
   
 

 

Epithelial ablation of Miro1/Rhot1 GTPase leads to mitochondrial 

dysfunction and lung inflammation by cigarette smoke 

Shikha Sharma, Qixin Wang, Thivanka M Muthumalage, and Irfan Rahman* 

Department of Environmental Medicine, University of Rochester Medical Center, Rochester, 

NY, USA 

Correspondence should be addressed to:*Irfan Rahman, Ph.D.; Department of Environmental 
Medicine; University of Rochester Medical Center; Box 850, 601 Elmwood Avenue; Rochester 
14642, NY, USA; Tel: 1 585 275 6911; E-mail: irfan_rahman@urmc.rochester.edu 

 

Short running title: Miro1 dependent mitochondrial dysfunction 

Abstract: Cigarette smoke (CS) exposure results in lung damage and inflammation through 
mitochondrial dysfunction. Mitochondria quality control is sustained by Miro1 (Rhot1), a calcium-
binding membrane-anchored GTPase by its interaction with PINK1/Parkin during mitophagy. 
However, the exact mechanism that operates this interaction of mitophagy machinery in Miro1 
degradation and CS-induced mitochondrial dysfunction that results in lung inflammation remains 
unclear. We hypothesized that mitochondrial Miro1 plays an important role in regulating 
mitophagy machinery and resulting lung inflammation by CS in mouse lung. We showed a role of 
Miro1 in CS-induced mitochondrial dysfunction and quality control mechanisms. The Rhot1Fl/Fl 
(WT) and lung epithelial cell-specific Rhot1 KO were exposed to mainstream CS for 3 days (acute) 
and 4 months (chronic). The cellular infiltration, cytokines, and lung histopathology were studied 
for the inflammatory response in the lungs. Acute CS exposure showed a notable increase in the 
total inflammatory cells, macrophages, and neutrophils associated with inflammatory mediators 
and Miro1 associated mitochondrial quality control proteins Parkin and OPA1. Chronic exposure 
showed an increase infiltration of total inflammatory cells and neutrophils versus air controls. 
Histopathological changes, such as pulmonary macrophages and neutrophils were increased in CS 
exposed mice. The epithelial Miro1 ablation led to augmentation of inflammatory cell infiltration 
with alteration in the levels of pro-inflammatory cytokines and histopathological changes. Thus, 
CS induces disruption of mitochondrial quality control mechanisms, and Rhot1/Miro1 mediates 
the process of CS-induced mitochondrial dysfunction ensuing lung inflammatory responses.  
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1. Introduction  

Cigarette smoke (CS) leads to mitochondrial dysfunction which is associated with lung 

inflammation (Sundar, Maremanda, & Rahman, 2019). The dysfunction of the mitochondria 

accelerates the inflammatory process in lung diseases like chronic obstructive pulmonary disease 

(COPD) (Ahmad et al., 2015). Normal cellular homeostasis and physiology depends on the 

regulation of mitochondrial function (Ni, Williams, & Ding, 2015). During cellular damages, the 

dysfunctional mitochondria are generally eliminated by selective degradation – mitophagy 

(Lazarou et al., 2015). To sustain the quality control of the mitochondria, Miro1 (Rhot1) serves 

as an essential element in mitochondrial quality control. Rhot1 (Miro1) is a calcium-binding, 

membrane-anchored GTPase that is required for the calcium-driven movement of the 

mitochondria on microtubules, especially during mitophagy (Alshaabi et al., 2021; Sundar et al., 

2019; Cloonan & Choi, 2016; Lerner et al., 2016). Miro1 also serves a vital role in mitochondrial 

dynamics by its interaction with Pink1 (PTEN-induced putative kinase 1)/Parkin mitochondrial 

quality control system by serving as a signal for mitophagy (Bueno et al., 2015; Safiulina et al., 

2019). Depolarization of the mitochondrial membrane is responsible for initiating mitophagy in 

the cells. Following this, the mitochondrial quality control is performed by the stabilization of 

Pink1 on mitochondrial outer membranes through fission reaction. An E3 ubiquitin ligase, also 

called as, Parkin is then recruited from the cytosol by the Pink1 for further mitochondrial quality 

control (Scarffe, Stevens, Dawson, & Dawson, 2014; Sundar et al., 2019). After the recruitment 

of Parkin, the degradation of a mitochondrial fusion core protein – mitofusin2 (Mfn2) occurs. 

This allows clearing off of damaged mitochondria from the cell by protein microtubule-

associated protein light chain 3 (LC3) in the  isolation membranes that further initiates the 

formation of autophagosome by localization of damaged mitochondria and that in turn fuses with 
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the lysosomes to remove the dead mitochondrial cells (Ashrafi & Schwarz, 2013; Sekine & 

Youle, 2018). The Pink1 and Parkin thereby coordinate together during mitophagy to help 

regulate mitochondrial degradation. The mitochondrial shape and trafficking are maintained by 

GTPase Miro1 and Miro2. Thus, together they may serve a crucial role in mitochondrial quality 

control (Nemani et al., 2018). However, the exact mechanism that operates this interaction of 

PINK1 and MIRO1 and CS-induced mitochondrial dysfunction that results in lung inflammation 

in COPD, remains unclear.   

We hypothesize that the ablation of Miro1 (Rhot1) from lung epithelial cells would result 

in the dysfunction of mitochondrial quality control (dysfunctional mitophagy). This may in turn 

exaggerate the adverse effects of cigarette smoke in the lungs, thereby ensuing CS-induced lung 

inflammation and mitochondrial dysfunction in lung epithelium (Lerner, Sundar, et al., 2016; 

Sundar et al., 2019). To demonstrate CS-induced disruption in the mitochondrial quality control 

mechanisms and the role of Rhot1/Miro1 in mediating the process of CS-induced mitochondrial 

dysfunction, we utilized the epithelial cell-specific partial (heterozygous) and complete 

(homozygous) Miro1 knockout (Miro1CC10 KO) mouse models which are to exposed to 

mainstream cigarette smoke. C57/BL6J mice for 3 days (the acute phase), and 4 months (chronic 

phase). The role of mitochondrial Miro1 and its impact on the progression of lung inflammation 

along with mitochondrial dysfunction were studied.  

2.  Materials and Methods 

Ethical Approval: Institutional Biosafety  

Ethics Statement 

The study is approved via the laboratory protocols by the Institutional Biosafety Committee 

(IBC) of the University of Rochester Medical Center, Rochester, NY, All animal experiments 
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were approved by the University Committee on Animal Research at the University of Rochester, 

Protocol no.102204 / 2007-070E, date of approval, January 31, 2019. 

 

2.1. Animal Model and exposure 

Rhot1Fl/Fl (WT) and lung epithelial cell-specific Rhot1 KO mice, Rhot1CreCC1 models 

were exposed to cigarette smoke (CS) for 3 days duration (acute – Rhot1CC10+/- flp Cre and 

Rhot1CC10+/+ flp Cre) and 4 months (chronic – Rhot1CC10+/- flox Cre and Rhot1CC10+/+flox 

Cre) using Baumgartner-Jaeger CSM2082i (cigarette smoke generating machine; CH 

Technologies, Westwood, NJ, USA) (J. Chen et al., 2019; Sundar et al., 2010; Yang et al., 2021). 

All the air group mice were exposed to normal air and the same time duration was maintained as 

for the CS exposure. Hence, the mice groups were divided into two groups – air and CS groups. 

Animals were 2-4 months old and were housed under standard pathogen-free conditions with a 

12/12 h light and dark cycle in the University vivarium facility. 

2.2. Cigarette smoke exposure 

Cigarette smoke for exposure was generated by using 3R4F (research-grade cigarettes) 

and the exposure guidelines were followed as per the protocol of the Federal Trade Commission 

(1 puff/minute of 2 second’s time duration with the volume of 35 mL). The mainstream smoke 

concentration was set at ~250-300 mg/m3 of TPM value after diluting it with filtered air and the 

concentration of carbon monoxide (290 to 300 ppm) was monitored in the chamber 

(Arunachalam, Sundar, Hwang, Yao, & Rahman, 2010; Hwang et al., 2011; Lerner, Lei, Sundar, 

& Rahman, 2016). A MicroDust Pro-aerosol monitor (Casella CEL, Bedford, UK) was used for 

CS exposure monitoring and the verification of the readings was performed after the completion 

of the exposure cycle each day by gravimetric sampling. Simultaneously, all the air group mice 
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were exposed to the same time duration of normal air as maintained for the CS exposure (Sundar 

et al., 2010; Yao et al., 2008). 

2.3. Collection of bronchoalveolar lavage (BAL) 

Mice were injected with 100 mg/kg/bw of pentobarbiturate intraperitoneally and then 

euthanized. Then cannula was inserted into the trachea of mice and the lungs were lavaged with 

normal saline (0.6 ml volume; 3 times). The lavage fluid was collected and centrifuged and the 

separated supernatant samples were stored at -80°C (M. Chen et al., 2017; Rajendrasozhan, 

Chung, Sundar, Yao, & Rahman, 2010; Wood et al., 2014; Yao et al., 2008).  

2.4. Total cell count in BAL fluid 

The cell pallet of BAL fluid was resuspended in normal saline (0.9% NaCl; 1ml/vol.) and 

stained by trypan blue (cell staining dye) and total cell count/ml was determined by cellometer. 

2.5. Differential cell count in BAL fluid  

For 3 days (acute) exposure, the differential cell count of immune-inflammatory cells 

(neutrophils, macrophages, CD4, CD8) was done by BD Accuri flow cytometer in BAL fluid. 

All cells were stained using cell type-specific mAb. Specific cell labeling markers, LY6B.2 

Alexa Fluor 488 (conjugated antibody), F4/80 phycoerythrin (conjugated antibody), CD45 

allophycocyanin, and CD8a phycoerythrin-Cy5 (conjugated antibodies) for neutrophils, 

macrophages, leukocytes, and T-lymphocytes were used, respectively. 

For four months (chronic) exposure, differential cell counts to check the cell influx in 

neutrophils and macrophages were performed on cytospin slides with Diff-Quick staining (Cui, 

Liu, Ip, Liang, & Mak, 2020; Lim, Kim, Lee, Bae, & Kim, 2018). The Diff-Quick staining 

involves sequential dipping of the slides into different solutions – fixative agent (methanol, 

blue), solution 1 (eosinophilic, orange), and solution 2 (basophilic, blue) followed by rinsing and 
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drying. The collected smears are first allowed to dry followed by dipping the slide for one 

second and repeating it for five times each into a fixative followed by stains 1 and 2. The excess 

is allowed to drain after each dip. After drying it, the slide is rinsed in distilled water or Weise's 

buffer (pH 7.2). The tape strip is then stuck to slide (sticky side down) and the excess tape is 

removed. It is then blotted or allowed to dry in the air for further examination at low power and 

under oil immersion. 

2.6. Inflammatory mediators 

Differential levels of inflammatory mediators in BAL fluid were assessed for their 

alteration in the levels using Bio-Plex Pro Mouse Cytokine 23-Plex Immunoassay was run using 

Luminex. Experiments were done following the manufacturer’s instructions and the results were 

presented as pg/mg protein in the samples. 

2.7. Measurement of lung mechanics 

The mechanical parameters of the lungs like lung resistance, tissue elastance, and static 

compliance were measured by Flex-ivent apparatus (Scireq; Montreal, Canada). All the mice 

were weighed and anesthetized by pentobarbital (90 mg/kg; i.p. injection) followed by 

pancuronium (0.5 mg/kg; i.p. injection). Mice were then tracheostomized and cannulated and the 

cannula was attached to the rodent ventilator and the ventilator was connected to a computer 

(Hwang et al., 2011; Phillips et al., 2015). Measurements of all lung mechanical parameters were 

repeated three times for all mice. 

2.8. Lung Morphometry and histopathology 

Mouse lungs were isolated and inflated with 1% agarose (low melting) and fixed with 4% 

neutral-buffered paraformaldehyde (Yao et al., 2010). Dehydration of the fixed tissue was done 

followed by encasing it in paraffin and sections were cut by rotary microtome. The lung 
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midsagittal section of each tissue was stained with H&E (hematoxylin and eosin) and the Lm 

(linear intercept) of airspace and pathological changes were determined in lung tissues. 

2.9. Statistical Analysis 

Statistical analysis was done by one-way (ANOVA), Tuckey’s post-hock multiple group 

comparison test by GraphPad Prism 9 software. Data were shown as mean ± SEM. Significance 

compared between corresponding Air and CS groups of same genotypes as well as in different 

genotypes. P < 0.05 is considered significant.  

3. Results  

CS-induced inflammatory cell infiltration and differential expression of cytokines were observed 

in lung epithelial cell-specific Rhot1 deleted mice after 3 days and 4 months of CS exposure. 

3.1. Three days (acute) exposure 

3.1.1. Inflammatory cellular influx in Rhot1 epithelial cell specific KO (Rhot1 +/-CreCC10 

and Rhot1-/-CreCC10) and WT (Rhot1 Flp) mice 

The total number of cells and macrophage count increased significantly in WT (Rhot1 Flp), 

Rhot1 epithelial cell specific KO (Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) mice exposed to CS 

for 3 days. However, none of the groups showed significant changes in the levels of neutrophils, 

CD4 and CD8 in response to CS exposure (Figure 1). 

3.1.2. Effect of acute, CS exposure on levels of pro-inflammatory mediators in Rhot1 

epithelial cell specific KO (Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) and WT (Rhot1 Flp) mice 

3.1.3. WT (Rhot1 Flp) mice exposed to 3 days CS showed increasing trends of several pro-

inflammatory mediators but the changes between the air and CS group were not found 

significant. CS exposed Rhot1 epithelial cell specific KO (Rhot1 +/-CreCC10 and Rhot1-/-
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CreCC10) mice showed significant reduction in the levels of MCP1, IL5, Il-1a, IL-3, IL-9, IFN-γ 

and TNF-α. The rest of the mediators were not significantly affected (Figure 2). 

3.1.4. Four Months (chronic) exposure 

3.1.5. Inflammatory cellular influx in Rhot1 epithelial cell specific KO (Rhot1 +/-CreCC10 

and Rhot1-/-CreCC10) and WT (Rhot1 Flox) mice 

CS exposure significantly increased the total cells and neutrophils (%) in WT (Rhot1fl/fl)  and 

Rhot1CreCC10 (Rhot1CC10-/-Flox Cre and Rhot1CC10+/-flox cre) mice. Non-significant, but 

increasing trends observed in macrophage (%) in CS exposed groups (Figure 3). 

3.1.6. Effect of acute, CS exposure on levels of pro-inflammatory mediators in Rhot1 epithelial 

cell specific KO (Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) and WT (Rhot1 Flox) mice. 

WT (Rhot1 Flox) mice exposed to chronic 4 months CS showed a significant increase and non-

significant increasing trends of several pro-inflammatory mediators. CS exposed WT (Rhot1 Flox) 

and Rhot1 epithelial cell specific KO (Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) mice showed 

significant increase in the levels of MCP1, KC, TNF-α, IL12p40, MIP1-a ,IL-17p70. However, 

IL-13, IL-10, MIP1- showed a significant increase only in Rhot1 epithelial cell specific KO 

(Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) .The rest of the mediators were not affected significantly 

(Figure 4). 

 

3.1.7. Effect of CS on lung mechanical properties in Rhot1 epithelial cell specific KO (Rhot1  

+/-CreCC10 and Rhot1-/-CreCC10) and WT (Rhot1 Flox) mice 

3.1.8. WT Rhot1 Flox mice exposed to CS showed non-significant increasing trends in 

resistance and compliance and a decreasing trend in elastance, In contrast, KO (Rhot1  +/-

CreCC10 and Rhot1-/-CreCC10) mice exposed to CS did not show any observable changes in 
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resistance, elastance and compliance (Figure 4).  Airspace enlargement also did not show much 

appreciable changes though there was a trend in CS exposed mouse lungs (Figure 5). 

3.1.9. Effect on airspace enlargement and pathology of lung tissues in Rhot1 epithelial cell 

specific KO (Rhot1 +/-CreCC10 and Rhot1-/-CreCC10) and WT (Rhot1 Floxed) mice 

Lung sections from chronic 4 months CS-exposed Rhot1 CC10+/- Floxed Cre mice did 

not show significant airspace enlargement in comparison with air and CS-exposed Rhot1fl/fl (WT) 

mice. However, other histopathological changes such as interstitial foamy macrophages and 

neutrophils are found in CS exposed mice and the changes are more intensified in Rhot1 CC10+/- 

Flox Cre mice (Figure 6). 

4. Discussion 

Chronic inflammation of the lungs is the hallmark in the pathogenesis of COPD, which is 

primarily caused by cigarette smoking. The smoke of cigarettes contains large amounts of toxic 

chemicals that affect the cells of the lungs by deleterious nature of tobacco smoke (Nyunoya et 

al., 2014; Yao et al., 2012). The dysfunction in mitochondria due to injury and morphological 

alterations are shown to be significantly driven by the CS exposure to the lung cells that includes 

airway and alveolar epithelial cells, fibroblasts, and airway smooth muscle cells (Aravamudan et 

al., 2014; Ballweg, Mutze, Konigshoff, Eickelberg, & Meiners, 2014; Hara et al., 2013). 

However, the mechanism behind this cellular damage and inflammatory response, and the role of 

Miro1 in mitochondrial dysfunction upon exposure to CS in lung epithelial cells has remained 

unclear. In this study, the Rhot1Fl/Fl (WT) and lung epithelial cell-specific Rhot1 KO mice were 

exposed to CS on acute (3 days) and chronic duration (4 months) to examine the role of 

Rhot1/Miro1 in the CS-disrupted mitochondrial quality control mechanisms and inflammatory 

response. The role of mitochondrial dysregulation in lung inflammatory diseases like COPD is 
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known (Mizumura et al., 2014; Wiegman et al., 2015). Regulation of cellular events like fission 

(fragmentation) and fusion (elongation) process allows mitochondria to rapidly change their 

shape. MFNs (membrane-anchored proteins: Mfn1 and 2) and OPA-1 (optic atrophy 1) are the 

major proteins that allow mitochondrial fusion by interacting with other proteins like Pink1 in 

the mitochondrial membranes (Y. Chen & Dorn, 2013). We analyzed the differential abundance  

of mitochondrial fission and fusion proteins in lung epithelial cell-specific Rhot1 KO mice 

through immunoblot analysis. It was found that the levels of OPA1 (a fusion protein) and parkin 

(which identifies the damaged mitochondria for mitophagy) were significantly reduced with CS 

exposure (data not shown). This further demonstrate the role of different mitochondrial proteins 

in mitochondrial functioning and how it alters the mitochondrial quality control mechanism. The 

mitochondrial control protein, like Miro1 is targeted by Pink1 and Parkin for mitophagy in the 

damaged mitochondria. Hence reduction in these proteins may explain the impaired mitophagy 

response to CS (Birsa et al., 2014); (Kazlauskaite et al., 2014); Wang et al., 2011). The 

mitochondrial dysregulation was also evident in our study by the increase in the lung infiltraton 

of total inflammatory cells, macrophages, and neutrophils in the mice models after acute and 

chronic exposure of CS that were analyzed from the bronchoalveolar lavage (BAL) fluid in the 

mice. However, there was no change noted in the CD4 and CD8 counts. Inflammatory 

mediators/biomarkers, like MCP1, IL5, Il-1a, IL-3, IL-9, IFN-γ, and TNF-α were significantly 

affected after acute CS exposure. In contrast, MCP1, KC, TNF-α, IL12p40, MIP1-a, IL-17p70 

both in WT and Miro1 epithelial cellular KO groups along with IL-13, IL-10 and MIP1- were 

significantly abundant only in Miro1 epithelial cellular KO groups after chronic exposure. 

Further, other cytokines did not show significant trends for any changes. Further, other cytokines 

did not show significant trends for any changes. It is known that any accumulation of infiltrating 
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cells like  neutrophils and macrophages increases along with inflammatory cells are the prime 

events in the pathological contribution of smoking to lung (Domínguez-Fandos et al., 2012; 

Gorska et al., 2008). The disruptions in the mitochondria refer to various events that occur at the 

cellular level in the mitochondria, such as morphological changes, alteration in its metabolic 

activity, decreased membrane potential and altered mitochondrial superoxide levels and 

intracellular Ca2+ flux (Cloonan & Choi, 2016; Lerner, Sundar, et al., 2016). This may alter the 

dynamic nature of the organelle. CS exposure causes an alteration in this dysregulation of 

mitochondria by modifying its function, mitophagy and resulting in ROS production (Ahmad et 

al., 2015; Hara et al., 2013). The histopathological data of the lung sections after 4 months of 

CS-exposure in Rhot1 CC10+/- Flox Cre mice did not reveal any significant airspace enlargement 

in comparison with air and CS-exposed Rhot1fl/fl (WT) mice. Nevertheless, other changes, such 

as accumulation of pulmonary macrophages and signs of epithelial hyperplasia dysplasia at 

airway region of the CS exposed mouse lungs were observed. The changes are more intensified 

in Rhot1 CC10+/- Flox Cre mice. The inflammation of the lungs impacts the airways with 

smaller airways being more predominant at the early stages (Domínguez-Fandos et al., 2012; 

Lerner, Sundar, et al., 2016). Mechanical properties and airspace enlargement of lungs had no 

comparable changes of Rhot1 to air and CS groups as well as to WT and KO groups. Shorter 

duration and amount of cigarette smoke may explain the non-significance of structural changes. 

However, the reduced levels of quality proteins indicate that our results are in consistent with 

previous studies that have shown reduced proteins along with the increase in the levels of ROS in 

the damaged mitochondria in the lung epithelial cells when exposed to CS (Ito et al., 2015; 

Kobayashi et al., 2016; Sundar et al., 2019). The explanation for this disutpion of mitochondrial 

quality control proteins including Pink1/Parkin may be regulated by Miro1 (Kazlauskaite et al., 
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2014). The increased expression of mitochondrial quality control proteins and their role in 

mitochondrial dysfunction was not assessed which again contributed to the limitation of the 

study. Additional studies have also shown that the overexpression of quality control proteins like 

Parkin may restore mitophagy in CS exposed cells by decreasing the cellular senescence (Ahmad 

et al., 2015; Ballweg et al., 2014; Hara et al., 2013). There are several studies that point 

PINK1/Parkin-dependent mitophagy and the role of Miro1 (Rhot1) and Miro2 (Rhot2) in it 

(Klosowiak et al., 2016; Kondapalli et al., 2012; Lopez-Domenech et al., 2018; Safiulina et al., 

2019) . This may yield insights into the strategies that focus to pharmacologically restore the role 

of mitochondrial quality control proteins to treat lung inflammatory conditions like COPD.  

Conclusion 

Epithelial Miro1 ablation was shown to augment the inflammatory cell infiltration with alteration 

in the levels of pro-inflammatory cytokines and histopathological changes in mouse lungs 

(Figure 7). The study thereby establishes the hypothesis that CS induces disruption in 

mitochondrial quality control mechanisms, and Rhot1/Miro1 is the key regulator of 

mitochondrial motility during mitophagy that mediates the process of CS-induced mitochondrial 

dysfunction.  
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Figure 1: CS induced cell infiltration in lung epithelial cell–specific Rhot1 deleted mice: 

Rhot1Fl/Fl (WT) and Rhot1CreCC10 (Rhot1 flp CreCC10+/- and Rhot1 flp CreCC10+/+) mice were 

exposed to room air and CS (mainstream) for 3 days (acute exposure). 

Differential cell count in  BAL fluid rom air and CS-exposed mice for 3 days was determined. 

Alteration in A. Total cell count  B. Macrophages  C.  Neutrophils  D. CD4 and  E. CD8, 

occurred due to  CS exposure. Significance compared between corresponding Air and CS groups 

and all the groups compared with each other irrespective of their exposures. Data are shown as 

mean ± SEM (n=5 to 13 per group). **P < 0.01, ***P < 0.0001 
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Figure 2: Differential expression of cytokines in epithelial cell–specific Rhot1 deleted and 

WT mice. A-C: Rhot1Fl/Fl (WT) and Rhot1CreCC10 (Rhot1 flp CreCC10+/- and Rhot1 flp 

CreCC10+/+) mice were exposed to room air and CS (mainstream) for 3 days (acute exposure). 

Expression levels of pro-inflammatory and inflammatory mediators in BAL fluid rom air and 

CS-exposed mice for 3 days was determined using Bio-Plex Pro 23-plex cytokine assay. 

Significance compared between corresponding Air and CS groups and all the groups compared 

with each other irrespective of their exposures. Data are shown as mean ± SEM (n=5 to 13 per 

group). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 
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Figure 3: Increased neutrophil influx in Rhot1CreCC10 (Rhot1 Flox CreCC10+/-)  mice in 

response to CS exposure for 4 months 

A: The number of total cells in BAL fluid from air and CS-exposed mice for 4 months was 

determined. B: Lavaged macrophage and C: neutrophil numbers were counted in Diff-Quik 

stained cytospin slides, which were prepared using BAL fluid. Quantification of macrophages 

neutrophils expressed as % of total cells in BAL fluid from air and CS exposed mice. CS 

exposed Rhot1CreCC10 (Rhot1 CreCC10+/-) mice showed significant increase in total no of cells 

and number of neutrophils. Data are shown as mean ± SEM (n=3 to 5 per group).**P < 0.01, 

***P < 0.001significant compared with corresponding air exposed mice 
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Figure 4A-C: Differential expression of cytokines in epithelial cell–specific Rhot1 deleted 

and WT mice: Rhot1Fl/Fl (WT) and Rhot1CreCC10 (Rhot1 flp CreCC10+/- and Rhot1 flp 

CreCC10+/+) mice were exposed to room air and CS (mainstream) for 4 months (sub-chronic 

exposure). Expression levels of pro-inflammatory and inflammatory mediators in BAL fluid rom 

air and CS-exposed mice for 4 months as determined using Bio-Plex Pro 23-plex cytokine assay. 

Significance compared between corresponding Air and CS groups and all the groups compared 

with each other irrespective of their exposures. Data are shown as mean ± SEM (n=5 to 13 per 

group). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

 

 

Figure 5: Alterations in lung mechanical properties in Rhot1CreCC10 (Rhot1 Flox 

CreCC10+/)  mice in response to CS exposure for 4 months 

A: Tissue resistance B: elastance and C: static compliance were measured by FlexiVent after 4 

months of air and CS exposure. Significance compared between corresponding Air and CS 
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groups and all the groups compared with each other irrespective of their exposures, *P < 0.05. 

Data are shown as mean ± SEM (n=3 to 7 per group). Changes between Air and CS groups were 

not found significant in any of the groups. 

 

 

 

Figure 6: CS induced airspace enlargement and changes in histopathology in lungs of 

Rhot1CreCC10 (Rhot1 Flox CreCC10+/- and Rhot1 Flox CreCC10+/-) mice exposed to CS for 

4 months: Areas of interest are marked in red 

The pictures shown are H&E stained lung sections from air and CS exposed Rhot1Fl/Fl (WT) and 

Rhot1CreCC10 (Rhot1 flox CreCC10+/- Rhot1 Flox CreCC10+/-) mice for 4 months. A. Rhot1Fl/Fl  -

Air, B. Rhot1Fl/Fl  -CS,  C. Rhot1CreCC10 –Air, D. Rhot1CreCC10 –CS. Original magnification is 

20X. E. Mean Linear Intercept (Lm) was analyzed in H&E stained. Lung sections from Air and 

CS-exposed Rhot1 Flox CreCC10+/- mice did not show significant airspace enlargement in 

comparison with air and CS-exposed Rhot1Fl/Fl (WT) mice. Data are shown as mean ± SEM (n=6 

to 14 per group). However, other histopathological changes such as accumulation of pulmonary 
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macrophages and signs of epithelial hyperplasia dysplasia at airway regions of the CS exposed 

mouse lung were observed. The changes are more intensified in Rhot1 CC10+/- Flox Cre mice. 

 

 

Figure 7: Cigarette Smoke induced Miro1 mediated mitochondrial dysfunction in lung epithelial 

cells. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2021                   doi:10.20944/preprints202108.0220.v1

https://doi.org/10.20944/preprints202108.0220.v1

