ , 𝑁ଶ௄ , 𝑑ଶ, 𝜂, 𝜆) were determined by genetic op-
timization algorithm as discussed in the following subsection. Note that the average poll-
ing layer included in each CNN block is optional and its inclusion or exclusion was also
considered among the network hyperparameters subject to optimization through binary
array variables as detailed in the following subsection.

In addition to the architectures shown in Figure 8 and Figure 9, pre-trained networks
were also evaluated. The adoption of pre-trained models offers multiple advantages, such
as the possibility to exploit complex models without having to train them from scratch,
even when little training data are available (used to fine-tune the pre-trained model) with-
out running into overfitting problems, commonly found in presence of small training data
sets. The technique underlying pre-trained models is called transfer learning [47] and, ba-
sically, allows to apply the knowledge already learned from one domain to another.

However, the transfer of knowledge from one domain to another is not always feasi-
ble. When the source domain is not sufficiently related to the destination domain, or when
the transfer methodology is not able to take advantage of relationships between domains,
this can lead to negative transfer [47]. For that reason, in this study, the most popular state-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

of-the-art pre-trained models reported in Table 1 were evaluated, and their prediction
performance was compared with that of network architectures discussed above. Since
such pre-trained networks are designed for classification problems, they were adapted by
substituting the last three layers, i.e., global average pooling layer, softmax layer, classifi-
cation layer, with a fully connected layer with one output neuron followed by a regression
layer.

Table 1. Pre-trained networks evaluated for transfer learning.

Network Input size Parameters (𝟏𝟎𝟔)
Squeezenet [48] 227 × 227 × 3 1.2
Googlenet [49] 224 × 224 × 3 7.0

Inceptionv3 [50] 299 × 299 × 3 23.9
Densenet201 [51] 224 × 224 × 3 20.0
Mobilenetv2 [52] 224 × 224 × 3 3.5

Resnet18 [53] 224 × 224 × 3 11.7
Resnet50 [53] 224 × 224 × 3 25.6

Resnet101 [53] 224 × 224 × 3 44.6
Xception [54] 299 × 299 × 3 22.9

Inceptionresnetv2 [55] 299 × 299 × 3 55.9
Shufflenet [56] 224 × 224 × 3 1.4

Nasnetmobile [57] 224 × 224 × 3 5.3
Nasnetlarge [57] 331 × 331 × 3 88.9
Darknet19 [58] 256 × 256 × 3 20.8
Darknet53 [58] 256 × 256 × 3 41.6

Efficientnetb0 [59] 224 × 224 × 3 5.3
Alexnet [60] 227 × 227 × 3 61.0
Vgg16 [61] 224 × 224 × 3 138.0
Vgg19 [61] 224 × 224 × 3 144.0

4.5. Genetic Optimization
The parameters of the network architectures shown in Figure 8 and Figure 9 were

optimized by means of genetic optimization technique. GAs are population-based opti-
mization methodologies that take their cue from the evolutionary process of living beings,
i.e., the metaphor of natural biological evolution [62]. GAs iteratively implement a series
of operations to manipulate populations of candidate solutions (i.e., chromosomes) to pro-
duce new solutions by means of genetic functionals such as reproduction, crossover, and
mutation. Ultimately, they are inspired by Darwin's theory of evolution and relative prin-
ciples of reproduction, genetic recombination, and survival of the fittest. The population
of chromosomes (i.e., candidate solutions) is evaluated through the attribution of a score
carried out through a so-called fitness function, the formulation of which depends on the
specific optimization problem.

In this study, the fitness function 𝑓 built network architectures and evaluated them,
providing as output the MAPE value obtained from testing. Thus, the optimization prob-
lem was formulated as follows:

minimize 𝑓(𝒛),

with 𝒛 = (𝑧ଵ, 𝑧ଶ, … , 𝑧ெ) such that 𝑧௜
௅ ≤ 𝑧௜ ≤ 𝑧௜

௎ , 𝑖 = 1, … , 𝑀,
(7)

were (𝑧ଵ, 𝑧ଶ, … , 𝑧ெ) are optimization variables, continuous or integer valued, bounded
between (𝑧ଵ

௅ , 𝑧ଶ
௅ , … , 𝑧ெ

௅) and (𝑧ଵ
௎ , 𝑧ଶ

௎, … , 𝑧ெ
௎), respectively, defining candidate network ar-

chitectures as better explained in the following. The number of optimization variables was
𝑀 = 5 for single-head architectures (Figure 8), and 𝑀 = 10 for double-head architec-
tures (Figure 9). For both architectures, the number of CNN blocks ranged from four to
six, i.e., 𝐾௜ ∈ {4,5,6}, 𝑖 = 1,2,3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

In the single-head case, the optimization variables were 𝒛 = (𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥ସ, 𝑥ହ), where
𝑥ଵ ∈ ℕ represented the filter sizes, 𝑥ଶ ∈ ℕ specified the number of filters, 𝑥ଷ ∈ ℕ the
presence or not of average pooling layers, 𝑥ସ ∈ ℝ the initial learning rate, and 𝑥ହ ∈ ℝ the
momentum. In the double-head case, instead, the optimization variables were 𝒛 =

(𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ, 𝑦ହ, 𝑦଺, 𝑦଻, 𝑦଼, 𝑦ଽ, 𝑦ଵ଴), and 𝑦ଵ, 𝑦ଶ, 𝑦ଷ ∈ ℕ represented the filter sizes, number of
filters, and presence or not of average pooling layers for the first head, whereas 𝑦ସ, 𝑦ହ, 𝑦଺ ∈

ℕ were the filter sizes, number of filters, and presence or not of average pooling layers for
the second head. 𝑦଻ ∈ ℝ was the initial learning rate, 𝑦଼ ∈ ℝ the momentum, 𝑦ଽ ∈ ℝ the
dropout probability for the first head, and 𝑦ଵ଴ ∈ ℝ the dropout probability for the second
head.

Regarding the convolutional filter sizes, i.e., 𝑥ଵ (single-head) or 𝑦ଵ and 𝑦ସ (double-
head) variables, odd square dimensions ranging from 3×3 to 29×29 were evaluated by con-
sidering all possible combinations taken 𝐾௜ (𝑖 = 0,1,2) at a time. For example, in the case
of 𝐾଴ = 4, 𝑥ଵ = 1 corresponded to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) = (3,5,7,9), 𝑥ଵ = 2 to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) =

(3,5,7,11) , 𝑥ଵ = 3 to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) = (3,5,7,13) , etc., 𝑥ଵ଴଴ଵ to (23,25,27,29), after that it
continued in reverse order, i.e., 𝑥ଵ଴଴ଶ corresponded to (29,27,25,23), 𝑥ଵ଴଴ଷ corresponded
to (29,27,25,21), and so on. Regarding the number of filters, i.e., 𝑥ଶ (single-head) or 𝑦ଶ
and 𝑦ହ (double-head) variables, power of two between 8 and 256 were considered in in-
cremental order. Thus, for example, in the case 𝐾଴ = 5, 𝑥ଶ = 1 gave (𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) =

(8,8,8,8,8) , 𝑥ଶ = 2 gave (𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) = (8,8,8,8,16) , 𝑥ଶ = 3 gave
(𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) = (8,8,8,8,32), and so on.

Since the average pooling layers, depicted in Figure 8 and Figure 9 with dashed lines,
were optional, their presence or absence were regulated by variables 𝑥ଷ (single-head) or
𝑦ଷ and 𝑦଺ (double-head), representing the configurations of a binary array {0,1}ெ೔ ,
where 1 in 𝑗-th position (with 𝑗 = 1, … , 𝑀௜) indicated the presence of average pooling
layer at the end of the 𝑗-th CNN block. For example, in the case of 𝐾଴ = 6, 𝑥ଷ = 1 corre-
sponded to (0,0,0,0,0,0), 𝑥ଷ = 2 corresponded to (0,0,0,0,0,1) , 𝑥ଷ = 3 to (0,0,0,0,1,1) ,
and so on. All previously discussed optimization variables are summarized in Table 2.

Table 2. Lower and upper bounds of all optimization variables.

Variable 𝑴𝒊 Lower bound Upper bound
Filter size (𝑥ଵ, 𝑦ଵ, 𝑦ସ) 4 1 2002

“ 5 1 4004
“ 6 1 6006

Number of filters (𝑥ଶ, 𝑦ଶ, 𝑦ହ) 4 1 35
“ 5 1 126
“ 6 1 462

Pooling positions (𝑥ଷ, 𝑦ଷ, 𝑦଺) 4 1 16
“ 5 1 32
“ 6 1 64

Initial learning rate (𝑥ସ, 𝑦଻) 4, 5, 6 10ିସ 0.1
Momentum (𝑥ହ, 𝑦଼) 4, 5, 6 0 1

Dropout probability (𝑦ଽ , 𝑦ଵ଴) 4, 5, 6 0 1

In this study, both suggested DNNs (Figure 8 and Figure 9) and pretrained ones (Ta-

ble 1) were implemented and evaluated using the MatWorks® Deep Learning Toolbox (v
14.2, R2021a) [63]; whereas, genetic optimization was performed using the MatWorks®
Optimization Toolbox (v 9.1, R2021a) [64].

4.6. SVR based estimation

As a further comparison, the previously presented DNN-based models were com-
pared with more traditional ML methods such as SVR. Since the presence of irrelevant or
redundant information could slow down or make prediction algorithms less accurate, it

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

is necessary, before learning model, to distinguish between relevant and unnecessary fea-
tures. For this reason, the first step was to reduce the dimensionality of the profile data
(Figure 7.B) using the PCA approach [65].

The profile data were represented in YZ plane by curves Ψ௞ = {൫𝑦௜
௞ , 𝑧௜

௞൯ ∈

ℝଶ, 𝑖 = 1, … , 𝑁௉ೖ
}, 𝑘 = 1, … , 𝑁 , with 𝑁௉ೖ

 typically ranging between 156 to 164 de-
pending on the specific point-cloud considered. After the PCA application, the re-
duced profile data were given by Ψഥ௞ = {൫𝑦ത௜

௞ , 𝑧௜̅
௞൯ ∈ ℝଶ, 𝑖 = 1,2}, since the percentage

of variance explained by the first two principal components was of 100%. Ultimately,
profile feature data used to train and test the SVR model was written as

𝑷 = ቎
𝑦തଵ

ଵ 𝑧ଵ̅
ଵ 𝑦തଶ

ଵ 𝑧ଶ̅
ଵ

⋮
𝑦തଵ

ே 𝑧ଵ̅
ே 𝑦തଶ

ே 𝑧ଶ̅
ே

቏ ∈ ℝே,ସ. (8)

To achieve a good compromise between processing speed and accuracy, in this study,
the epsilon-insensitive SVR (i.e., 𝜀 −SVR) [66, 67] was adopted, in which the epsilon pa-
rameter controls the amount of error allowed to the model. Given training data 𝑷௜ =

൫𝑦തଵ
௜ , 𝑧ଵ̅

௜ , 𝑦തଶ
௜ , 𝑧ଶ̅

௜ ൯
𝑻

∈ ℝ𝟒, the goal is to find a function 𝑔(𝑷௜) that deviates from RUL values
𝑝௜ ∈ ℝ by an amount no greater than 𝜖 while at the same time being as flat as possible.

In the linear case, assuming that the training data set is composed of 𝑁் < 𝑁 profiles
𝑷௜ and corresponding RUL values 𝑝௜ with 𝑖 = 1, … , 𝑁், the linear function takes the form
𝑔(𝑷௜) = 〈𝝅 ∙ 𝑷௜〉 + 𝑏, where 〈 ∙ 〉 is the dot product, and 𝝅 ∈ ℝ𝟒 such that 〈𝝅 ∙ 𝝅〉 is min-
imum to ensure flatness. The problem can be stated in term of convex optimization as
follows:

minimize ‖𝝅‖ଶ, subject to

∀𝑖 = 1, … , 𝑁் ∶ |𝑝௜ − (〈𝝅 ∙ 𝑷௜〉 + 𝑏)| ≤ 𝜖.
(9)

Since a function 𝑓 satisfying these constraints for all points may not exist, in practice
slake variables (𝜉௜ , 𝜉௜

∗) are introduced, analogously to the concept of “soft margin” in
SVM. With the addition of the slake variables the problem (9) becomes [66]:

minimize ‖𝝅‖ଶ + 𝐶 ∑ (𝜉௜ + 𝜉௜
∗)

ே೅
௜ୀଵ , subject to

∀𝑖 = 1, … , 𝑁் ∶

⎩
⎨

⎧
𝑝௜ − 〈𝝅 ∙ 𝑷௜〉 − 𝑏 ≤ 𝜖 + 𝜉௜

〈𝝅 ∙ 𝑷௜〉 + 𝑏 − 𝑝௜ ≤ 𝜖 + 𝜉௜
∗

𝜉௜ ≥ 0

𝜉௜
∗ ≥ 0

,
(10)

where the positive parameter 𝐶 controls the penalty imposed on observations that fall
outside the 𝜖 margin, playing a regularizing role to prevent overfiting.

In the nonlinear case, the dot product is replaced with a kernel function 𝐺(∙,∙) which
maps training data to a high-dimensional space. Some popular kernel functions evaluated
in this study are reported in Table 3.

Table 3. Kernel functions evaluated in this study.

Kernel 𝑮(𝒙, 𝒚)
Linear 〈𝑥 ∙ 𝑦〉

Gaussian 𝑒ି‖௫ି௬‖మ
Polynomial (1 + 〈𝑥 ∙ 𝑦〉)௤ with 𝑞 ∈ ℕ\{0,1}

5. Results
The performance results of the genetically optimized network architectures are pro-

vided in Table 4. In the single-head case, the convention used for the model name is a
prefix "go" which stands for genetically optimized, followed by the number of CNN

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

blocks and the suffix "normal" or "depth" depending on the type of map the model was
tested on. Thus, for instance, the name of the model genetically optimized with four CNN
blocks and tested on normal maps is "go4normal". Instead, in the double-head architec-
tures, since they were tested on both normal and depth maps, the naming convention
consists of the suffix "go" followed by the number of blocks for the two heads, for example
"go4+4" indicates a model with four blocks for each head. In addition to the three metrics
defined in (1), (2) and (3), the last column of Table 4 provides the time required to train
each model.

The population size was 50 in single-head architectures (5 optimization variables)
and 200 in double-head ones (10 optimization variables), for a total number of 10,000 and
40,000 iterations, respectively. For each candidate architecture, the model was trained for
100 epochs, randomizing the validation data set to each epoch. To achieve the final per-
formance, the results of the top 100 architectures based on the fitness function (i.e., the
MEPA metric) were averaged.

The pre-trained models (Table 1) tested on normal and depth maps are provided in
Table 5 and Table 6, respectively. The last columns of these tables report the fine-tuning
time (FTT), i.e., the time elapsed to fine-tune each pre-trained model for 30 epochs. Also
in this case, performance results were averaged by repeating training and testing 100
times for each model.

As regards the classical approaches based on SVR, three kernels, i.e., linear, Gaussian
and polynomial of order 3, 4, 5 and 6, were tested. The performance results obtained with
the approaches based on SVR are reported in Table 7. In this study , SVR was considered
as a benchmark for evaluating the goodness of DNN-based models.

A comprehensive overview of all achieved results is shown in Figure 10. As can be
seen from this figure, the models that performed best are the genetically optimized ones
(numbers from 1 to 15), while most of the pre-trained models (from no. 16 to 51) per-
formed worse than the SVR algorithms (from no. 52 to 57).), with the exception of the pre-
trained models: googlenet (no. 17), vgg16 (no. 32), vgg19 (no. 33) on maps of normal vec-
tors, and the pre-trained models: googlenet (no. 35), alexnet (no. 49), and vgg19 (no. 51)
on depth maps.

Figure 10 also reports training times (TTs) of genetically optimized and SVR-based
models and FTTs of pre-trained models, revealing on average longer times for the pre-
trained models (from no. 18 to 51), on average shorter times for the genetically optimized
models (from no. 1 to 15), and very short times for the SVR models (from no. 52 to 57).

Finally, the network configurations of genetically optimized single- and double- head
DNN architectures are reported in Table 8 and Table 9, respectively. The reported param-
eters refer to best-fit models resulting from the genetic optimization process. The last col-
umns show the number of learned parameters (learnables) of each architecture. The ge-
netic optimization process lasted an average of 53 hours for each single-head architecture
and approximately 632 hours for each dual-head architecture. The total duration of the
genetic optimization process was approximately 250 days on a computer system equipped
with Graphics Processing Unit (GPU) and configured as follows: Intel® Core™ i7-5820K
CPU @ 3.30GHz, 16 GB DRAM, and NVIDIA GeForce GTX TITAN X GPU (Maxwell fam-
ily) with 12 GB GRAM.

Table 4. RUL prediction performance obtained with genetically optimized networks tested on
both depth and normal maps.

No. Model name MAPE RMSE SF TT (sec)
1 go4normal 0.063 0.036 0.301 63.793
2 go5normal 0.065 0.037 0.313 18.351
3 go6normal 0.083 0.035 0.282 16.928
4 go4depth 0.102 0.063 0.513 13.647
5 go5depth 0.083 0.049 0.393 18.603
6 go6depth 0.058 0.036 0.312 13.410

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

7 go4+4 0.097 0.039 0.349 31.233
8 go4+5 0.141 0.057 0.493 125.250
9 go4+6 0.154 0.064 0.569 33.631
10 go5+4 0.123 0.048 0.427 96.948
11 go5+5 0.162 0.062 0.545 58.817
12 go5+6 0.129 0.053 0.469 58.204
13 go6+4 0.158 0.067 0.593 37.651
14 go6+5 0.237 0.082 0.762 196.594
15 go6+6 0.251 0.085 0.812 35.540

Table 5. RUL prediction performance obtained with pre-trained networks tested on normal maps.

No. Model name MAPE RMSE SF FTT (sec)
16 squeezenet 2.080 0.363 4.044 32.875
17 googlenet 0.452 0.112 1.077 18.947
18 inceptionv3 3.402 0.367 3.839 121.734
19 densenet201 1.802 0.559 5.453 758.300
20 mobilenetv2 2.692 0.608 6.471 94.666
21 resnet18 3.053 0.638 6.719 48.073
22 resnet50 1.854 0.426 4.086 140.182
23 resnet101 1.193 0.432 4.095 270.903
24 xception 1.825 0.365 1.550 833.500
25 inceptionresnetv2 2.691 0.555 5.365 755.150
26 shufflenet 2.673 0.905 9.534 73.828
27 nasnetmobile 1.597 0.412 4.276 352.860
28 darknet19 1.623 0.340 1.332 108.202
29 darknet53 1.384 0.485 1.870 565.150
30 efficientnetb0 1.408 0.338 3.306 195.668
31 alexnet 1.048 0.160 1.482 37.516
32 vgg16 0.615 0.311 1.177 310.489
33 vgg19 0.698 0.484 1.821 405.430

Table 6. RUL prediction performance obtained with pre-trained networks tested on depth maps.

No. Model name MAPE RMSE SF FTT (sec)
34 squeezenet 3.789 0.321 3.175 36.501
35 googlenet 0.416 0.114 1.142 56.326
36 inceptionv3 2.200 0.312 3.067 267.350
37 densenet201 1.657 0.527 5.387 785.250
38 mobilenetv2 2.108 0.452 4.768 104.493
39 resnet18 1.602 0.448 4.576 48.366
40 resnet50 1.181 0.312 2.963 147.724
41 resnet101 1.838 0.633 7.828 283.090
42 xception 1.790 0.409 1.725 915.500
43 inceptionresnetv2 1.530 0.266 2.519 745.000
44 shufflenet 2.062 0.694 7.401 74.328
45 nasnetmobile 1.309 0.324 3.329 345.805
46 darknet19 9.471 3.291 14.630 126.012
47 darknet53 0.878 0.423 1.557 580.700
48 efficientnetb0 0.870 0.274 2.761 183.381
49 alexnet 0.822 0.311 2.921 35.722
50 vgg16 1.095 0.616 2.476 312.283
51 vgg19 0.648 0.452 1.683 409.718

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

Table 7. RUL prediction performance obtained with SVR algorithms tested on surface profiles.

No. Model name MAPE RMSE SF TT (sec)
52 linear 1.073 0.135 1.444 4.667
53 gaussian 1.190 0.182 1.673 4.117
54 polynomial3 1.107 0.165 1.502 5.053
55 polynomial4 0.909 0.124 1.180 5.726
56 polynomial5 0.862 0.113 1.134 5.734
57 polynomial6 0.857 0.120 1.179 5.807

Figure 10. Performance measures (left y-axis) and TTs/FTTs (right y-axis) of all evaluated models.

Table 8. Network configuration of genetically optimized single-head DNN architectures.

No. Model name Network architecture Parameters (10଺)
1 go4normal S = (29,25,19,17)

N = (32,32,32,32)
P = (0,0,0,0)
ILR = 0.0059
M = 0.8634

1.39

2 go5normal S = (5,7,19,23,29)
N = (32,32,32,64,64)
P = (1,0,0,0,0)
ILR = 0.0068
M = 0.8049

4.95

3 go6normal S = (29,25,23,19,11,7)
N = (16,32,32,32,64,64)
P = (1,1,1,1,0,0)
ILR = 0.0047

1.72

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

M = 0.7572
4 go4depth S = (29,23,21,15)

N = (16,16,16,16)
P = (1,1,1,1)
ILR = 0.0074
M = 0.6636

0.347

5 go5depth S = (29,27,15,11,3)
N = (32,32,32,32,32)
P = (1,1,1,0,0)
ILR = 0.0054
M = 0.6893

1.19

6 go6depth S = (3,5,15,21,23,27)
N = (32,64,64,64,64,64)
P = (1,0,0,0,0,0)
ILR = 0.0077
M = 0.7702

7.93

Table 9. Network configuration of genetically optimized double-head DNN architectures.

No. Model name Network architecture Parameters (10଺)
7 go4+4 S1 = (5,15,21,29), S2=(29,27,25,17)

N1 = (16,16,16,32), N2 = (16,16,16,16)
P1 = (1,1,1,1), P2 = (1,1,1,1)
d1 = 0.6791, d2 = 0.2646
ILR = 0.0086
M = 0.6499

1.06

8 go4+5 S1 = (27,23,19,3), S2=(29,25,23,13,7)
N1 = (32,32,32,32), N2 = (16,64,64,64,64)
P1 = (1,0,0,0), P2 = (0,0,0,0,0)
d1 = 0.2452, d2 = 0.2494
ILR = 0.0084
M = 0.5046

4.73

9 go4+6 S1 = (5,23,27,29), S2=(27,25,23,17,13,9)
N1 = (16,32,32,32), N2 = (16,16,16,32,64,64)
P1 = (1,0,0,0), P2 = (0,0,0,0,0,0)
d1 = 0.2659, d2 = 0.4718
ILR = 0.0069
M = 0.6599

7.76

10 go5+4 S1 = (27,25,23,21,17), S2 = (29,25,11,5)
N1 = (16,32,32,32,64), N2 = (32,32,32,32)
P1 = (0,0,0,0,0), P2 = (0,0,0,0)
d1 = 0.598, d1 = 0.282
ILR = 0.008
M = 0.804

2.81

11 go5+5 S1 = (25,21,19,15,7), S2 = (29,21,15,13,3)
N1 = (64,64,64,64,64), N2 = (16,32,32,64,64)
P1 = (1,1,1,0,0), P2 = (0,0,0,0,0)
d1 = 0.1296, d2 = 0.1075
ILR = 0.0089
M = 0.4570

5.41

12 go5+6 S1 = (9,11,13,25,27), S2 = (7,11,17,19,21,27)
N1 = (16,16,32,64,64), N2 = (16,32,64,64,64,64)
P1 = (1,0,0,0,0), P2 = (0,0,0,0,0,0)
d1 = 0.425, d1 = 0.355

11.32

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

ILR = 0.006
M=0.464

13 go6+4 S1 = (5,15,19,21,23,29), S2=(11,17,19,25)
N1 = (16,16,32,32,32,32), N2 = (16,16,32,32)
P1 = (1,0,0,0,0,0), P2 = (1,1,0,0)
d1 = 0.7385, d2 = 0.5250
ILR = 0.0039
M = 0.1515

3.00

14 go6+5 S1 = (29,27,19,17,13,5), S2=(7,17,21,27,29)
N1=(64,64,64,64,64,64), N2=(16,32,32,32,32)
P1 = (0,0,0,0,0,0), P2 = (1,0,0,0,0)
d1 = 0.8581, d2 = 0.5764
ILR = 0.0074
M = 0.5507

8.82

15 go6+6 S1=(3,13,15,21,25,29), S2=(3,11,13,17,21,25)
N1=(16,16,16,32,64,64),N2=(16,16,64,64,64,64)
P1 = (1,0,0,0,0,0), P2 = (1,0,0,0,0,0)
d1 = 0.7867, d2 = 0.6495
ILR = 0.0046
M = 0.6290

10.81

5. Discussion
The use of profilometric scanning sensors allows to appreciate surface deformations

with micrometric precision in the form of 3D point clouds. On the other hand, the organ-
ization of 3D point clouds into bidimensional image-like maps, as proposed in this study,
enables to make the most of the potential of CNN-based DNN architectures, originally
designed to process image data. Furthermore, in the case of RUL depending on surface
deformations, two-dimensional maps offer the advantage of representing the state of sys-
tem (i.e., punch tool in this study) deterioration in a cumulative way. Therefore, under
such conditions, the RUL can be reliably estimated from a single image, that is from a
single depth or normal map.

Pre-trained networks with transfer learning are advantageous since they allow to
deal with small training data sets and to overcome the often-cumbersome process of gen-
erate problem-specific networks. However, they are not always suitable, especially when
data distributions are very dissimilar between source and target domains. The definition
of the most suitable DNN architecture for the problem under consideration, however, is
not an easy task. In general, it involves identifying various configuration parameters (hy-
perparameters) through a trial-and-error process. The transfer learning method offers the
indisputable advantage of simplifying this often-cumbersome process of generating ad-
hoc DNN architectures. In addition, pre-trained models require the use of a small amount
of training data for fine-tuning, allowing to address the additional problem of reduced
amount of training data [33].

Keeping in mind the aforementioned advantages, in this study, the transfer learning
technique was evaluated in correspondence with the main pre-trained models, as re-
ported in Table 1, with both depth and normal maps. However, the performance results
obtained were generally lower than the more traditional SVR approach taken as a refer-
ence (Figure 10). Only the pre-trained models googlenet (MAPE equal to 0.452 with nor-
mal maps and 0.416 with depth maps), vgg16 (MAPE = 0.615 with normal maps), vgg19
(MAPE equal to 0.698 with normal maps and 0.648 with depth maps) and alexnet (MAPE
= 0.822 with depth maps) performed slightly better than the SVR approach (MAPE = 0.857
with polynomial kernel of order 6), but requiring on average 35 times more time for fine-
tuning than SVR requires for training.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

In this study, the problem of defining ad-hoc (problem-specific) architectures was ad-
dressed by resorting to genetic optimization. In this way, a total amount of 15 architec-
tures were optimized, of which 6 were single-headed (three for each type of map), shown
in Table 8, and 9 double-headed, as shown in Table 9. The performance results reported
in Figure 10 (see the magnification in the upper left corner) confirm the superiority of the
genetically optimized architectures over the pre-trained ones. The drop in performance
found with transfer learning method can be explained by the fact that feature distributions
across the two domains, source and target, were very different from each other. The pre-
trained models (Table 1), in fact, were pre-trained using mostly “natural” images, while
the images proposed in this study were obtained by mapping 3D point clouds in order to
represent depths and normal vectors to the punch tool surface, resulting in “artificial”
images with false colors.

Among the genetically optimized architectures, the single-headed models performed
better than double-headed ones, with a slight predominance of models trained and tested
on depth maps over those evaluated with normal maps. These results indicate that the use
of two-headed models is not beneficial, and it is probably explained by poor correlations
between features extracted from the two different types of maps, depth and normal, in
representing deformation-induced degradation.

The results achieved in this study are in line with the state of the art in the literature.
In particular, regarding CNN-based studies with image datasets, one of the best results
presented in the literature was reported by Wu et al. [32]. In their study, the authors re-
ported an average MAPE of 0.0476 which, however, was obtained with a very large data
set consisting of 8400 images, while the TT was between 1.8 and 32.6 hours (the authors
have not provided specifications of used computing system). On the other hand, in the
case of small data sets, one of the best results reported in the literature is that of Marei et
al. [33] who achieved an average RMSE of 0.1654 with the Resnet18 pre-trained model on
a data set of 327 images, requiring 3358.4 seconds for fine-tuning on an NVIDIA GPU with
8GB Ram. However, it should be kept in mind that images of deteriorating components
or parts of them (i.e., real world images, often obtained under a microscope and by stop-
ping the machining system) were used in those studies. Therefore, the adaptation (or
transfer learning) of pre-existing (or pre-trained) CNN models was feasible, considering
the similarity of feature distributions between domains. In the case, instead, of data sets
consisting of time-series sensor data, Mo et al. [37] reported an average RMSE of 11.28
with the NASA C-MAPSS data set.

The proposed system has been conceived to be versatile, working in a completely
automatic way. There is no need to disassemble the punch tool or stop the punch machine
to capture scans. The used 3D sensor, attached to the punching machine, scans at regular
intervals of pressing stops. Furthermore, it is important to note that both depth, normal
maps and longitudinal profiles allow to estimate the punch tool RUL in a single-shot, i.e.,
a single profile or map accounts for all deformations occurred up to that moment. This
allows to avoid processing long sequences of profiles or maps, reducing computational
load and network architecture complexity.

Although the optimization process takes a long time, it only needs to be performed
once for the type of punch tool used. In this study, three different punch tools were tested,
characterized by different deformation modes, using the same network architectures. An
aspect that deserves further investigation concerns the verification of whether the pro-
posed architectures are also valid for predicting RUL of systems other than the studied
punch tool, but whose degradation still depends on the work surface deformation.

6. Conclusions
In this study, a DNN-based RUL prediction framework for punch tool, whose dete-

rioration is due to surface deformation, was investigated. The main results achieved are
threefold as indicated below. Firstly, the surface deformation of the punch tool was rep-
resented through the definition of depth and normal vector maps, obtained from point

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

clouds of 3D scans. Secondly, the RUL prediction was estimated considering the main pre-
trained models, obtaining lower or slightly higher performance than SVR-based classic
ML, due to different distribution of features between the transfer learning domains.
Thirdly, genetically optimized architectures based on variable number of CNN blocks,
both single- and double-headed, were generated, achieving superior performance to pre-
trained models and in line with the state-of-the-art in the literature.

Ongoing and future research focuses on experimentation of depth and normal vector
maps in combination with genetically optimized DNN architectures for the RUL predic-
tion of other systems whose deterioration depends on surface deformations.

Author Contributions: Conceptualization, G.D. and A.L.; methodology, G.D.; software, G.D.; vali-
dation, G.D. and A.L.; writing—original draft preparation, G.D.; writing—review and editing, G.D.;
visualization, G.D.; supervision, A.L.; project administration, A.L. and P.S.; funding acquisition, P.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Italian Ministry of Education and University (MIUR) under
the program PON R&I 2014-2020, grant number ARS01_01031.

Acknowledgments: The authors would like to thank colleagues of Masmec SpA for their support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results.

References
1. Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017). Prognostics and health management for

maintenance practitioners-review, implementation and tools evaluation. International Journal of Prognostics and Health
Management, 8(060), 1-31.

2. Silvestri, L., Forcina, A., Introna, V., Santolamazza, A., & Cesarotti, V. (2020). Maintenance transformation through Industry
4.0 technologies: A systematic literature review. Computers in Industry, 123, 103335.

3. Kuo, C. J., Chien, C. F., & Chen, J. D. (2010). Manufacturing intelligence to exploit the value of production and tool data to
reduce cycle time. IEEE Transactions on Automation Science and Engineering, 8(1), 103-111.

4. Chien, C. F., & Chen, C. C. (2020). Data-Driven Framework for Tool Health Monitoring and Maintenance Strategy for Smart
Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 33(4), 644-652.

5. Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation–a review on the statistical data driven
approaches. European journal of operational research, 213(1), 1-14.

6. Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven and model-based methods for system remaining
useful life prediction. Applied Soft Computing, 44, 191-199.

7. Wang, Y., Zhao, Y., & Addepalli, S. (2020). Remaining Useful Life Prediction using Deep Learning Approaches: A Review.
Procedia Manufacturing, 49, 81-88.

8. Elattar, H. M., Elminir, H. K., & Riad, A. M. (2016). Prognostics: a literature review. Complex & Intelligent Systems, 2(2),
125-154.

9. Pham, H. T., Yang, B. S., & Nguyen, T. T. (2012). Machine performance degradation assessment and remaining useful life
prediction using proportional hazard model and support vector machine. Mechanical Systems and Signal Processing, 32,
320-330.

10. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions
on pattern analysis and machine intelligence, 35(8), 1798-1828.

11. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health
monitoring. Mechanical Systems and Signal Processing, 115, 213-237.

12. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040-53065.
13. Pearson, K. (1901). On lines and planes of closest fit to systems ofpoints in space. Philos Mag Series 2(11):559–57223.
14. Hotelling, H. (1933). Analysis of a complex of statistical vari-ables into principal components. J Educ Psychol 24(6):417–

441.
15. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.
16. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786),

504–507.
17. Ma, J., Su, H., Zhao, W. L., & Liu, B. (2018). Predicting the remaining useful life of an aircraft engine using a stacked sparse

autoencoder with multilayer self-learning. Complexity, 2018.
18. Sun, C., Ma, M., Zhao, Z., Tian, S., Yan, R., & Chen, X. (2018). Deep transfer learning based on sparse autoencoder for

remaining useful life prediction of tool in manufacturing. IEEE transactions on industrial informatics, 15(4), 2416-2425.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

19. Ren, L., Sun, Y., Cui, J., & Zhang, L. (2018). Bearing remaining useful life prediction based on deep autoencoder and deep
neural networks. Journal of Manufacturing Systems, 48, 71-77.

20. Liao, L., Jin, W., & Pavel, R. (2016). Enhanced restricted Boltzmann machine with prognosability regularization for prog-
nostics and health assessment. IEEE Transactions on Industrial Electronics, 63(11), 7076-7083.

21. Haris, M., Hasan, M. N., & Qin, S. (2021). Early and robust remaining useful life prediction of supercapacitors using BOHB
optimized Deep Belief Network. Applied Energy, 286, 116541.

22. Jiao, R., Peng, K., Dong, J., & Zhang, C. (2020). Fault monitoring and remaining useful life prediction framework for multi-
ple fault modes in prognostics. Reliability Engineering & System Safety, 203, 107028.

23. Ma, M., Sun, C., & Chen, X. (2017). Discriminative deep belief networks with ant colony optimization for health status
assessment of machine. IEEE Transactions on Instrumentation and Measurement, 66(12), 3115-3125.

24. Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2016). Multiobjective deep belief networks ensemble for remaining useful life
estimation in prognostics. IEEE transactions on neural networks and learning systems, 28(10), 2306-2318.

25. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11), 2278-2324.

26. Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: a review of models, methodologies and applications to
object detection. Progress in Artificial Intelligence, 9(2), 85-112.

27. Babu, G. S., Zhao, P., & Li, X. L. (2016, April). Deep convolutional neural network based regression approach for estimation
of remaining useful life. In International conference on database systems for advanced applications (pp. 214-228). Springer,
Cham.

28. Heimes, F. O. (2008, October). Recurrent neural networks for remaining useful life estimation. In 2008 international confer-
ence on prognostics and health management (pp. 1-6). IEEE.

29. Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017, June). Long short-term memory network for remaining useful life
estimation. In 2017 IEEE international conference on prognostics and health management (ICPHM) (pp. 88-95). IEEE.

30. Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep convolution neural networks.
Reliability Engineering & System Safety, 172, 1-11.

31. Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). Multi-sensor prognostics using
an unsupervised health index based on LSTM encoder-decoder. arXiv preprint arXiv:1608.06154.

32. Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network
in face milling process. Sensors, 19(18), 3817.

33. Marei, M., El Zaatari, S., & Li, W. (2021). Transfer learning enabled convolutional neural networks for estimating health
state of cutting tools. Robotics and Computer-Integrated Manufacturing, 71, 102145.

34. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.

35. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recog-
nition challenge. International journal of computer vision, 115(3), 211-252.

36. Krizhevsky, A., Nair, V., & Hinton, G. (2009). Cifar-10 and cifar-100 datasets. [Online]. Available: https://www.cs.to-
ronto.edu/~kriz/cifar.html. [Last accessed: 30-Jun-2021].

37. Mo, H., Custode, L. L., & Iacca, G. (2021). Evolutionary neural architecture search for remaining useful life prediction.
Applied Soft Computing, 108, 107474.

38. Li, X., Jia, X., Wang, Y., Yang, S., Zhao, H., & Lee, J. (2020). Industrial remaining useful life prediction by partial observation
using deep learning with supervised attention. IEEE/ASME Transactions on Mechatronics, 25(5), 2241-2251.

39. LMI Technologies. Gocator 3210 Datasheet - Large Field of View 3D Snapshot Sensor. [Online]. Available:
https://lmi3d.com/resource/gocator-3210-datasheet-large-field-view-3d-snapshot-sensor/. [Last accessed: 14-Jul-2021].

40. Besl, PJ., McKay, ND. (1992). A Method for Registration of 3-D Shapes. IEEE Transactions on pattern analysis and machine
intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14, Issue 2, 1992, pp. 239-256.

41. Chen, Y., Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing, 10(3),
145-155.

42. Rousseeuw, P. J., Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589). John wiley & sons.
43. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992, July). Surface reconstruction from unorganized

points. In Proceedings of the 19th annual conference on computer graphics and interactive techniques (pp. 71-78).
44. LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory

and neural networks, 3361(10).
45. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
46. Zinkevich, M., Weimer, M., Smola, A. J., & Li, L. (2010, December). Parallelized stochastic gradient descent. In NIPS (Vol.

4, No. 1, p. 4).
47. Ribani, R., & Marengoni, M. (2019, October). A survey of transfer learning for convolutional neural networks. In 2019 32nd

SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T) (pp. 47-57). IEEE.
48. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy

with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

49. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

50. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).

51. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).

52. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

53. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp. 770-778).

54. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 1251-1258).

55. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of
residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.

56. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856).

57. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8697-8710).

58. Redmon, J. (2013). Darknet: Open source neural networks in c. [Online]. Available: https://pjreddie.com/darknet/. [Last
accessed: 23-Jul-2021].

59. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International
Conference on Machine Learning (pp. 6105-6114). PMLR.

60. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 1097-1105.

61. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

62. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
63. Beale, M., Hagan, M., & Demuth, H. (2021). Deep Learning Toolbox™ Reference. MATLAB (r) R2021a. The MathWorks,

Inc. [Online]. Available: https://it.mathworks.com/help/pdf_doc/deeplearning/nnet_ref.pdf. [Last accessed: 27-Jul-2021].
64. Optimization Toolbox™ User's Guide. MATLAB (r) R2021a. The MathWorks, Inc. [Online]. Available: https://it.math-

works.com/help/pdf_doc/optim/optim.pdf. [Last accessed: 27-Jul-2021].
65. Cao, L. J., Chua, K. S., Chong, W. K., Lee, H. P., & Gu, Q. M. (2003). A comparison of PCA, KPCA and ICA for dimensionality

reduction in support vector machine. Neurocomputing, 55(1-2), 321-336.
66. Vapnik, V. The Nature of Statistical Learning Theory. Springer, New York, 1995.
67. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2021 doi:10.20944/preprints202108.0272.v1

https://doi.org/10.20944/preprints202108.0272.v1

