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Abstract

A method for noise reduction of spectra based on the adaptive application of the Savitsky-Golay
polynomial filter is presented. A polynomial approximation is calculated at all points of the
spectrum and for all window sizes. The weighted sum of all polynomials containing the point
to be processed is used as the result. The weighting factors are calculated by evaluating the
quality of the fit. This paper proposes two evaluation functions. The performance of the
presented method is compared with the Savitsky-Golay method and the wavelet noise reduction
method. The proposed approach provides good noise reduction performance without using
user-entered parameters.
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Introduction

Many methods have been proposed for noise reduction of spectroscopic data. One of the most
popular is the Savitsky-Golay (SG) filter (1) with many modifications (2-4). This filter is based
on fitting a polynomial in a moving window. The degree of the polynomial and the size of the
window determine the quality of the smoothing. Wavelet smoothing (5) is also widely used, but
it requires the choice of many parameters Many other methods have been invented, such as
Wiener estimation (6), vector casting (7), Artificial Neural Network approach (8) etc.

The performance of the proposed method has been compared with the SG and wavelets
denoising methods on the simulated and real data. Method is simple for implementation and
does not required any preparation steps as learning, spike removing, baseline correction and do
not need input parameters. It provides good results for the different noise level.

Algorithms

The denoising algorithm includes the following steps. For each window size and for each
window position:

A polynomial is fit by a least-squares.
A weighting coefficient is calculated based on the quality of the fit.

For each point in the input data, the filter value is computed as the weighted sum of the
polynomials of all windows that include the given point.
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(1

where i and j are the position and size of the window. Window size starts at polynomial order+2.
Figure 1 shows this process.
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Figure 1. Filtering result (upper triangle) as a weighted sum of polynomial values (other
triangles) of windows including the processed point.

The weighting coefficients are calculated by evaluating the quality of the fit. In this paper, two
evaluation functions are used.

The first function is a threshold type. For each point of the input data and for all odd windows,
the center of which is this point, the following conditions are checked:

|Fit - Data| < NExt 2)
and
|Z| < Thr 3)
where
Zi=Z.1+Signt(Fit-Data, Nint), Zyp=0 4)

—lifx<O0and|x| >y

Signt(x,y) =1 0,if [x| <y (5)
1,if x>0and |x| >y

Nint and NExt are internal and external noise thresholds. Windows are scanned in decreasing
order from maximum to minimum. The process stops at the first window that satisfies both
conditions. The weighting coefficients are defined as

_(Lif j = jmax
Wij = {0, if j # jmax ©)

Figure 2 illustrates this calculation and shows the use of the second condition to preserve fine
data details, usually associated with small peaks.
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Figure 2. Calculation of the weight coefficients(left). The process stops at the jmax window. W
indicates coefficients values. Calculation of the Z function(right). The central rectangle shows
a small peak that satisfies the first condition, but not the second.

The second evaluation function uses the maximum absolute difference between the fitted curve
and the original curve as a criterion. This value divided by the noise factor is used as an input
for the inverted sigmoid function

1
= 1+eDiff (©)

Max((Fit-Data)?)

Diff = —— = (7

The following procedure is used to calculate the noise parameters of the weighting function (9).
The SG algorithm with a small window is applied to the data. The absolute difference values
between the original and filtered data are sorted in ascending order. The mean value of the
initial part of the sequence is calculated. This value, which is proportional to the noise variance,
is used to characterize noise.

NC = Y. Sort(|Data—SG(Window,0Order)|,Part) (8)

DataSize-Part

where Sort (x, y) - sort the x values in ascending order and keep only y part of them and SG (x,
y) - the SG filter with window size x and polynomial order y. In this work, the following values
are used: Window =5, Order =2, Part = 0.25. From model experiments, it can be concluded
that the noise value is stable over a wide range of data and does not depend on peaks and
baseline types. Using only a fraction of the points minimizes the influence of spike noise and
other artifacts. The noise parameters for the weighting functions obtained from experiments
with simulated spectral data are NF' = 12.5 NC, NExt =26 NC, Nint=0.3 NExt and Thr = 4.

Results and Discussion

Simulated and real data were used to validate the proposed method. Simulation data includes
two types of samples. The first sample is based on a random set of Gaussian/Lorentz peaks with
a width of 1 to 10 points. The baseline is modeled by the sum of 3 Gaussian/Lorentz functions
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with a width of 100 to 300 points. The second sample is one of the standard artificial signal
testing functions. Figure 3 shows this data. Gaussian noise is used to contaminate data. The
signal-to-noise ratio SNR in decibels is calculated using the formula

Y Signal?
SNR = 10lo ( 9
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Figure 3. Simulated spectrum(left) and artificial signal(right). Gray color is used for noisy data.
SNR is 15 dB. The rectangle marks the area shown in Figure 7.

The proposed method, the SG filter and the wavelet filter were used to process data with SNR
levels from 0 to 30 dB. The window size in the SG method varied from 5 to 51, with polynomial
order 2. The MatLab application was used for the wavelet filter (Sym4 type and Empirical
Bayes method) and the decomposition level was from 1 to 9. The window size of the SG filter
and the wavelet filter decomposition level were optimized for achieving the best SNR result.
Figure 4 shows the SNR of the cleaned data as a function of the SNR of the noisy data. Figures
5 illustrate the filtering result for an SNR of 15 dB. The sizes of the SG window are 11 and 29,
and the wavelet decomposition level is 5 and 6. Figures 6 show the processing of the selected
data areas marked in Figure 3. The results show the best performance of the proposed approach,
especially at SNR above 10 dB.

@ @m 40r
= =
S 30r 3
S S
E g w0
2z 2z
£ 20f z
5 5
o e 20
= =
(%] (%]
10+ g
0 10 20 30 0 10 20 30
SNR of noisy data (dB) SNR of noisy data (dB)

Figure 4. SNR of filtered data as a function of SNR of noisy data for the simulated
spectrum(left) and the artificial signal(right). The order of the items in the legend corresponds
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to the order of the curves. PT and PS - the proposed method with threshold and sigmoid
evaluation functions, WL - wavelet filter, SG - Savitsky-Golay filter.
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Figure 5. Filtering result for data with 15 dB noise level. CL - original data, PT and PS -
proposed method with threshold and sigmoid estimation functions, WL - wavelet filter, SG -
Savitsky-Golay filter, NS - noisy data. The order of the items in the legend corresponds to the
order of the curves. Graphs are shifted only for better visibility.
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Figure 6. The result of filtering data with a noise level of 15 dB for the zones selected in Figure
3. The legends are the same as in Figure 5.

The result shows the best performance of the proposed approach.

Raman spectra of mineral samples (10) were used to test noise reduction techniques on real
data. Figure 7 shows the processing of 2 spectra with different noise levels. The SG and wavelet
parameters are the same as for the previous 15 dB simulated data. The results demonstrate a
good visual quality of the data, processed by the proposed method. Figure 8 illustrates the
difference between the proposed evaluation functions. The threshold function provides better

smoothness, while the sigmoid function keeps better small details.
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Figure 7. Processing of Raman spectra.
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Figure 8. Comparison of evaluation functions. The threshold function provides better
smoothness, while the sigmoid function preserves better small details.

Conclusion

The proposed method shows good results on simulated and real data. It does not require user-
entered parameters. Processing can be applied directly without preparation steps such as
baseline correction, learning, spike removal, etc. The algorithms are very simple to implement
and can be optimized in various ways. It can also be used to process 2D and 3D images and

other multidimensional data.

Supplemental Material
The online version of the method implementation is available at (11). Datasets can be

downloaded from (12).
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