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Abstract: In the current industrial landscape, increasingly pervaded by technological innovations, 
the adoption of optimized strategies for asset management is becoming a critical key success factor. 
Among the various strategies available, the “Prognostics and Health Management” strategy is able 
to support maintenance management decisions more accurately, through continuous monitoring of 
equipment health and “Remaining Useful Life” forecasting. In the present study, Convolutional 
Neural Network-based Deep Neural Network techniques are investigated for the Remaining Useful 
Life prediction of a punch tool, whose degradation is caused by working surface deformations dur-
ing the machining process. Surface deformation is determined using a 3D scanning sensor capable 
of returning point clouds with micrometric accuracy during the operation of the punching machine, 
avoiding both downtime and human intervention. The 3D point clouds thus obtained are trans-
formed into bidimensional image-type maps, i.e., maps of depths and normal vectors, to fully ex-
ploit the potential of convolutional neural networks for extracting features. Such maps are then pro-
cessed by comparing 15 genetically optimized architectures with the transfer learning of 19 pre-
trained models, using a classic machine learning approach, i.e., Support Vector Regression, as a 
benchmark. The achieved results clearly show that, in this specific case, optimized architectures 
provide performance far superior (MAPE=0.058) to that of transfer learning which, instead, remains 
at a lower or slightly higher level (MAPE=0.416) than Support Vector Regression (MAPE=0.857). 

Keywords: Remaining Useful Life; Deep Neural Network; Convolutional Neural Network; Genetic 
Optimization; Neural Network Optimization; Support Vector Regression; Depth Maps; Normal 
Maps; 3D Point Clouds. 
 

1. Introduction 
Over recent years, asset maintenance has received increasing attention in the litera-

ture. If considering that appropriate maintenance management has a direct effect on re-
ducing costs and increasing system reliability, availability, and safety [1], it is easy to un-
derstand how asset maintenance is a critical success factor in the current industrial revo-
lution 4.0 [2]. More specifically, the adoption of optimized maintenance strategies has 
proven to improve tool utilization and productivity, assuring product quality and opera-
tional excellence [3]. 

With the main objective of reducing unexpected breakdowns and possibly cata-
strophic consequences, maintenance strategies can be roughly classified under [4]: 1) cor-
rective maintenance, 2) preventive maintenance, and 3) prognostics and health manage-
ment (PHM). In the case of corrective maintenance, machine tools are operated until the 
tool breaks down, and repairs are made at the time of failure. However, on the other hand, 
if a critical breakdown occurs, it may cause serious machinery damages. The preventive 
maintenance aims to prevent the aforementioned problems by scheduling inspection and 
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repair interventions at regular time intervals or operation cycles. In this case, the bigger 
downside is the waste of time and the replacement costs for components that often are 
still working. Contrary to previous strategies, PHM relies on the continuous monitoring 
of equipment health conditions to predict the degradation status, in terms of remaining 
useful life (RUL), supporting thus more accurate maintenance management decisions. 

The prediction of RUL, definable as the "length from the current time to the end of 
the useful life" as suggested in [5], can be achieved by at least three types of approaches 
[6]: model-based, data-driven, and hybrid. The model-based approaches (also known as 
physics-based) refer to mathematical formulations able to model the physical degradation 
process for the purpose of estimating RUL. In the case of data-driven approaches, instead, 
RUL is estimated from degradation data collected by monitoring sensors, and processed 
using traditional statistical or machine learning (ML) techniques or even more "advanced" 
ones based on deep neural networks (DNNs) [7]. However, very often the choice of the 
appropriate approach depends on the specific problem at hand. Thus, aiming to exploit 
the strengths of both approaches, data-driven and model-based, they are combined in the 
hybrid approaches by using some kind of fusion scheme [6]. 

Exploiting the laws of nature to model system degradation, model-based approaches 
are generally quite accurate. Nevertheless, the implementation of a faithful model for pre-
dicting RUL is an expensive and time-consuming process; it may be feasible for simple 
parts, but may not be for complex components or systems due to the limited understand-
ing of their behavior under all operating conditions. Such disadvantages combined with 
the risk of not achieving the desired results, make model-based approaches definitely less 
attractive than data-driven ones [8]. 

The various data-driven methods revolve around the processing of features obtained 
from monitoring sensor data. Consequently, the most important distinction differentiat-
ing among such methods lies in the way features are obtained, that is, either by traditional 
handcrafted methods or by learned representations. The methods belonging to the first 
category utilize representative features, extracted and selected by hand (i.e., handcrafted) 
on the basis of expert domain knowledge, and then classified or evaluated via regression 
using appropriate statistical or ML techniques. 

The disadvantages of these methods are that handcrafted features are representative 
only of a specific component or system under certain conditions, while, on the other hand, 
the process of feature extraction and selection is time-consuming and laborious, relying 
often on strong prior domain knowledge [9]. Moreover, as shown by [10], the performance 
of ML algorithms is limited by data representation. 

In the case of learned representations, on the contrary, representative features of deg-
radation states can be automatically discovered from sensor data by using Deep Learning 
(DL) techniques [7, 11]. Up to now, a lot of fruitful research results involving many differ-
ent fields, ranging from image recognition to natural language processing, have been re-
ported in the DL literature [12]. Although, recently, an increasing number of research 
studies exploiting DL has appeared in the RUL literature, there is still less availability of 
optimized DL models and architectures compared to other fields. 

In the present study, a new DL model based on convolutional neural network (CNN) 
is proposed for the RUL prediction of punching tools. The main contributions are (i) rep-
resentation of punch deformation with depth and normal vector maps (DNVMs) obtained 
from 3D scan point clouds; (ii) CNN-based RUL prediction with network architecture op-
timized using genetic algorithm (GA); (iii) validation of the proposed method with real 
data sets representing three different deformation modes. 

The remaining of this paper is organized as follows: Section 2 covers a brief literature 
review of DL-based RUL prediction; Section 3 presents the materials and methods 
adopted for design, implementation and experimental validation; the empirical results are 
provided in Section 4 and detailed discussed on Section 5; finally, some conclusions are 
drawn in Section 6. 

3. Related works 
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Complex real-world data are very useful in many machine-learning applications, in-
cluding RUL prediction, but they are also cumbersome to process, transmit and store, due 
to their high-dimensional nature. More effective and low-dimensional features can be ob-
tained from high-dimensional data by using representation learning techniques. The year 
2006 marked an important turning point in this research area, since earlier widely-used 
methods such as principal component analysis (PCA) [13, 14] and linear discriminant 
analysis (LDA) [15] have given way to more advanced DL methods [16]. DL architectures, 
in contrast to shallow ones, are composed by multiple data transformation layers, provid-
ing higher hierarchical abstraction levels and thus more useful for classification, detection 
and prediction tasks. 

One of the most common DL approach is the stacked sparse auto-encoder (SAE), in 
which a network of multiple encoder layers is used to transform high-dimensional data 
into low-dimensional features and, conversely, a network of multiple decoder layers re-
covers back the original data. Specifically, the RUL of an aircraft engine was predicted by 
Ma et al. [17] by using SAE to extract performance degradation features. Sun et al. [18] 
addressed the problem of deep transfer learning with SAE networks for predicting RUL 
of cutting tool. They investigated three different transfer strategies, i.e., weight transfer, 
feature transfer, and weight update, to transfer a trained SAE to a new object tool under 
operation without providing supervised training information. The authors claimed that 
deep transfer learning improves performance of RUL prediction also in case of few his-
torical failure data for training. Ren at al. [19] proposed a DL-based framework for bearing 
RUL prediction using deep auto-encoder and time-frequency-wavelet joint features to 
representing the bearing degradation process. As the authors pointed out, the advantages 
offered by the deep autoencoder method were twofold, i.e., automatic feature selection 
and over fitting problem prevention thanks to reducing network parameters. 

Another neural network class arousing considerable research interest in feature 
learning is represented by the Restricted Boltzmann Machine (RBM). It is an energy-based 
neural network with two layers of stochastic binary neurons, one is the visible layer and 
the other one is the hidden layer. The main issues when dealing with RBM (even stacked 
in multiple layers) is the model parameter initialization (e.g, learning rate, momentum, 
number of hidden units, mini-batch size , etc.) and how to regularize the model to avoid 
over fitting and improve the learning process. Liao et al. [20] addressed the regularization 
problem by suggesting a new term allowing to train an RBM to output a feature space that 
better represents degradation patterns in RUL prediction. Although one RBM layer was 
used, they pointed out that their method can be extended by stacking multiple RBM layers 
in a deeper neural network architecture. 

Haris et al. [21] addressed the problem of find optimal hyperparameters for a Deep 
Belief Network (DBN), which is a generative model composed of multiple RMB layers, at 
the purpose to predict the RUL of supercapacitors. To this end, they proposed a combina-
tion of Bayesian and HyperBand optimization, and showed the universality of their model 
by training it on different degradation profiles with the same hyperparameters.  

Aiming to predict RUL of complex engineering system whose malfunctions may be 
caused by multiple faults, Jiao et al. [22] proposed a RUL prediction framework for mul-
tiple fault modes consisting of three main modules: DBN-based extraction of degradation 
features where original data were preprocessed with a gap metric; fault identification un-
der multiple fault conditions by support vector data description (SVDD) monitoring; RUL 
estimation via particle filter (PF) and adaptive failure threshold. 

Ma et al. [23] assessed the health condition of a bearing rig by using a discriminative 
DBN model composed of four layers. They obtained the model parameters, i.e., the num-
ber of neurons of the two hidden layers and the learning rate, by using the ant colony 
optimization (ACO) algorithm. The data consisted of vibration signals collected at 10 min 
intervals with a  sampling frequency of 10 kHz. The degradation prediction was formu-
lated as a classification problem with five classes representing the bearing conditions dur-
ing the evolution process. 
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Zhang et al. [24] proposed a DBN-based ensemble method for RUL prediction in 
which multiple DBNs were evolved using a multi-objective evolutionary algorithm inte-
grated with the traditional DBN training technique. They used DBNs with three hidden 
layers, whose optimization parameters were the number of neurons, the weight cost, and 
learning rates. They evaluated their method on the turbofan engine degradation problem 
provided by NASA, i.e., the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) data sets, composed of multivariate temporal data coming from 21 sensors. 

Another DL model recently investigated in RUL prediction is the CNN [25], a type 
of multi-layer feed-forward network originally conceived to recognize visual patterns 
from images [26], whose feature learning capabilities are enabled through the combina-
tion of multiple convolution and pooling layers. Babu et al. [27] reported the first attempt 
of predicting RUL using CNN-based feature learning combined with linear regression 
from multi-channel time series data. As the authors pointed out, the multiple layers com-
posing the DL architecture effectively learned local salience representations of multi-chan-
nel signals (provided as two-dimensional input) also in different scales. They showed 
good RUL estimation performance on two publicly available data sets, the NASA C-
MAPSS data set and the PHM 2008 Data Challenge data set. 

Since sensor data involved in RUL estimation are traditionally arranged in a time-
series form, either uni- or multi- variate, the use of Recurrent Neural Networks (RNNs) 
has been suggested to better deal with the sequential nature of these data [28]. However, 
as it is well-known, RNNs suffer from a vanishing/exploding gradient in presence of long-
term time dependency. To overcome this drawback, Zheng et al. [29] suggested to esti-
mate RUL with a Long Short-Term Memory (LSTM) network, which is a type of RNN able 
to effectively model sequential data, without suffering of long-term time dependency 
problems. To validate their LSTM model for RUL estimation, they used the C-MAPSS data 
Set, the PHM 2008 Challenge data set and the Milling data set. 

Aiming to exploit the power of CNN to learn discriminative features from two-di-
mensional inputs, Li et al. [30] proposed a CNN deep learning architecture based on a 
time window approach able to handle multi-variate temporal information. To validate the 
effectiveness of their approach, they estimated the RUL of aero-engines using the NASA 
C-MAPSS data set. The achieved prediction performance was significantly better than the 
CNN approach presented by Babu et al. [27], and also comparable with the LSTM ap-
proach of Malhotra et al. [31] but employing simpler architecture and lower computing 
load. 

The approaches reviewed so far receive as input time series of sensor data (e.g., vi-
bration signals, engine data, physical properties, etc.), usually organized as 1D arrays, but 
often also as 2D arrays in the case of multi-channel data (i.e., multivariate time series). A 
special case of 2D representation is image data, traditionally used for visual inspection to 
assess component or system conditions. Recently, image data were used to automatically 
predict fault or degradation of machine components, with better results for larger enough 
data sets [32]. 

Since large data set are not always available within PHM applications, the problem 
of insufficient images for training CNN models has been addressed through transfer 
learning by Marei et al. [33], using microscope images of cutting tool flank. Essentially, 
transfer learning allows to reuse in a new domain, knowledge acquired from a similar or 
different domain. In practice, DL models pre-trained on large general-purpose image data 
sets (e.g., ImageNet [34], ILSVRC: ImageNet Large Scale Visual Recognition Challenge 
[35], CIFAR-10/CIFAR-100 [36], and so on) can be fine-tuned using available image data 
to perform prediction on new problems. However, the underlying assumption for transfer 
learning to work well is that the feature distributions across the two domains are the same. 

DL models require an accurate setting of multiple DNN architectural parameters, 
which is a time-consuming and experience-intensive task. The parameter setting problem 
has been tackled by Mo et al. [37], adopting an evolutionary algorithm to find the optimal 
parameter configuration. Furthermore, they proposed a multi-head CNN structure fol-
lowed by a LSTM network, pointing out the superiority of multi-head CNN models over 
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single-head multi-channel ones, since the former keep separate the extracted features 
whereas the latter mix them all together losing specialized features. They demonstrated 
the effectiveness of their solution using time series data from the NASA C-MAPSS data 
set. 

In real-world settings, the collection of machinery health information might be chal-
lenging due to some kind of restrictions (e.g., small component size and narrow camera 
field-of-view, component partially hidden inside the machine, and so on), giving rise to 
partial or incomplete data. This problem, referred to as the partial observation problem, 
has been addressed by Li et al. [38] presenting a supervised attention mechanism for fea-
ture learning based on CNN and LSTM, followed by a regression layer for estimating the 
RUL of an industrial cutting wheel from images. 

4. Materials and methods 
This section details the materials and methods used in this study to predict the RUL 

of a punch tool from 3D scan data. More specifically, the next subsections deal with the 
following aspects: 1) the data acquisition system and experimental setup, 2) the 3D scan-
ning process (i.e., pre-processing of 3D point clouds and feature extraction), 3) the adopted 
metrics to evaluate RUL prediction performance, 4) the DNN architectures generated by 
genetic optimization, 5) the genetic optimization technique, and 6) the Support Vector Re-
gression (SVR) approach used as classic ML benchmark. 

4.1. Experimental Setup and Data Acquisitions 
The present study focuses on RUL prediction of punch tools mounted on a punching 

machine, like the one shown in Figure 1, used to process pump workpieces by making a 
punch on their upper end. The RUL prediction is based on 3D scan data acquired by a  

 
Figure 1. Punching machinery: A) punch tool and pump workpiece, B) Gocator® 3210 3D scanning sensor. 
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Figure 2. Punch tool 3D model. A) Full view of the punch tool with working region circled with a 
dashed red line. B) Detail of the working region. C) 3D point cloud with grayscale patches of the 
working region obtained from a 3D scan snapshot. 

Gocator® 3210 [39] sensor, tightly clamped on the punching machine structure (Figure 
1.B). The 3D scan sensor, equipped with a stereo camera of two megapixels and a blue 
LED projector, provides 3D point clouds in a single snapshot for accurate noncontact 
measurements down to 35 μm. 

The punch tool consists of two cylindrical ends, of which the one having a larger 
diameter serves to clamp it to the machine, while the other is the working region. The 3D 
model of the punch tool is provided in Figure 2, in which the working region is high-
lighted by a dashed red line (Figure 2.A). During the machining cycles, the working sur-
face of the punch (Figure 2.B) undergoes progressive deformations (Figure 2.C). 3D scans 
of these surface deformations, suitably processed using ML algorithms, can be exploited 
to predict the RUL of the punch tool. 

 During the experimentation phase, three identical punch tools were brought to the 
end of their life cycle, subjecting them to different loads. The first punch tool, P1, was 
operated with an incremental load ranging from a minimum of 10 kN to a maximum of 
15 kN, obtaining a total of 714 scans performed every 50 pressing cycles. The second 
punch tool, P2, was tested with an incremental load ranging from 20 to 28 kN, for a total 
of 521 scans performed every 60 pressing cycles. The third punch, P3, was subjected to an 
incremental load ranging from 15 to 20 kN, generating a total of 779 scans captured every 
50 pressing cycles. In such a way, a total amount of 2014 scans were produced in approx-
imately six months. 
4.2. 3D Scan Preprocessing 
3D scans obtained as discussed above were preprocessed in the form of 3D point clouds. 
Due to reflections from metallic surface, raw 3D point clouds may be corrupted by arte-
facts, i.e., spurious 3D points. To overcome this issue, the first preprocessing step was to 
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segment each raw point cloud into clusters, considering a minimum Euclidean distance 
between 3D points from different clusters, as represented in Figure 3. Then, the clusters 
were filtered based on the number of 3D points, keeping the two clusters with the greater 
number of points. The resulting 3D point cloud, provided in Figure 4, is composed of two 
main segments. The points located at y<10 form the working surface, whereas those lo-
cated at y>30 represent the so-called best-fit surface used in the following step for point 
cloud registration. 

 
Figure 3. 3D point cloud segmented using the Euclidean distance between 3D points from differ-
ent clusters. Segmented clusters are represented in different colors.  

 
Figure 4. Filtered 3D point cloud after segmentation. Two main segments are visible. 
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Although the 3D scan system is firmly clamped to the machine structure, continuous 
vibrations can produce slight misalignments between 3D point clouds. A rigid registration 
step was utilized to correct such misalignments. The semi-cylindrical surface with the 
largest diameter shown in Figure 4 (i.e., 3D points with y>30) was used as best-fit reference 
surface for registration, since this surface was the least subject to deformation during 
punching operations. The iterative-closest-point (ICP) algorithm, originally suggested by 
Besl and McKay [40], was used to register the best-fit surfaces of segmented point clouds. 

Substantially, the ICP algorithm is an optimization process whose main goal is to find 
the locally best (in a least-square sense) rigid transformation by means of singular value 
decomposition (SVD) [41]. More specifically, the iterative process consists of the following 
main steps: 1) projection of the two point-clouds under registration, 2) estimation of the 
optimal rigid transformation via SVD, 3) application of the transformation to a subset of 
randomly selected points, 4) evaluation of the alignment via least median estimator [42], 
5) if the alignment error is smaller than a prefixed threshold, the rigid transformation is 
applied to the whole point clouds, otherwise, the above steps are repeated. 

Once registered, the point cloud was cropped to take only the working region, thus 
highlighting the surface deformation, as shown in Figure 5. In addition, in order to further 
highlight the working surface deformations, for each point belonging to the cropped point 
cloud the surface normal vector was considered [43], obtaining the normal representation 
shown in Figure 6. 

 
Figure 5. Working surface cropped from registered point cloud.  
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Figure 5. Surface normal vector representation of the working region obtained form the cropped 
point cloud provided in Figure 4.  

 
Figure 6. A) Depth map. Red color represents short distances and blue long ones. B) Normal map. 
Dark-red color represents vectors parallel to z-axis (i.e., pointing out of the image plane) and light-
blue perpendicular ones. 
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Figure 7. Longitudinal profile extraction. A) Longitudinal point-cloud region (red points) from 
which the longitudinal profile is estimated. B) Estimated longitudinal profile (red curve) from the 
point cloud projection on the YZ plane. 

To exploit the most of DNN feature extraction capabilities, depth and normal vector 
representations were transformed into two-dimensional maps, reported in Figure 6, i.e., 
depth map (Figure 6.A) and normal vector map, or normal map (Figure 6.B), respectively. 

The RUL prediction based on DFL was compared with that based on traditional ML 
methods (e.g., SVR). To do so, alongside the two-dimensional deformation representa-
tions mentioned above, one-dimensional representations were also considered, i.e., longi-
tudinal profiles of the punch tool. The extraction process of longitudinal profiles, shown 
in Figure 7, consisted of three main steps. Firstly, a profile region was selected from the 
cropped point cloud by taking points 𝑃 = (𝑥, 𝑦, 𝑧) such that 𝑥 ∈ [−𝑥௣, 𝑥௣] (Figure 7.A). 
Secondly, the selected point-cloud region was projected onto the YZ plane. Thirdly, the 
longitudinal profile was estimated averaging the projected region along the Z-axis direc-
tion (Figure 7.B). 
4.3. Evaluation Metrics 

Three different evaluation metrics were adopted in this study, i.e., scoring function 
(SF), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 
first two metrics were selected since they are commonly adopted in the literature on RUL 
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prediction [30], while the third was considered as it allows for more subtle evaluations 
than the other two. 

Given a total number 𝑁 of sampled machining cycles (i.e., 3D scans), let 𝑝௜  be the 
RUL at the machining cycle 𝑖, 𝑝௜

ᇱ the estimated version of 𝑝௜ , and 𝐸௜ = 𝑝௜
ᇱ − 𝑝௜  the pre-

diction error, the SF is defined as follows: 

𝑆𝐹 = ∑ 𝑓௜
ே
௜ୀଵ , 

where 𝑓௜ = ቐ
𝑒ି

ಶ೔
భయ − 1, 𝑖𝑖𝑓 𝐸௜ < 0

𝑒
ಶ೔
భబ − 1, 𝑖𝑖𝑓 𝐸௜ ≥ 0

  . 
(1)

Furthermore, the RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ 𝐸௜

ଶே
௜ୀଵ , (2)

and, finally, MAPE is given by: 

𝑀𝐴𝑃𝐸 =
ଵ

ே
∑ ቚ

ா೔

௣೔
ቚே

௜ , for 𝑝௜ > 0. (3)

4.4. DNN Architectures 
The DNNs used in this study to capture the representation information from prepro-

cessed inputs, i.e. depth and normal maps provided as color images, were based on CNN 
[44]. Both single- and double- head DNNs were investigated, whose general architectures 

 
Figure 8. Single-head general architecture of CNN-based DNN for processing either depth or nor-
mal maps provided as color image inputs. 
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Figure 9. Double-head general architecture of CNN-based DNN for processing both depth and 
normal maps provided as color image inputs. 

are shown in Figure 8 and Figure 9, respectively. Basically, they are composed by an input 
layer receiving depth or normal maps, resized to 60×60 pixels color (3-channels) images, 
followed by 𝐾଴ (𝐾ଵ and 𝐾ଶ in the double-head case) blocks including the following four 
layers: 1) convolution, 2) batch normalization, 3) rectified linear unit (ReLU), and 4) global 
average pooling. 

CNN feature learning is based on the convolution operation implemented by apply-
ing a kernel to input images (i.e., local receptive field) whose response provides the so-
called feature map. Let 𝐼 = (𝐼ଵ, 𝐼ଶ, 𝐼ଷ) be an input image, W a kernel of size 𝑠 × 𝑠 (a square 
kernel was considered in this study, but in general it may have a rectangular size) whose 
𝑠ଶ weights are adjusted in feedforward way, the feature map computed at (𝑥, 𝑦) ∈ 𝐼 is 
given as follows: 

𝐹(𝑥, 𝑦) = ∑ 𝐼௛(𝑥 − 𝑖, 𝑦 − 𝑗)𝑊(𝑖, 𝑗)௦
௜,௝ୀଵ , with ℎ = 1,2,3; (4)

where the summation is the convolution operation as the kernel 𝑄 slides over the image 
channel 𝐼௛ . During the feedforward process, the output of a generic convolution layer at 
(𝑥, 𝑦) is given as follows: 

𝑂௛(𝑥, 𝑦) = 𝜑൫∑ 𝐼௛(𝑥 − 𝑖, 𝑦 − 𝑗)𝑊(𝑖, 𝑗)௦
௜,௝ୀଵ + 𝑏൯, with ℎ = 1,2,3; (5)

where 𝜑(∙) is the activation function used to introduce nonlinearity to feature maps, and 
𝑏 is term. In this study, the ReLU activation function was used which performs an ele-
ment-wise threshold operation, i.e., sets to zero any input value less than zero: 

𝜑(𝜈) = ൜
𝜈,   𝑖𝑖𝑓 𝜈 ≥ 0
0,   𝑖𝑖𝑓 𝜈 < 0

 . (6)

The batch normalization layer, inserted between convolution and nonlinear activa-
tion (ReLU) layers, allows to speed up training and regularize the network reducing ini-
tialization sensitivity, i.e., facilitates the convergence to good local minima without cum-
bersome initial parameter setting. Given an input element 𝑧௜௝  the batch normalization 
layer provides the following normalization: 
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𝑧̂௜௝ =
𝑧௜௝ − 𝜇

√𝜎ଶ + 𝜖
, (6)

where 𝜇 and 𝜎 are, respectively, mean and variance estimated over spatial, time and ob-
servation dimensions for each channel independently, whereas 𝜖 is a constant used to 
improve numerical stability if variance is too small. 

The average pooling layer performs down-sampling by providing as output average 
values of its input, and thus reducing the connection number to the next layer, that helps 
to mitigate overfitting. The pool size adopted in this study was the same of the corre-
sponding convolution layer in each CNN block, whereas the stride (i.e., step size with 
which the pooling layer scans through the input) was fixed at 2. The effect of the dropout 
layer is to turn off (set to zero), with probability 𝑝, a certain number of input elements 
randomly chosen. Such dropout operation has been shown to help prevent network over-
fitting [45]. In this study, the dropout layer was adopted only in the double-head case with 
𝑝 = 𝑑ଵ and 𝑝 = 𝑑ଶ in the two heads, respectively (Figure 9). 

The global average pooling layer provides further down-sampling by fully averaging 
the feature map. It is usually used before the final fully connected layer to reduce the size 
of activations, i.e., less weights, thus leading to a lower network size. The purpose of fully 
connected layer is to combine features to identify larger patterns. Thus, all neurons in fully 
connected layer are connected to all neurons of previous layer.  

In case of classification problems, the last fully connected layer provides the features 
to perform classification, thus its output size is equal to the number of classes being clas-
sified. In case of regression problem, the output size is equal to the number of regression 
variables, which is one in this study. In both single- and double- head architectures, the 
continuous RUL value was finally estimated in the regression layer by minimizing the 
loss (i.e., not-normalized half mean squared error) that, in the case of this study with only 
one regression variable, reduces to 𝐸௜

ଶ. 
Generally, the learning process is casted as an optimization problem of minimizing 

the loss function. In this study, the stochastic gradient descent (SGD) [46] was used as 
optimization scheme. In SGD training, a mini-batch is stochastically selected at each time 
step, instead of using the entire training set, thus improving computing speed. Two rele-
vant SGD parameters are initial learning rate 𝜂 and momentum 𝜆. If 𝜂 is too low the 
training process takes a long time, whereas if it is too high the training might result subop-
timal or divergent.  

The momentum is a technique used in conjunction with SGD that adjusts the contri-
bution of gradients at previous steps to determine the direction to proceed, instead of us-
ing only the gradient at the current step. If 𝜆 is equal to zero there is no contribution from 
previous steps, whereas if 𝜆 is one the contribution from previous steps is maximal. In 
this study, the network hyperparameters (𝑆ଵ, 𝑁ଵ, … , 𝑆௄ , 𝑁௄ , 𝜂, 𝜆) in the single-head case, 
and (𝑆ଵଵ, 𝑁ଵଵ, … , 𝑆ଵ௄, 𝑁ଵ௄ , 𝑑ଵ, 𝑆ଶଵ, 𝑁ଶଵ, … , 𝑆ଶ௄ , 𝑁ଶ௄ , 𝑑ଶ, 𝜂, 𝜆) were determined by genetic op-
timization algorithm as discussed in the following subsection. Note that the average poll-
ing layer included in each CNN block is optional and its inclusion or exclusion was also 
considered among the network hyperparameters subject to optimization through binary 
array variables as detailed in the following subsection. 

In addition to the architectures shown in Figure 8 and Figure 9, pre-trained networks 
were also evaluated. The adoption of pre-trained models offers multiple advantages, such 
as the possibility to exploit complex models without having to train them from scratch, 
even when little training data are available (used to fine-tune the pre-trained model) with-
out running into overfitting problems, commonly found in presence of small training data 
sets. The technique underlying pre-trained models is called transfer learning [47] and, ba-
sically, allows to apply the knowledge already learned from one domain to another. 

However, the transfer of knowledge from one domain to another is not always feasi-
ble. When the source domain is not sufficiently related to the destination domain, or when 
the transfer methodology is not able to take advantage of relationships between domains, 
this can lead to negative transfer [47]. For that reason, in this study, the most popular state-
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of-the-art pre-trained models reported in Table 1 were evaluated, and their prediction 
performance was compared with that of network architectures discussed above. Since 
such pre-trained networks are designed for classification problems, they were adapted by 
substituting the last three layers, i.e., global average pooling layer, softmax layer, classifi-
cation layer, with a fully connected layer with one output neuron followed by a regression 
layer. 

Table 1. Pre-trained networks evaluated for transfer learning. 

Network Input size Parameters (𝟏𝟎𝟔) 
Squeezenet [48] 227 × 227 × 3 1.2 
Googlenet [49] 224 × 224 × 3 7.0 

Inceptionv3 [50] 299 × 299 × 3 23.9 
Densenet201 [51] 224 × 224 × 3 20.0 
Mobilenetv2 [52] 224 × 224 × 3 3.5 

Resnet18 [53] 224 × 224 × 3 11.7 
Resnet50 [53] 224 × 224 × 3 25.6 

Resnet101 [53] 224 × 224 × 3 44.6 
Xception [54]  299 × 299 × 3 22.9 

Inceptionresnetv2 [55] 299 × 299 × 3 55.9 
Shufflenet [56] 224 × 224 × 3 1.4 

Nasnetmobile [57] 224 × 224 × 3 5.3 
Nasnetlarge [57] 331 × 331 × 3 88.9 
Darknet19 [58] 256 × 256 × 3 20.8 
Darknet53 [58] 256 × 256 × 3 41.6 

Efficientnetb0 [59] 224 × 224 × 3 5.3 
Alexnet [60] 227 × 227 × 3 61.0 
Vgg16 [61] 224 × 224 × 3 138.0 
Vgg19 [61] 224 × 224 × 3 144.0 

4.5. Genetic Optimization 
The parameters of the network architectures shown in Figure 8 and Figure 9 were 

optimized by means of genetic optimization technique. GAs are population-based opti-
mization methodologies that take their cue from the evolutionary process of living beings, 
i.e., the metaphor of natural biological evolution [62]. GAs iteratively implement a series 
of operations to manipulate populations of candidate solutions (i.e., chromosomes) to pro-
duce new solutions by means of genetic functionals such as reproduction, crossover, and 
mutation. Ultimately, they are inspired by Darwin's theory of evolution and relative prin-
ciples of reproduction, genetic recombination, and survival of the fittest. The population 
of chromosomes (i.e., candidate solutions) is evaluated through the attribution of a score 
carried out through a so-called fitness function, the formulation of which depends on the 
specific optimization problem.  

In this study, the fitness function 𝑓 built network architectures and evaluated them, 
providing as output the MAPE value obtained from testing. Thus, the optimization prob-
lem was formulated as follows: 

minimize 𝑓(𝒛), 

with 𝒛 = (𝑧ଵ, 𝑧ଶ, … , 𝑧ெ) such that 𝑧௜
௅ ≤ 𝑧௜ ≤ 𝑧௜

௎ , 𝑖 = 1, … , 𝑀,  
(7)

were (𝑧ଵ, 𝑧ଶ, … , 𝑧ெ) are optimization variables, continuous or integer valued, bounded 
between (𝑧ଵ

௅ , 𝑧ଶ
௅ , … , 𝑧ெ

௅ ) and (𝑧ଵ
௎ , 𝑧ଶ

௎, … , 𝑧ெ
௎ ), respectively, defining candidate network ar-

chitectures as better explained in the following. The number of optimization variables was 
𝑀 = 5  for single-head architectures (Figure 8), and 𝑀 = 10 for double-head architec-
tures (Figure 9). For both architectures, the number of CNN blocks ranged from four to 
six, i.e., 𝐾௜ ∈ {4,5,6}, 𝑖 = 1,2,3. 
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In the single-head case, the optimization variables were 𝒛 = (𝑥ଵ, 𝑥ଶ, 𝑥, 𝑥ସ, 𝑥ହ), where 
𝑥ଵ ∈ ℕ  represented the filter sizes, 𝑥ଶ ∈ ℕ  specified the number of filters, 𝑥ଷ ∈ ℕ  the 
presence or not of average pooling layers, 𝑥ସ ∈ ℝ the initial learning rate, and 𝑥ହ ∈ ℝ the 
momentum. In the double-head case, instead, the optimization variables were 𝒛 =

(𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ, 𝑦ହ, 𝑦଺, 𝑦଻, 𝑦଼, 𝑦ଽ, 𝑦ଵ଴), and 𝑦ଵ, 𝑦ଶ, 𝑦ଷ ∈ ℕ represented the filter sizes, number of 
filters, and presence or not of average pooling layers for the first head, whereas 𝑦ସ, 𝑦ହ, 𝑦଺ ∈

ℕ were the filter sizes, number of filters, and presence or not of average pooling layers for 
the second head. 𝑦଻ ∈ ℝ was the initial learning rate, 𝑦଼ ∈ ℝ the momentum, 𝑦ଽ ∈ ℝ the 
dropout probability for the first head, and 𝑦ଵ଴ ∈ ℝ the dropout probability for the second 
head. 

Regarding the convolutional filter sizes, i.e., 𝑥ଵ (single-head) or 𝑦ଵ and 𝑦ସ (double-
head) variables, odd square dimensions ranging from 3×3 to 29×29 were evaluated by con-
sidering all possible combinations taken 𝐾௜ (𝑖 = 0,1,2) at a time. For example, in the case 
of 𝐾଴ = 4, 𝑥ଵ = 1  corresponded to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) = (3,5,7,9), 𝑥ଵ = 2 to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) =

(3,5,7,11) , 𝑥ଵ = 3 to (𝑆ଵ, 𝑆ଶ, 𝑆ଷ, 𝑆ସ) = (3,5,7,13) , etc., 𝑥ଵ଴଴ଵ  to (23,25,27,29), after that it 
continued in reverse order, i.e., 𝑥ଵ଴଴ଶ corresponded to (29,27,25,23), 𝑥ଵ଴଴ଷ corresponded 
to (29,27,25,21), and so on. Regarding the number of filters, i.e., 𝑥ଶ (single-head) or 𝑦ଶ 
and 𝑦ହ (double-head) variables, power of two between 8 and 256 were considered in in-
cremental order. Thus, for example, in the case 𝐾଴ = 5, 𝑥ଶ = 1 gave (𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) =

(8,8,8,8,8) , 𝑥ଶ = 2  gave (𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) = (8,8,8,8,16) , 𝑥ଶ = 3  gave 
(𝑁ଵ, 𝑁ଶ, 𝑁ଷ, 𝑁ସ, 𝑁ହ) = (8,8,8,8,32), and so on. 

Since the average pooling layers, depicted in Figure 8 and Figure 9 with dashed lines, 
were optional, their presence or absence were regulated by variables 𝑥ଷ (single-head) or 
𝑦ଷ  and 𝑦଺  (double-head), representing the configurations of a binary array {0,1}ெ೔  , 
where 1 in 𝑗-th position (with 𝑗 = 1, … , 𝑀௜ ) indicated the presence of average pooling 
layer at the end of the 𝑗-th CNN block. For example, in the case of 𝐾଴ = 6, 𝑥ଷ = 1 corre-
sponded to (0,0,0,0,0,0), 𝑥ଷ = 2 corresponded to (0,0,0,0,0,1) , 𝑥ଷ = 3 to (0,0,0,0,1,1) , 
and so on. All previously discussed optimization variables are summarized in Table 2. 

Table 2. Lower and upper bounds of all optimization variables. 

Variable 𝑴𝒊 Lower bound Upper bound 
Filter size (𝑥ଵ, 𝑦ଵ, 𝑦ସ) 4 1 2002 

“ 5 1 4004 
“  6 1 6006 

Number of filters (𝑥ଶ, 𝑦ଶ, 𝑦ହ) 4 1 35 
“ 5 1 126 
“ 6 1 462 

Pooling positions (𝑥ଷ, 𝑦ଷ, 𝑦଺) 4 1 16 
“ 5 1 32 
“ 6 1 64 

Initial learning rate (𝑥ସ, 𝑦଻) 4, 5, 6 10ିସ 0.1 
Momentum (𝑥ହ, 𝑦଼) 4, 5, 6 0 1 

Dropout probability (𝑦ଽ , 𝑦ଵ଴) 4, 5, 6 0 1 
 
In this study, both suggested DNNs (Figure 8 and Figure 9) and pretrained ones (Ta-

ble 1) were implemented and evaluated using the MatWorks® Deep Learning Toolbox (v 
14.2, R2021a) [63]; whereas, genetic optimization was performed using the MatWorks® 
Optimization Toolbox (v 9.1, R2021a) [64]. 

 
4.6. SVR based estimation 

As a further comparison, the previously presented DNN-based models were com-
pared with more traditional ML methods such as SVR. Since the presence of irrelevant or 
redundant information could slow down or make prediction algorithms less accurate, it 
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is necessary, before learning model, to distinguish between relevant and unnecessary fea-
tures. For this reason, the first step was to reduce the dimensionality of the profile data 
(Figure 7.B) using the PCA approach [65]. 

The profile data were represented in YZ plane by curves Ψ௞ = {൫𝑦௜
௞ , 𝑧௜

௞൯ ∈

ℝଶ, 𝑖 = 1, … , 𝑁௉ೖ
}, 𝑘 = 1, … , 𝑁 , with 𝑁௉ೖ

 typically ranging between 156 to 164 de-
pending on the specific point-cloud considered. After the PCA application, the re-
duced profile data were given by Ψഥ௞ = {൫𝑦ത௜

௞ , 𝑧௜̅
௞൯ ∈ ℝଶ, 𝑖 = 1,2}, since the percentage 

of variance explained by the first two principal components was of 100%. Ultimately, 
profile feature data used to train and test the SVR model was written as 

𝑷 = ቎
𝑦തଵ

ଵ 𝑧ଵ̅
ଵ 𝑦തଶ

ଵ 𝑧ଶ̅
ଵ

⋮
𝑦തଵ

ே 𝑧ଵ̅
ே 𝑦തଶ

ே 𝑧ଶ̅
ே

቏ ∈ ℝே,ସ. (8)

To achieve a good compromise between processing speed and accuracy, in this study, 
the epsilon-insensitive SVR (i.e., 𝜀 −SVR) [66, 67] was adopted, in which the epsilon pa-
rameter controls the amount of error allowed to the model. Given training data 𝑷௜ =

൫𝑦തଵ
௜ , 𝑧ଵ̅

௜ , 𝑦തଶ
௜ , 𝑧ଶ̅

௜ ൯
𝑻

∈ ℝ𝟒, the goal is to find a function 𝑔(𝑷௜) that deviates from RUL values 
𝑝௜ ∈ ℝ by an amount no greater than 𝜖 while at the same time being as flat as possible. 

In the linear case, assuming that the training data set is composed of 𝑁் < 𝑁 profiles 
𝑷௜  and corresponding RUL values 𝑝௜  with 𝑖 = 1, … , 𝑁், the linear function takes the form 
𝑔(𝑷௜) = 〈𝝅 ∙ 𝑷௜〉 + 𝑏, where 〈  ∙  〉 is the dot product, and 𝝅 ∈ ℝ𝟒 such that 〈𝝅 ∙ 𝝅〉 is min-
imum to ensure flatness. The problem can be stated in term of convex optimization as 
follows: 

minimize ‖𝝅‖ଶ, subject to 

∀𝑖 = 1, … , 𝑁் ∶  |𝑝௜ − (〈𝝅 ∙ 𝑷௜〉 + 𝑏)| ≤ 𝜖.  
(9)

Since a function 𝑓 satisfying these constraints for all points may not exist, in practice 
slake variables (𝜉௜ , 𝜉௜

∗) are introduced, analogously to the concept of “soft margin” in 
SVM. With the addition of the slake variables the problem (9) becomes [66]: 

minimize ‖𝝅‖ଶ + 𝐶 ∑ (𝜉௜ + 𝜉௜
∗)

ே೅
௜ୀଵ , subject to 

∀𝑖 = 1, … , 𝑁் ∶  

⎩
⎨

⎧
𝑝௜ − 〈𝝅 ∙ 𝑷௜〉 − 𝑏 ≤ 𝜖 + 𝜉௜

〈𝝅 ∙ 𝑷௜〉 + 𝑏 − 𝑝௜ ≤ 𝜖 + 𝜉௜
∗

𝜉௜ ≥ 0

𝜉௜
∗ ≥ 0

,  
(10)

where the positive parameter 𝐶 controls the penalty imposed on observations that fall 
outside the 𝜖 margin, playing a regularizing role to prevent overfiting. 

In the nonlinear case, the dot product is replaced with a kernel function 𝐺(∙,∙) which 
maps training data to a high-dimensional space. Some popular kernel functions evaluated 
in this study are reported in Table 3. 

Table 3. Kernel functions evaluated in this study. 

Kernel 𝑮(𝒙, 𝒚) 
Linear 〈𝑥 ∙ 𝑦〉 

Gaussian 𝑒ି‖௫ି௬‖మ 
Polynomial (1 + 〈𝑥 ∙ 𝑦〉)௤ with 𝑞 ∈ ℕ\{0,1} 

5. Results 
The performance results of the genetically optimized network architectures are pro-

vided in Table 4. In the single-head case, the convention used for the model name is a 
prefix "go" which stands for genetically optimized, followed by the number of CNN 
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blocks and the suffix "normal" or "depth" depending on the type of map the model was 
tested on. Thus, for instance, the name of the model genetically optimized with four CNN 
blocks and tested on normal maps is "go4normal". Instead, in the double-head architec-
tures, since they were tested on both normal and depth maps, the naming convention 
consists of the suffix "go" followed by the number of blocks for the two heads, for example 
"go4+4" indicates a model with four blocks for each head. In addition to the three metrics 
defined in (1), (2) and (3), the last column of Table 4 provides the time required to train 
each model.  

The population size was 50 in single-head architectures (5 optimization variables) 
and 200 in double-head ones (10 optimization variables), for a total number of 10,000 and 
40,000 iterations, respectively. For each candidate architecture, the model was trained for 
100 epochs, randomizing the validation data set to each epoch. To achieve the final per-
formance, the results of the top 100 architectures based on the fitness function (i.e., the 
MEPA metric) were averaged. 

The pre-trained models (Table 1) tested on normal and depth maps are provided in 
Table 5 and Table 6, respectively. The last columns of these tables report the fine-tuning 
time (FTT), i.e., the time elapsed to fine-tune each pre-trained model for 30 epochs. Also 
in this case, performance results were averaged by repeating training and testing 100 
times for each model. 

As regards the classical approaches based on SVR, three kernels, i.e., linear, Gaussian 
and polynomial of order 3, 4, 5 and 6, were tested. The performance results obtained with 
the approaches based on SVR are reported in Table 7. In this study , SVR was considered 
as a benchmark for evaluating the goodness of DNN-based models. 

A comprehensive overview of all achieved results is shown in Figure 10. As can be 
seen from this figure, the models that performed best are the genetically optimized ones 
(numbers from 1 to 15), while most of the pre-trained models (from no. 16 to 51) per-
formed worse than the SVR algorithms (from no. 52 to 57). ), with the exception of the pre-
trained models: googlenet (no. 17), vgg16 (no. 32), vgg19 (no. 33) on maps of normal vec-
tors, and the pre-trained models: googlenet (no. 35), alexnet (no. 49), and vgg19 (no. 51) 
on depth maps. 

Figure 10 also reports training times (TTs) of genetically optimized and SVR-based 
models and FTTs of pre-trained models, revealing on average longer times for the pre-
trained models (from no. 18 to 51), on average shorter times for the genetically optimized 
models (from no. 1 to 15), and very short times for the SVR models (from no. 52 to 57). 

Finally, the network configurations of genetically optimized single- and double- head 
DNN architectures are reported in Table 8 and Table 9, respectively. The reported param-
eters refer to best-fit models resulting from the genetic optimization process. The last col-
umns show the number of learned parameters (learnables) of each architecture. The ge-
netic optimization process lasted an average of 53 hours for each single-head architecture 
and approximately 632 hours for each dual-head architecture. The total duration of the 
genetic optimization process was approximately 250 days on a computer system equipped 
with Graphics Processing Unit (GPU) and configured as follows: Intel® Core™ i7-5820K 
CPU @ 3.30GHz, 16 GB DRAM, and NVIDIA GeForce GTX TITAN X GPU (Maxwell fam-
ily) with 12 GB GRAM. 

Table 4. RUL prediction performance obtained with genetically optimized networks tested on 
both depth and normal maps. 

No. Model name MAPE RMSE SF TT (sec) 
1 go4normal 0.063 0.036 0.301 63.793 
2 go5normal 0.065 0.037 0.313 18.351 
3 go6normal 0.083 0.035 0.282 16.928 
4 go4depth 0.102 0.063 0.513 13.647 
5 go5depth 0.083 0.049 0.393 18.603 
6 go6depth 0.058 0.036 0.312 13.410 
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7 go4+4 0.097 0.039 0.349 31.233 
8 go4+5 0.141 0.057 0.493 125.250 
9 go4+6 0.154 0.064 0.569 33.631 
10 go5+4 0.123 0.048 0.427 96.948 
11 go5+5 0.162 0.062 0.545 58.817 
12 go5+6 0.129 0.053 0.469 58.204 
13 go6+4 0.158 0.067 0.593 37.651 
14 go6+5 0.237 0.082 0.762 196.594 
15 go6+6 0.251 0.085 0.812 35.540 

 

Table 5. RUL prediction performance obtained with pre-trained networks tested on normal maps. 

No. Model name MAPE RMSE SF FTT (sec) 
16 squeezenet 2.080 0.363 4.044 32.875 
17 googlenet 0.452 0.112 1.077 18.947 
18 inceptionv3  3.402 0.367 3.839 121.734 
19 densenet201 1.802 0.559 5.453 758.300 
20 mobilenetv2 2.692 0.608 6.471 94.666 
21 resnet18 3.053 0.638 6.719 48.073 
22 resnet50 1.854 0.426 4.086 140.182 
23 resnet101 1.193 0.432 4.095 270.903 
24 xception 1.825 0.365 1.550 833.500 
25 inceptionresnetv2 2.691 0.555 5.365 755.150 
26 shufflenet 2.673 0.905 9.534 73.828 
27 nasnetmobile 1.597 0.412 4.276 352.860 
28 darknet19 1.623 0.340 1.332 108.202 
29 darknet53 1.384 0.485 1.870 565.150 
30 efficientnetb0 1.408 0.338 3.306 195.668 
31 alexnet 1.048 0.160 1.482 37.516 
32 vgg16 0.615 0.311 1.177 310.489 
33 vgg19 0.698 0.484 1.821 405.430 

 

Table 6. RUL prediction performance obtained with pre-trained networks tested on depth maps. 

No. Model name MAPE RMSE SF FTT (sec) 
34 squeezenet 3.789 0.321 3.175 36.501 
35 googlenet 0.416 0.114 1.142 56.326 
36 inceptionv3  2.200 0.312 3.067 267.350 
37 densenet201 1.657 0.527 5.387 785.250 
38 mobilenetv2 2.108 0.452 4.768 104.493 
39 resnet18 1.602 0.448 4.576 48.366 
40 resnet50 1.181 0.312 2.963 147.724 
41 resnet101 1.838 0.633 7.828 283.090 
42 xception 1.790 0.409 1.725 915.500 
43 inceptionresnetv2 1.530 0.266 2.519 745.000 
44 shufflenet 2.062 0.694 7.401 74.328 
45 nasnetmobile 1.309 0.324 3.329 345.805 
46 darknet19 9.471 3.291 14.630 126.012 
47 darknet53 0.878 0.423 1.557 580.700 
48 efficientnetb0 0.870 0.274 2.761 183.381 
49 alexnet 0.822 0.311 2.921 35.722 
50 vgg16 1.095 0.616 2.476 312.283 
51 vgg19 0.648 0.452 1.683 409.718 
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Table 7. RUL prediction performance obtained with SVR algorithms tested on surface profiles. 

No. Model name MAPE RMSE SF TT (sec) 
52 linear 1.073 0.135 1.444 4.667 
53 gaussian 1.190 0.182 1.673 4.117 
54 polynomial3 1.107 0.165 1.502 5.053 
55 polynomial4 0.909 0.124 1.180 5.726 
56 polynomial5 0.862 0.113 1.134 5.734 
57 polynomial6 0.857 0.120 1.179 5.807 

 
 

 
Figure 10. Performance measures (left y-axis) and TTs/FTTs (right y-axis) of all evaluated models. 

 

Table 8. Network configuration of genetically optimized single-head DNN architectures. 

No. Model name Network architecture Parameters (10଺) 
1 go4normal S = (29,25,19,17) 

N = (32,32,32,32) 
P = (0,0,0,0) 
ILR = 0.0059 
M = 0.8634 

1.39 

2 go5normal S = (5,7,19,23,29) 
N = (32,32,32,64,64) 
P = (1,0,0,0,0) 
ILR = 0.0068 
M = 0.8049 

4.95 

3 go6normal S = (29,25,23,19,11,7) 
N = (16,32,32,32,64,64) 
P = (1,1,1,1,0,0) 
ILR = 0.0047 

1.72 
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M = 0.7572 
4 go4depth S = (29,23,21,15) 

N = (16,16,16,16) 
P = (1,1,1,1) 
ILR = 0.0074 
M = 0.6636 

0.347 

5 go5depth S = (29,27,15,11,3) 
N = (32,32,32,32,32) 
P = (1,1,1,0,0) 
ILR = 0.0054 
M = 0.6893 

1.19 

6 go6depth S = (3,5,15,21,23,27) 
N = (32,64,64,64,64,64) 
P = (1,0,0,0,0,0) 
ILR = 0.0077 
M = 0.7702 

7.93 

 

Table 9. Network configuration of genetically optimized double-head DNN architectures. 

No. Model name Network architecture Parameters (10଺) 
7 go4+4 S1 = (5,15,21,29), S2=(29,27,25,17) 

N1 = (16,16,16,32), N2 = (16,16,16,16) 
P1 = (1,1,1,1), P2 = (1,1,1,1) 
d1 = 0.6791, d2 = 0.2646 
ILR = 0.0086 
M = 0.6499 

1.06 

8 go4+5 S1 = (27,23,19,3), S2=(29,25,23,13,7) 
N1 = (32,32,32,32), N2 = (16,64,64,64,64) 
P1 = (1,0,0,0), P2 = (0,0,0,0,0) 
d1 = 0.2452, d2 = 0.2494 
ILR = 0.0084 
M = 0.5046  

4.73 

9 go4+6 S1 = (5,23,27,29), S2=(27,25,23,17,13,9) 
N1 = (16,32,32,32), N2 = (16,16,16,32,64,64) 
P1 = (1,0,0,0), P2 = (0,0,0,0,0,0) 
d1 = 0.2659, d2 = 0.4718 
ILR = 0.0069 
M = 0.6599 

7.76 

10 go5+4 S1 = (27,25,23,21,17), S2 = (29,25,11,5) 
N1 = (16,32,32,32,64), N2 = (32,32,32,32) 
P1 = (0,0,0,0,0), P2 = (0,0,0,0) 
d1 = 0.598, d1 = 0.282 
ILR = 0.008 
M = 0.804 

2.81 

11 go5+5 S1 = (25,21,19,15,7), S2 = (29,21,15,13,3) 
N1 = (64,64,64,64,64), N2 = (16,32,32,64,64) 
P1 = (1,1,1,0,0), P2 = (0,0,0,0,0) 
d1 = 0.1296, d2 = 0.1075 
ILR = 0.0089 
M = 0.4570 

5.41 

12 go5+6 S1 = (9,11,13,25,27), S2 = (7,11,17,19,21,27) 
N1 = (16,16,32,64,64), N2 = (16,32,64,64,64,64) 
P1 = (1,0,0,0,0), P2 = (0,0,0,0,0,0) 
d1 = 0.425, d1 = 0.355 

11.32 
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ILR = 0.006 
M=0.464 

13 go6+4 S1 = (5,15,19,21,23,29), S2=(11,17,19,25) 
N1 = (16,16,32,32,32,32), N2 = (16,16,32,32) 
P1 = (1,0,0,0,0,0), P2 = (1,1,0,0) 
d1 = 0.7385, d2 = 0.5250 
ILR = 0.0039 
M = 0.1515 

3.00 

14 go6+5 S1 = (29,27,19,17,13,5), S2=(7,17,21,27,29) 
N1=(64,64,64,64,64,64), N2=(16,32,32,32,32) 
P1 = (0,0,0,0,0,0), P2 = (1,0,0,0,0) 
d1 = 0.8581, d2 = 0.5764 
ILR = 0.0074 
M = 0.5507 

8.82 

15 go6+6 S1=(3,13,15,21,25,29), S2=(3,11,13,17,21,25) 
N1=(16,16,16,32,64,64),N2=(16,16,64,64,64,64) 
P1 = (1,0,0,0,0,0), P2 = (1,0,0,0,0,0) 
d1 = 0.7867, d2 = 0.6495 
ILR = 0.0046 
M = 0.6290 

10.81 

 

5. Discussion 
The use of profilometric scanning sensors allows to appreciate surface deformations 

with micrometric precision in the form of 3D point clouds. On the other hand, the organ-
ization of 3D point clouds into bidimensional image-like maps, as proposed in this study, 
enables to make the most of the potential of CNN-based DNN architectures, originally 
designed to process image data. Furthermore, in the case of RUL depending on surface 
deformations, two-dimensional maps offer the advantage of representing the state of sys-
tem (i.e., punch tool in this study) deterioration in a cumulative way. Therefore, under 
such conditions, the RUL can be reliably estimated from a single image, that is from a 
single depth or normal map. 

Pre-trained networks with transfer learning are advantageous since they allow to 
deal with small training data sets and to overcome the often-cumbersome process of gen-
erate problem-specific networks. However, they are not always suitable, especially when 
data distributions are very dissimilar between source and target domains. The definition 
of the most suitable DNN architecture for the problem under consideration, however, is 
not an easy task. In general, it involves identifying various configuration parameters (hy-
perparameters) through a trial-and-error process. The transfer learning method offers the 
indisputable advantage of simplifying this often-cumbersome process of generating ad-
hoc DNN architectures. In addition, pre-trained models require the use of a small amount 
of training data for fine-tuning, allowing to address the additional problem of reduced 
amount of training data [33]. 

Keeping in mind the aforementioned advantages, in this study, the transfer learning 
technique was evaluated in correspondence with the main pre-trained models, as re-
ported in Table 1, with both depth and normal maps. However, the performance results 
obtained were generally lower than the more traditional SVR approach taken as a refer-
ence (Figure 10). Only the pre-trained models googlenet (MAPE equal to 0.452 with nor-
mal maps and 0.416 with depth maps), vgg16 (MAPE = 0.615 with normal maps), vgg19 
(MAPE equal to 0.698 with normal maps and 0.648 with depth maps) and alexnet (MAPE 
= 0.822 with depth maps) performed slightly better than the SVR approach (MAPE = 0.857 
with polynomial kernel of order 6), but requiring on average 35 times more time for fine-
tuning than SVR requires for training. 
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In this study, the problem of defining ad-hoc (problem-specific) architectures was ad-
dressed by resorting to genetic optimization. In this way, a total amount of 15 architec-
tures were optimized, of which 6 were single-headed (three for each type of map), shown 
in Table 8, and 9 double-headed, as shown in Table 9. The performance results reported 
in Figure 10 (see the magnification in the upper left corner) confirm the superiority of the 
genetically optimized architectures over the pre-trained ones. The drop in performance 
found with transfer learning method can be explained by the fact that feature distributions 
across the two domains, source and target, were very different from each other. The pre-
trained models (Table 1), in fact, were pre-trained using mostly “natural” images, while 
the images proposed in this study were obtained by mapping 3D point clouds in order to 
represent depths and normal vectors to the punch tool surface, resulting in “artificial” 
images with false colors. 

Among the genetically optimized architectures, the single-headed models performed 
better than double-headed ones, with a slight predominance of models trained and tested 
on depth maps over those evaluated with normal maps. These results indicate that the use 
of two-headed models is not beneficial, and it is probably explained by poor correlations 
between features extracted from the two different types of maps, depth and normal, in 
representing deformation-induced degradation. 

The results achieved in this study are in line with the state of the art in the literature. 
In particular, regarding CNN-based studies with image datasets, one of the best results 
presented in the literature was reported by Wu et al. [32]. In their study, the authors re-
ported an average MAPE of 0.0476 which, however, was obtained with a very large data 
set consisting of 8400 images, while the TT was between 1.8 and 32.6 hours (the authors 
have not provided specifications of used computing system). On the other hand, in the 
case of small data sets, one of the best results reported in the literature is that of Marei et 
al. [33] who achieved an average RMSE of 0.1654 with the Resnet18 pre-trained model on 
a data set of 327 images, requiring 3358.4 seconds for fine-tuning on an NVIDIA GPU with 
8GB Ram. However, it should be kept in mind that images of deteriorating components 
or parts of them (i.e., real world images, often obtained under a microscope and by stop-
ping the machining system) were used in those studies. Therefore, the adaptation (or 
transfer learning) of pre-existing (or pre-trained) CNN models was feasible, considering 
the similarity of feature distributions between domains. In the case, instead, of data sets 
consisting of time-series sensor data, Mo et al. [37] reported an average RMSE of 11.28 
with the NASA C-MAPSS data set. 

The proposed system has been conceived to be versatile, working in a completely 
automatic way. There is no need to disassemble the punch tool or stop the punch machine 
to capture scans. The used 3D sensor, attached to the punching machine, scans at regular 
intervals of pressing stops. Furthermore, it is important to note that both depth, normal 
maps and longitudinal profiles allow to estimate the punch tool RUL in a single-shot, i.e., 
a single profile or map accounts for all deformations occurred up to that moment. This 
allows to avoid processing long sequences of profiles or maps, reducing computational 
load and network architecture complexity. 

Although the optimization process takes a long time, it only needs to be performed 
once for the type of punch tool used. In this study, three different punch tools were tested, 
characterized by different deformation modes, using the same network architectures. An 
aspect that deserves further investigation concerns the verification of whether the pro-
posed architectures are also valid for predicting RUL of systems other than the studied 
punch tool, but whose degradation still depends on the work surface deformation. 

6. Conclusions 
In this study, a DNN-based RUL prediction framework for punch tool, whose dete-

rioration is due to surface deformation, was investigated. The main results achieved are 
threefold as indicated below. Firstly, the surface deformation of the punch tool was rep-
resented through the definition of depth and normal vector maps, obtained from point 
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clouds of 3D scans. Secondly, the RUL prediction was estimated considering the main pre-
trained models, obtaining lower or slightly higher performance than SVR-based classic 
ML, due to different distribution of features between the transfer learning domains. 
Thirdly, genetically optimized architectures based on variable number of CNN blocks, 
both single- and double-headed, were generated, achieving superior performance to pre-
trained models and in line with the state-of-the-art in the literature. 

Ongoing and future research focuses on experimentation of depth and normal vector 
maps in combination with genetically optimized DNN architectures for the RUL predic-
tion of other systems whose deterioration depends on surface deformations. 
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