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Summary 
It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as 
vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. 
These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal 
space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. 
Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby 
invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter 
effect of galaxies to the extent that a numerical value of Milgrom’s acceleration constant can be 
assigned by theory.  Non-polarized vacuum particles beyond the baryonic kernels compose the dark 
energy at the cosmological level. The result is an interpretation of gravity at the quantum level in 
terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which  
correspond with the values of the Lambda-CDM model. 
 
Keywords: Milgrom’s acceleration constant; Bekenstein-Hawking entropy; gravitational dipole; dark 
matter. 
 

1. Introduction 
 
Present-day theory of gravity relies upon the presence of an omni-present energetic 
background field. The existence of this background field is required to explain the 
accelerated expansion of the universe, known since 1998, [1]. This cosmological background 
field has been defined on the basis of Einstein’s Cosmological Constant [2]. It is also known 
as “dark energy”. The unavoidable conclusion is that there is not such a thing as “empty 
space”, but that space is filled with an energetic fluidum. This conclusion has given rise to 
the idea of conceiving the vacuum as an entropic medium filled with energetic constituents, 
in this article to be annotated as darks. As long as these darks are not subject to any 
directional energetic influence, their motions remain fully chaotic. In that state the vacuum 
is fully symmetric, because its state before and after a time interval of “closed eyes” with an 
arbitrary translation or rotation of the observer, is just the same [3]. In [4,5,6,7,8] it has been 
argued that if the cosmological background field would consist of energetic uniformly 
distributed polarisable vacuum particles, the dark energy would give an explanation for the 
dark matter problem as well, because vacuum polarization would evoke a gravitational 
equivalent of the well-known Debije effect [9]. With the difference, though, that the central 
force from a gravitational nucleus is enhanced just opposite to the suppression of the 
Coulomb force from an electrically charged nucleus in an ionized plasma. It means that the 
awareness of the Cosmological Constant implies a symmetry break.  This is the issue that will 
be discussed in this article.  
 
The modeling of the omni-present background energy by energetic vacuum particles, 
requires a model for its elementary constituent (the dark). This element must be a source of 
energy, and must be force feeling as well. In those aspects it resembles an electron, which is 
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ultimately the source of electromagnetic energy, and which is sensitive to the fields spread 
by other electrons. However, whereas the dark in the cosmological background field must be 
polarisable under the gravitational potential, an electron is non-polarisable under an electric 
potential. The electric dipole moment of an electron is zero, while a dark should have a non-
zero gravitational dipole moment. In [8,10,11] the suggestion has been made that these 
particles could be of the particular Dirac type as theorized back in 1937 by Ettore Majorana 
[12]. There is, however, no convincing argument why a Majorana particle would have a 
dipole moment that is polarisable in a scalar potential field. It is recognized, though, that 
Dirac’s theory contains some heuristic elements. Recently, the author of this article found a 
third type Dirac particle, next to the electron type and the Majorana type [13]. This third has 
the unique property that, unlike the electron type, it possesses a dipole moment that is 
polarisable in a scalar potential field. It is my aim to show in this article that this third 
matches with the dark. 
 
The cosmological and gravity view to be developed in this article relies, next to the 
awareness of the darks, on a particular interpretation of the   parameter in Einstein’s Field 
Equation. Different from the common perception that Einstein’s   is a constant of nature, 
usually identified as the Cosmological Constant, it is in the author’s view a covariant 
integration constant that may have different values depending on the scope of a 
cosmological system under consideration. This awareness is based upon Einstein’s note in 
his 1916 article that he equated an integration constant as zero (see footnote on p.804 in 
ref. [15]). More on this in the next paragraph. Because it may depend on other attributes but 
just time-space coordinates, such as mass content, for instance, it may have different values 
at the level of solar systems, galaxies and the universe. Only at the latter level, it is justified 
to identify the   as the Cosmological Constant indeed. At that level, by the way, the 
cosmological system is in a state of maximum symmetry and maximum entropy. The viability 
of this view will be proven by a calculation of Milgrom’s empirical acceleration constant of 
dark matter [14]. 
 
In the article, first of all the need will be revealed for accepting a fluidal energetic vacuum 
with the profile just described. This will be done in a hierarchic approach. It is instructive to 
distinguish three levels in this. The first level is the galaxy level. That part contains an 
analysis of the dark matter problem on the basis of the role of Einstein’s  in his Field 
Equation. It will be shown that this results into a modification of Newton’s gravity law that 
qualitatively fits with Milgrom’s empirical one. This is possible by conceiving the galaxy as a 
baryonic kernel that executes a central force. The second level is the cosmological level. In 
this level the universe is conceived as a uniform distribution of such baryonic kernels. This 
will enable deriving a testable quantitative result of Milgrom’s acceleration constant. It has 
to be emphasized that the analysis of the two cosmological levels, i.e. galaxy and universe, 
does not require a microscopic identification of the vacuum energy. Accepting the role 
Einstein’s  in his Field Equation is adequate here. The third level is the other extreme: the 
quantum level.  At that level a quantum interpretation is given for the dark energy fluid as 
represented by Einstein’s  . The purpose here is twofold. The first is to connect the CDM
model with entropic gravity and quantum gravity. The second purpose is to strengthen the 
analysis made in the first and second level by showing that calculating Milgrom’s 
acceleration constant in a (quantum) entropic way results in an identical expression as 
obtained in the non- (quantum) entropic way.  
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In a conclusive discussion paragraph a reflection will be given on the symmetry of the 
universe by summarizing the analytical results from the three levels (galaxy, universe, 
quantum level).  
 
 

2. The galaxy level 
 
As just explained, an analysis of galaxies is the first thing to be done. To do so, Einstein’s 
Field Equation is invoked. The Field Equation reads as, 




T
c

G
gG

4

8
 ;  RgRG

2

1
 ,                                                                               (1) 

in which T is the stress-energy function, which describes the energy and the momenta of 

the source(s) and in which R and R  are respectively the so-called Ricci tensor and the 

Ricci scalar. These can be calculated if the metric tensor components g are known 

[15,16,17]. The   term is missing in Einstein’s paper of 1916, in spite of his awareness that 
he equated an integration constant as zero (see footnote on p.804 in ref. [15]). Later, in 
1917, Einstein added this quantity as a covariant integration constant for allowing vacuum 
solutions of his Field Equation [18,19]. As noted in the introduction, It is usually presently 
taken for granted that this Lambda is a Cosmological Constant that can be regarded as a 
constant of nature. In fact, however, it is just a constant in the sense that its value does not 
depend on space-time coordinates. Hence, it may have at the galaxy level a different value 
from the Cosmological Constant at the level of the universe.  

In the case that a particle under consideration is subject to a central force only, the space-
time condition shows a spherical symmetric isotropy. This allows to read the metric 
elements ijg from a simple line element that can be written as  

 
2222222

0
2 ddsind),(d),(d  rrrtrgqtrgs rrtt  ,                                                             (2) 

 
In which ctq i0   and 1i  . 
 
It means that the number of metric elements ijg reduce to a few, and that only two of them 

are time and radial dependent.  
 
Note: The author of this article has a preference for the “Hawking metric” (+,+,+,+) for

),,,( zyxcti , like, for instance also used by Perkins [20]. By handling time as an imaginary 
quantity instead of a real one, the ugly minus sign in the metric (-,+,+,+) disappears owing to 
the obtained full symmetry between the temporal domain and the spatial one. 
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Before discussing the impact of  , it is instructive to summarize Schwarzschild’s solution of 
Einstein’s equation for a central pointlike source with mass M in empty space and 0 , in 
which the metric components appear being subject to the simple relationship 
 

1ttrr gg .                                                                                                                                             (3) 
 
Solving Einstein’s equation under adoption of a massive source with pointlike distribution 

)(32
00 rMcT  , results in a wave equation with the format [21], 
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in which G is the gravitational constant and )(tU is Heaviside’s step function.  
 
Its stationary solution under the weak field limit 
 

),(1),( trhtrg tt  , in which 1),( trh ,                                                                               (5) 

 
is the well-known Newtonian potential, 
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The wave equation (4) reduces to, 
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 With inclusion of the constant  , the wave equation is modified into (see Appendix), 
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If ttT were a pointlike source )()(32 tUrMcTtt  , the static solution of this equation would 
be provided by the Schwarzschild-de Sitter metric, also known as Kottler metric, [22,23], 
given by 
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2
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RS                                                                   (9)  

 
The viability of (9) readily follows by insertion into (8) and subsequent evaluation. Obviously, 
we meet a problem here, because we cannot separate a weak field   (= gravitational 
potential) from the metric, because we cannot a priori identify an r domain that justifies 
the adoption of the constraint (5). However, given the fact that a viable wave function can 
be obtained for   0, one might expect that it must be possible to obtain a valid wave 
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equation for a weak field   showing a gradual move from   0  to   0. The way out 
from the problem is the consideration that (8) must be valid both for vacuum with a massive 
source as well as for vacuum without a source. Taking the view that the vacuum is 
something else but empty space, allows as I wish to show, a meaningful wave equation. This 
starts by the observation that the Kottler metric describes the space-time curving of a 
spherical empty space under influence of a single central pointlike energy source. But in our 
view there is not such a thing as empty space. Instead there is a vacuum composed by 
energetic vacuum particles.  
 
Hence, whereas an empty space with   0 corresponds with virtual sources T 0, the 

vacuum with   0 is a fluidal space with virtual sources  pT , with

),sin,1,1( 222 rrg   , in which Gcp 8/4  [24,25,26]. (Owing to the Hawking metric, p  

is equal for all diagonal elements). This particular stress-energy tensor with equal diagonal 
elements corresponds with the one for a perfect fluid in thermodynamic equilibrium [24]. 
Inserting a massive source in this fluid will curve the vacuum to ),sin,,( 222 rrggg rrtt   . 

Hence, inclusion of the Cosmological Constant   implies that, under absence of massive 
sources, Einstein’s equation can be satisfied if empty space is given up and is replaced by a 
space that behaves as a molecular fluidum in thermodynamic equilibrium. If, under bias of a 
uniformly distributed background energy, a massive pointlike source is inserted into this 
fluidum, deriving a meaningful wave equation is possible, although not trivial. As shown in 
the Appendix, the difficulty is mainly caused by the loss in symmetry between ttg  and rrg . 
Whereas Schwarzschild’s relationship (3), implies a weak field limit,  
 
  rt hh  , 

 
the loss of the relationship implies, 
 

 rt hh  .                                                                                                                                           (10) 

 
It also means that it is no longer clear how to relate a Newtonian potential   with the 
metric components, such as shown by (6). To make things even worse, the consequences in 
all four metric components  gggg rrtt ,,, have to be considered. Nevertheless, it will 

appear (derived in the Appendix) that the low value of Einstein’s   still allows a linearization 
of the equation set within a conditioned spatial range. This will  give rise to a wave equation 
with the format,    
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in which  22  and in which )(
2

2  rt hh
c




. 

 
While this wave equation in the weak field limit is compatible with the behavior of ttg , the 
behavior of rrg , being different from ttg , might spoil the weak field limit condition. As 
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shown in the Appendix, this is not the case as long as 6r . This sets an upper limit to the 
validity of (11). Another concern is the possible violation of the metric (2) due to the 
behavior of the metric components g and g under 0 . This sets a lower limit to the 

validity of (11). This condition, being derived in the Appendix as well, will be discussed later 
in this article.  
 
The main message so far is, that the curving of space-time as a consequence of inserting a 
massive pointlike source in empty space, like assumed under the Schwarzschild-de Sitter 
condition and the Kottler condition, is different from the curving of space-time in the case of 
inserting a massive source in a fluidal vacuum. The Appendix serves to show the details of 
the derivation. The static format of the wave equation (11) is a potential field set up by a 
pointlike source with a format that shows up as a modification of Poisson’s equation, such 
that 
 

)(4)()( 32
2

2

rGMrrr
r

 



.                                                                                        (12) 

 
This result is different from the common perception on the influence of Einstein’s  in 
Newtonian gravity. Like discussed in review articles on its history, such as for instance by 
Norton [27] and by Harvey and Schucking [28], the resulting Laplace equation should match 
with (8) such that,  
 

0)(
1 2

2

2



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rr

.                                                                                                                         (13) 

 
This latter one is compatible with the de Sitter-Schwarzschild metric (9).  
 
The difference between (12) and the commonly accepted view (13), touches the crux of this 
article. Whereas (13) traces back to the solution of Einstein’s equation given by de Sitter-
Schwarzschild metric, solution (12) traces back to the fluidal space solution. It has to be 
emphasized here that comparing (12) and (13) is comparing apples with pears, because of 
the semantic difference between and  . Whereas applies to ttg ,   applies to h , 

which is a small deviation on top of ttg , as defined by (5). What eq.(12) actually expresses, is 
a tiny change in the space-time curving caused by an energetic source in background energy. 
If the source is missing, there would be no curving, neither a change (zero h ). In that case, 

(12) simply reduces to the identity 00. Whereas eq. (13) is made up at the cosmological 
level of the whole universe (modelled as a de Sitter space), (12) is made up for a spherical 
system with a central mass, such as applies to solar systems and galaxies. As we shall 
demonstrate later in this article, this has an impact on the interpretation of the Cosmological 
Constant.  
 
As noted before, and well known of course, Poisson’s equation and its modification is the 
static state of a wave equation. From the perspective of classic field theory, a wave 
equation, can be conceived as the result of an equation of motion derived under application 
of the action principle from a Lagrangian density L of a scalar field with the generic format  
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 
 )(

2

1
L U ,                                                                                                       (14) 

 
in which )(U is the potential energy of the field and where  is the source term. 
Comparing various fields of energy, we have, 
 

0)( U                    for electromagnetism. 
2/)( 22 U       for this case,                                                                                                            

2/)( 22 U          for the nuclear forces [29].                                                                        (15) 

The non-trivial solutions of wave functions) in homogeneous format derived from (14), for 
the first case and the third case, are respectively, 

r
0

  and 
r

r


 )exp(

0


 .                                                                                                     (16) 

The first case applies to electromagnetism (for 00 4/ Q ) and to Newtonian gravity 

(for  MG0 ). The third case applies to Proca’s generalization of the Maxwellian field 

[29]. The latter one reduces to the first case if 0 , while keeping /0  constant. 

Generically, it represents a field with a format that corresponds with the potential as in the 
case of a shielded electric field (Debije [9]), as well as with Yukawa’s proposal [29], to explain 
the short range of the nuclear force.     

Let us, after this side-step, proceed on (12). It can be readily verified that this equation can 
be satisfied by, 
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
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Note that the goniometric shape of this solution is a consequence of the plus sign in front of 

2 . It has to emphasized once more that this expression holds under the classical weak field 
constraint and the presence of a central source of energy that evokes this field as the tiny 
variation in the generic spherical metric. The shape (17) will reveal some interesting 
features. In accordance with the concepts of classical field theory, the field strength can be 
established as the spatial derivative of the potential  . We may identify this field strength 
as a cosmological gravitational acceleration g . Let us compare this acceleration with the 
Newtonian one Ng .  
Hence, from (17), 
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Not surprisingly, the gravitational acceleration is affected by the Einstein’s 2/2 . If 
0 , the gravitational acceleration equals the Newtonian one Ng . Under a positive value 

of the Cosmological Constant, the gravitational acceleration has a different spatial behavior. 
This is illustrated in figure 1, which shows the ratio Ngg / as a function of the normalized 
spatial quantity r . Up to the value 4/3 r , Ngg /  rises monotonously up to the value 

Ngg /  3.33. This figure shows that, for relative small values of r , the cosmological 
acceleration behaves similarly as the Newtonian one. Its relative strength over the 
Newtonian one increases significantly for large values of r , although it drops below the 
Newtonian one at r 3.45. Up to slightly below 4/3 r , this is, as will be shown, a 
similar behavior as heuristically implemented in MOND. The effective range is determined by 
the parameter  . It might therefore well be that the cosmological gravity force manifests 
itself only at cosmological scale. Let us consider its consequence. 
 

 
 
Figure 1: The cosmological gravity force compared with the Newtionian force  
 
Newtonian laws prescribe that the transverse velocity )(rv of a cosmic object revolving in a 

circular orbit with radius r  in a gravity field  is determined by 
 

r

GrM
rv

)(
)(2  ,                                                                                                                                 (19) 

 
in which )(rM is the amount of enclosed mass. This relationship is often denoted as Kepler’s 
third law. Curiously, like first announced by Vera Rubin [31] in 1975, the velocity curve of 
cosmic objects in a galaxy, such as, for instance, the Milky Way, appears being almost flat. It 
is tempting to believe that this can be due to a particular spectral distribution of the spectral 
density to compose )(rM . This, however, cannot be true, because )(rM builds up to a 
constant value of the overall mass. And Kepler’s law states in fact that a flat mass curve 

)(rM is not compatible with a flat velocity curve. Figure 2 illustrates the problem. It is one of 
the two: either the gravitational acceleration at cosmological distances is larger than the 
Newtonian one, or dark matter, affecting the mass distribution is responsible. Cosmological 
gravity as expressed by (18) may give the clue. Its effective range is determined by the 
parameter  . It might therefore well be that the cosmological gravity force manifests itself 
only at cosmological scale. Figure 3 shows that under influence of this force, the rotation 
curves in the galaxy are subject to a boost. This cosmological gravity shows another 
intriguing phenomenon. Like shown in figures 1 and 4, at the very far cosmological distance, 
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the attraction of gravity is inversed into repulsion [32,33,34]. However, rather than the 
“naked repulsion” (a word used by Harvey and Schucking [28]), like manifest in the de Sitter-
Schwarzschild approach, the repulsion shows up at the very far end of the spatial range. 
Nevertheless, it prevents the clustering of the fluidal space, thereby eliminating the major 
argument against the fluidal space approach. 

 
Figure 2. Incompatibility of a flat enclosed mass curve with a flat rotation curve. Note: for illustration 
purpose a particular distribution is adopted for the enclosed mass. The same distribution is maintained for 
all subsequent illustrations.  
 

 
 
Figure 3: boost of the rotation curve under influence of cosmological gravity. 
 
Further exploration of this phenomenon is a subject outside the scope of this article. It has 
to be noted that the solution (19) is not unique. There are more solutions possible by 
modifying the magnitude of rsin  over rcos . I have simply chosen here for the 
symmetrical solution. Cosmological observations would be required to obtain more insight in 
this.  

 
Figure 4: Inversion of the gravity force to antigravity at large cosmological distances. Black: Newtonian. Blue: 
Cosmological Gravity.  
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Whether this theoretically derived modification of the Newtonian gravity indeed explains 
the excessive orbital speeds of stars in a galaxy, such as formulated in Milgrom’s empirical 
law in MOND, is dependent on the numerical value of Einstein’s  . If Milgrom’s empirical 
theory and the one developed in this paragraph are both true, it must be possible to relate 
Einstein’s with Milgrom’s acceleration constant 0a , like will be done next. 
 
2.1 Comparison with MOND 
 
MOND is a heuristic approach based on a modification of the gravitational acceleration g

such that 
 

)(x

g
g N


 , with 0/ agx                                                                                                                   (20) 

 
In which )(x is an interpolation function, )/( 2rMGg N   the Newtonian gravitational 
acceleration and in which 0a  is an empirical constant acceleration. The format of the 
interpolation function is not known, but the objectives of MOND are met by a simple 
function like [14,35] 
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If 1/ 0 ag , such as happens for large r , (20) reduces to 
 

Ngag 0 .                                                                                                                                         (22) 

 
Under this condition, the gravitational acceleration decreases as 1r instead of 2r . As a 
result, the orbital velocity curves as a function of r show up as flat curves.  
Algebraic evaluation of (20) and (21) results into, 
 

2

)(411 42 rk

g

g

N


     with 

2
0

MG

a
k   .                                                                            (23) 

 
This expression allows a comparison with (18). 
 
As illustrated in figure 5, a pretty good fit is obtained between (18) and (23) in the range up 
to 4/3 r (where the theoretical curve starts decaying), if 
 

 MGMGa
MG

a
k 55.25.2 2

02
0 


 .                                                                             (24) 

 
Observations on various galaxies have shown that 0a can be regarded as a galaxy-
independent constant with a value about 0a 1.25 x 10-10 m/s2 [35]. 
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The implication of (24) is, that 0a is a second gravitational constant next to G . The two 
constants determine the range of the gravitational force in solar systems and galaxy 
systems as MGa 5/2 0

2  , in which M is the enclosed mass in those systems. Whereas this 
second gravitational quantity 0a is an invariable constant, this is apparently not true for the 
Einsteinean parameter  .  
 

 
 
Figure 5: MOND’s interpolation function compared with the theory as developed. 
 

 
 
Figure 6: Comparison of orbital velocities for stars in galaxies for MOND (upper curve) and for the theory as 
developed (lower curve). 
 
This result shows that Milgom’s empirical and the theory as developed in this article are 
intimately related. Figure 6 shows the difference between curves for the orbital velocity of 
stars in galaxies according to MOND as compared to those as predicted by the theory as 
developed in this article. It has to be emphasized here that establishing the fit between the 
two curves by setting k 2.5 is only meant to incorporate Milgrom’s acceleration constant 

0a as an unknown parameter into the theory. This implies that no limitation on whatsoever 
is imposed, nor that the generality of the analysis is affected. One may ask: “proves MOND 
the theory or does the theory proves MOND?”. Maybe, the better question is: does the well 
accepted MOND validate the theory? To answer this question, an obvious difference 
between MOND and the developed theory has to be discussed. From figure 5 it is shown 
that beyond 4/3 r the developed theory deviates from MOND and figure 4 shows that 
beyond r 3.66 the gravitational attraction changes into a repulsion. From this 
perspective, the latter phenomenon would even put a natural limit to the size of a galaxy. 
Let us consider these ranges for the Milky Way. As long as 4/3 r we have 
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 02/5/1 aMG .                                                                                                                           (25) 

 
This implies a spatial coincidence range between MOND and the theory developed so far, up 
to a galaxy radius MR to the amount of 
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c
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 .                                                               (26) 

 
where 2/2 cMGRS   is the Schwarzschild radius and HctL   is the Hubble scale  ( Ht 13.8 

Gyear). Because from calculation La 6.9 x 10-10 m/s2 and because  0a 1.25 x 10- 10 m/s2  
from MOND’s assessment to most galaxies (if not all), we have from (26) for the Milky Way 
with Schwarzschild radius SR 0.2 lightyear, 
 

MR  458000 lightyear.                                                                                                                    (27) 
 
This is well beyond the radius of the Milky Way, which amounts to 180.000 - 200.000 
lightyear. The coincidence range between MOND and this theory (up to )4/3 r is well 
within the spatial validity range 6r  due to the weak field limit constraint and the 
linearization approximation such as derived in the Appendix.   
 
As noted before, apart from this upper limit for the range of validity, there is a lower limit as 
well. This has to do with the weak field limit constraint that we have imposed to derive a 
single parameter wave equation from Einstein’s Field Equation. The value of this lower limit 
has been derived in the Appendix as 
 

2/12/1

0

)
3

8
()

2

5
2( MSL

SL
SL RRR

LR

a

a
RR


 .                                                                     (28) 

 
For the Milky Way ( SR 0.2 lightyear; MR 458000 lightyear) this lower limit amounts to  
 

LR 279 lightyear.                                                                                                                             (29) 
 
Considering that our solar system is at about 26.000 lightyear from the center, it will be clear 
that the modified Newtonian gravitation law (18) holds for the Milky Way. Because many 
other galaxies are similar to the Milky Way, it is quite probable that this new theory solves 
the anomaly problem of the stellar rotation problem of most, if not all, galaxies.  
 
From this result it may be concluded that that Milgrom’s acceleration constant and Einstein’s 
 are closely related indeed. From (25) and (11), we have 
 

MG

a

5

2
2 02  .                                                                                                                                (30) 
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It also means that Einstein’s  is not a constant of nature, but instead, like noted before, a 
covariant integration constant that, while being independent of space-time coordinates, may 
be dependent on attributes of any cosmological system that is subject to Einstein’s Field 
Equation. If the system is a spherical one, such as solar systems or galaxies, the value of 
Einstein’s  depends on the baryonic mass content of the system under consideration.  
 
 

3. The cosmological level 
 
So far, we have considered a spherical gravitational system under influence of a central 
gravitational force, such as applies to solar systems and galaxies. But what about the 
universe?  For any observer in the cosmos, the universe is a sphere with distributed matter. 
Let us model the universe as a sphere in the cosmos with radius L and distributed 
gravitational energy. We have discussed before that vacuum is fluidal space with virtual 
sources  pT  , in which Gcp 8/4  . Denoting the gravitational background energy 

density as  , we have  
 


G

c
c




8

4
2  .                                                                                                                                     (31) 

 
We have concluded before that  is related with some baryonic mass BM , such that 
 

GM

a

B5
0 .                                                                                                                                       (32) 

 
The distributed energy is a gradually developed mixture of the energy from fluidal matter as 
meant by (31) and the energy from baryonic matter BM  as meant by (32). From these 
expressions it can be concluded that the total gravitation energy 2cM G in a sphere with 
radius L can be expressed as 
 

drr
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c

GM

a
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2
4
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02 4
85


 .                                                                                                        (33) 

 
Let GM the difference between the gravitational matter in a sphere LL   and the 
gravitational matter in a sphere L . It follows readily that 
 

LLc
GM

a
LLc

GM

a
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GBB
G 


 24

2
024

2
02

1010
 ,                                                                  (34) 

 
in which the baryonic matter is expressed as a dimensionless fraction B of the gravitational 

matter, 

GBB MM  .                                                                                                                                   (35) 
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Note: In terms of the Lamda-CDM nomenclature, the baryonic share is expressed as B in the 

relationship 

  )(1 DBm ,                                                                                                              (36) 

In which DBm   ,,, , respectively, are the relative matter density, the relative dark energy 

matter density, the relative baryonic matter density and the relative dark matter density [36]. While 

the matter distribution between the matter density m (= 0.259) and dark energy density  (= 

0.741) is largely understood as a consequence from the Friedmann equations [37] that evolve from 
Einstein’s Field Equation under the Friedmann-Lemairtre-Robertson-Walker (FLRW) metric [38], the 

distribution between the baryonic matter density B (= 0.0486) and dark matter density D (= 

0.210) is empirically established from observation. The quoted values are those as established by the 
Planck Collaboration [36]. 

Eq. (34) can now be integrated as 
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 .                                                                                                               (37) 

Hence, the gravitational energy density 2c in the sphere with radius L  is given by 
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Because the visible universe is a sphere from which light cannot escape, its radius equals the 
Schwarzschild radius [39], 
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S   ;                                                                                                 (39) 

in which UM  is the total gravitational mass of the universe and in which  is the overall 

matter density of the universe.  Hence, from (38) and (39), 
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 .                       (40) 

Identifying L  like before as the Hubble scale HctL   ( Ht 13.8 Gyear), we La 6.9 x 10-10 

m/s2  and inserting the empirical CDM value B = 0.0486 the into this expression gives the 

well known value 0a 1.25 x 10-10 m/s2 for Milgrom’s acceleration constant. It is a  result 

that relates the baryonic content of the universe with Milgrom’s constant by a rather simple 
expression. It makes the theory developed so far testable by experimental observation, such 
as required for its viability.  

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0159.v1

https://doi.org/10.20944/preprints202108.0159.v1


 

15 
 

3.1 The three components of the gravitational matter 

The baryonic energy density is just one of the three components of the gravitational energy. 
What about the other two components? These are known as common knowledge that can 
be found in textbooks [38,42]. For properly relating the dark matter content found in the 
previous paragraph, it is instructive to give a short summary.  

To do so, let us inspect Einstein’s Field Equation (1) once more,  




T
c

G
gG

4

8
 ;  RgRG

2

1
 ,                                                                               (41) 

and let the metric of the spherically modelled visible universe be the well known FLRW 
metric [37], defined by the line element,  
 

)ddsin
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d
)((dd 22222
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2
22

0
2  rr
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r
taqs 


 ,                                                                    (42) 

 
In which ctq i0   is the normalized time coordinate ( 1i  ), and where k  is a measure 
for the curving of space-time. The scale factor )(ta expresses the time-dependence of the 
size of the universe. The ratio  
  

)(tH
a

a



,                                                                                                                                             (43) 

 
is known as the Hubble factor. It is the main observable of the universe, because its 
numerical value can be established from red shift observations on cosmological objects (

taa d/d ).  
 
The solutions of (43) under constraint of the metric (42) are [38], 
 

)(
3

8
)( 2

2
2 tρ

G

a

kc

a

a 



                                                                                                                  (44a) 

 

)(
8

)(2 22

2
2 tp

c

G

a

kc

a

a

a

a 



.                                                                                                   (44b) 

 
The awareness that the vacuum is not an empty space, but, instead a fluidal space with 
virtual sources κ/cT 2  , where 28 c/Gκ   [24,25,26] - owing to the Hawking 

metric, T  is equal for all diagonal elements - , will modify the two Friedmann equations 

[37] that originally have been conceived for empty space. This can be summarized as follows. 
First, the term g is moved to the right side of (41), such that it can be conceived as 
additional contributions to the energy density )(t and the fluid pressure )(tp , 
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22 0)()( cctptp    . 
 
 Under the constraint k  0 (flat universe), and taking into consideration (44a,b), the first 
Friedmann equation evolves as, 
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The second Friedmann equation reads as, 
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Differentiating the mass density t in (46a) gives,  
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Because the background massive density  is time-independent ( is independent of 
space-time coordinates), (47) is satisfied if,  
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where m ,  and 0H are constants. The quantity 0H is the Hubble parameter aa / at 

1)( ta . It is tempting to believe that m  and   are, respectively,  the relative amount of 
baryonic mass t /  and the relative amount of background mass t / at 1)( ta . This, 
however, is not necessarily be true, because (without further constraints) the differential 
equation (48) is satisfied for any distribution between m and   as long as  m 1.  
 
Applying (48) on the first Friedmann equation (45a), results into, 
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This equation represents the Lamda-CDM model in its most simple format (actually, more 
terms are heuristically added under the square root operator to model empirical evidence 
from certain cosmological phenomena). Eq. (49) can be analytically solved as [40,41], 
 

1
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3/23/1 );2/3(sinh)()( 



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


 Htttta HH
m .                                                                            (50) 

 
 

 
 
Fig.7: The scaling factor )(ta as a function of cosmological time. The lower curve represents Hubble’s law. 
The upper curve shows the curve of accelerated scaling due to Einstein’s Cosmological Constant. 
 
At present time Ptt  , the scale factor equals unity ( a  1) and the Hubble parameter is the 
observable 0H . Equating present time Pt  with Hubble time Ht  is justified if )(ta would have 
shown a linear increase over time up to now, under a constant rate of say 0c , because in 
that case tcta 0)(   and 0)( cta  . This is Hubble’s empirical law. Equating HP tt   in (50) as 
an axiomatic assumption, indeed results in a behavior of the scale curve that, up to present 
time Htt  , is pretty close to Hubble’s empirical law. Hence, from (49), 
 

1)( Hta ;  1)( 0  mH HtaH .                                                                                   (51) 

 
Hence, from (50) and (49), 
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( 3/23/1  0.737; m  0.263.                                               (52) 

 
These values are only slightly different from those in the six-parameter Lamda-CDM model 
(where m  0.259). The difference is due to the simplicity of the format (49), in which only 
matter and dark energy is included. For more precision, the radiation contribution from the 
cosmic microwave background (CMB) should be taken into account as well.  
 
Figure 7 demonstrates the viability of the axiomatic assumption to equate present time with 
Hubble time.  
 
Summarizing: 
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The time behaviour of the scaling factor of the universe is a solution of Einstein’s Field 
Equation under the FRLW-metric, 
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As a consequence of )( Hta 1, the relative values for matter density and dark energy are 
established as, 
 

m 0.263  and   0.737.                                                                                                         (54) 
 
The relationship between Milgrom’s acceleration parameter and the ratio B  of baryonic 
matter over gravitational matter has been established before as, 
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15
0 LBaa                                                                                                                                       (55) 

 
Accepting the life time of the universe Ht  13.8 Gyear and 0a  1.256 x 10-10 m/s2  as 
primary independent quantities, we get B  0.0486. This makes the dark matter content 

 BmD  0.263 – 0.0486 = 0.214. 
 
 

4. The quantum level 
 
In spite of now having obtained by theory testable numerical values for dark matter and dark 
energy, the true physical nature of these components has remained unclear. All we know so 
far is, that the universe is apparently filled with an energetic fluid that has got a 
mathematical abstraction in Einstein’s Field Equation in terms of virtual sources  pT , 

with Gcp 8/4 . The issue to be addressed next Is the question whether it is possible to 
give a physical profile to these constituents of the energetic background fluid. Let us 
conceive these constituents as vacuum particles in a state of Heisenberg unrest. Let us 
denote these particles as darks and let us suppose that these darks show a polarisable dipole 
moment in a scalar potential field. Like already discussed before, a background fluid with 
polarisable dipoles executes a shielding effect on a scalar potential. It may suppress its 
strength, like in the case of the potential field of a electrically charged particle in an ionic 
atomic plasma (Debije effect) or enhance is strength, like in the case of modified gravity as 
explained in before in this article (section 2). Let us try to a density expression for these 
vacuum particles (darks). To do so, let us rewrite (12) as, 
 

)(δπ4λ∇ 322 rGM=+ ΦΦ ,                                                                                                         (56) 
 
and subsequently into,  
 

)(-4Φ2 rG , in which 
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In Debije’s theory of electric dipoles [6,9,43], 
 

gP)(rD .                                                                                                                                  (58) 

 
The vector gP  is the dipole density. From (58), 
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Assuming that in the static condition the space fluid is eventually fully polarized by the field 
of the pointlike source, )(rPg is a constant 0gP . Hence, from (59),  
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Taking into account that to first order, 
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we have from (60) and (61), 
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Hence, from (30), (57) and (60-62), 
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By assigning an elementary dipole moment G  to the dark, the volume density /N m3 of the 
darks is found as,  
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4.1 Profiling the dark 
 
Let us suppose, just by hypothesis, that the origin of this elementary dipole moment is a 
result of an elementary quantum mechanical vibration in a similar way as the elementary 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0159.v1

https://doi.org/10.20944/preprints202108.0159.v1


 

20 
 

angular momentum ħ of a Dirac particle can be visualized as an elementary virtual rotation. 
This vibration would create a spatial Heisenberg  uncertainty d  around its supposed 
position, which can be explained as the result of a motion with ultra-relativistic speed near 
vacuum light velocity c  in an Heisenberg time interval t  such that 

tcd Δ .                                                                                                                                              (65) 

Applying Heisenberg’s relationship 2/ΔΔ tE  , [44], on (65), we get  

c
mdμ

mc
cd

E
ctcd G 2

1

2Δ

1

2
Δ

2


 ,                                                               (66)      

in which Gμ  has the dimensions of a (mass) dipole moment expressed in terms of Planck’s 

reduced constant   and the vacuum light velocity c . The virtual mass m should not be 
confused with the particle’s rest mass 0m . To some readers this may seem a bold an 

unjustified hypothesis.  However, quite recently it has been proven that Dirac’s theory of 
electrons allows a rigid formal theoretical basis for the hypothetical existence of elementary 
particles with a (second) quantum mechanical dipole moment ħ/c next to the angular (first) 
quantum mechanical dipole moment ħ. More precisely, Dirac’s theory predicts, next to the 
electron-type and Majorana’s particle, a third type with the unique property of showing a 
real dipole moment with magnitude, 

ccG 22





 ,                                                                                                                               (67) 

in which  is the Pauli vector,  and which, unlike the two other ones, is polarisable in a scalar 
potential field [13]. Originating from the Heisenberg uncertainty, this polarisable dipole 
moment is a pure quantum mechanical phenomenon. Its dipole mass is unrelated with the 
rest mass of the particle. The rest mass may have any value, down to an extremely tiny 
quantity, while leaving the dipole moment unaffected. This property fits well to the 
gravitational “dark” as just described. The results from [13] applied to a dark can be 
summarized as follows.  

Like all elementary fermions, a dark has to follow Fermi-Dirac statistics, should obey the 
Pauli exclusion principle and should have half integer spin. They can be modelled with the 
Dirac equation. The canonic formulation of Dirac’s particle equation reads as [45,46],  

0)i( 0   
 cm . 

 
In which 0m  is the particle’s rest mass,   a 4 x 4 unity matrix and in which the 4 x 4 gamma 
matrices have the properties,  
 

0    if   ;  and 1;1 22
0  i ; 1β 2  .                                                       (68a) 
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While the canonical set of gamma matrices is given by, 
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the  -set of the third type is defined as, 
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In which i are the Pauli matrices. Moreover this non-canonical set is subject to the more 
severe constraint [13], 
 

0    if   ;  0    and ;1;1 22
0  i 12  .                            (68b) 

 
Note that this set is obtained from the canonical Dirac set by making the 0 set imaginary 
and by replacing the   matrix into the “fifth gamma matrix”. The set is an improvement of 
the erroneous one reported in [13, eq. (27)], for which the author is indebted to prof. D. 
Zeppenfeld.   
 
Although the wave equation of the electron type and that of the “third” are hardly different, 
there is a major difference in an important property. Both have two dipole moments. A first 
one, to be indicated in this text as the angular dipole moment, is associated with the 
elementary angular momentum ħ. The second one, to be indicated as the polarisable dipole 
moment is associated with the vector ħ/c.  These dipole moments show up in the calculation 
of the excess energy of the particle in motion subject to a vector potential ),,,( 0 zyx AAAAA . 

In the canonical case (69a) we have, 
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 in which  is the Pauli vector, defined by 

kji 321   ,                                                                                                                          (70) 

in which ( kj,i, ) are the spatial unit vectors and in which B  and E are generic field vectors 

derived from the vector potential. The redundancy in (70) allows writing it as, 

02
Δ

m

e
E  (  ħ B + i  ħ/c E ),                                                                                                    (71) 

The electron has a real first dipole moment ( 02/ me ), known as the magnetic dipole 

moment, and an imaginary second dipole moment ( cme 02/i  ), known as the anomalous 
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electric dipole moment. The spin vector 
that the Dirac particle is of the third typ
 

02
Δ

m

e
E  (  ħ B   ħ/c E

The third type Dirac particle has two real dipole moments, generically, i.e., without 
identifying it as an electromagnetic ones, to the amounts of 
dark would be of the electron type, it would not be polarisable in a scalar potential field, 
because such a field is Coulomb
moment. If, however, the dark
under influence of a scalar potential field. 
one. The coupling factor e is not necessarily the elementary electric charg
a scalar potential, eq. (72) can be written as,
 

02
Δ

m

g
E


 (ħ/c )0A ,                                                                                                                  

 
in which g is a generic coupling factor, which in the case of a gravitational particle just equal 

to 0m . Hence, taking into acc

with the state variable   as 
in a scalar nuclear field 0.A is given by,
 

μG = 
ccc G 22





S .                                                                                            

 
Summarizing: conceiving the dark
a particle that, under influence of its dipole mo
gravitational potential field. Figure 8 illustrates the difference with the electron. 
 

 
Fig. 8. Like all Dirac particles, the dark has two 
angular momentum  and a second one due to an elementary linear momentum 
electron the latter one is a dynamic one with a zero static value, it is a static one in the case of a dark.   

electric dipole moment. The spin vector 2/S  has an eigen value S
the third type as defined by (69b), we have [13

E ).                                                                                          

The third type Dirac particle has two real dipole moments, generically, i.e., without 
identifying it as an electromagnetic ones, to the amounts of  , respectively 

would be of the electron type, it would not be polarisable in a scalar potential field, 
because such a field is Coulomb-like and is unable to polarize an imaginary electric dipol
moment. If, however, the dark is a third type, its second dipole moment can
under influence of a scalar potential field. This field is not necessarily the electromagnetic 

is not necessarily the elementary electric charg
) can be written as, 

,                                                                                                                  

is a generic coupling factor, which in the case of a gravitational particle just equal 

Hence, taking into account that the eigen value S  is of the spin vector is  related 

 2/12/  S , the polarisable dipole moment 
is given by, 

.                                                                                            

ummarizing: conceiving the dark as a third type Dirac particle allows considering the dark
under influence of its dipole moment, can be polarized

Figure 8 illustrates the difference with the electron. 

 

Like all Dirac particles, the dark has two anomalous dipole moments, a first one due to an elementary 
and a second one due to an elementary linear momentum c/ . While 

the latter one is a dynamic one with a zero static value, it is a static one in the case of a dark.   

2/1 . In the case 
as defined by (69b), we have [13], 

                  (72) 

The third type Dirac particle has two real dipole moments, generically, i.e., without 
, respectively c/ . If the 

would be of the electron type, it would not be polarisable in a scalar potential field, 
like and is unable to polarize an imaginary electric dipole 

is a third type, its second dipole moment can be polarized 
This field is not necessarily the electromagnetic 

is not necessarily the elementary electric charge. If the field is just 

,                                                                                                                  (73) 

is a generic coupling factor, which in the case of a gravitational particle just equal 

is of the spin vector is  related 

dipole moment μG  of a dark 

.                                                                                                         (74) 

allows considering the dark as 
can be polarized in a (scalar) 

Figure 8 illustrates the difference with the electron.  

dipole moments, a first one due to an elementary 
. While in the case of an 

the latter one is a dynamic one with a zero static value, it is a static one in the case of a dark.    
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Note that, whereas other authors [4,6] describe gravitational dipoles as structures with 
positive and negative mass ingredients, the dipole described here is a virtual vibrating 
particle. To some readers it may seem that I am introducing here a new kind of matter. This 
is not true. The vibrating particle is part of the vacuum energy, modelled as an ideal fluid in 
thermodynamic equilibrium that emerges from Einstein’s Lambda in the solution of his Field 
Equation of the vacuum [19,25,47]. The equilibrium state of the fluid itself is irrelevant. 
Hence the gravitational molecules show up as a vibration of the vacuum. This is different 
from novel matter of baryonic nature.  

Taking (64) and (74) into account, the amount of baryonic darks in a spatial volume V equal 
to the size of the universe amounts to, 

)
3
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(

2

20
330
H

BGB

g
B tc

c

G

a
V

μ

P
N 

 
 .                                                                                     (75)  

 

 
4.2 Gravitational entropy 

 
Because the dipole moments of the darks can only assume two quantized values (bits), this 
number (75) represents the total information content of the universe. Like shown by 
Verlinde [48,49], the information content can be established as well from quite a different 
viewpoint. The Bekenstein-Hawking expression for the entropy of a black hole is a first 
ingredient for calculation. It reads as [48,49], 

,
4

3

A
G

c
kS BH


                                                                                                                                   (76) 

where c is the vacuum light velocity, G the gravitational constant,  Planck’s (reduced) 
constant, A the black hole’s peripheral area and Bk is Boltzmann’s constant. The peripheral 

area of a spherical black hole is determined by its Schwarzschild radius as, 

24 SRA  , 
2

2

c

MG
RS  ,                                                                                                                     (77) 

where M  is the baryonic mass of the black hole. Boltzmann’s constant shows up as a 
consequence of the thermodynamic definition of entropy. In that definition HS is not 

dimensionless, because of the thermodynamic interpretation of entropy as a measure for 
the unrest of molecules due to temperature, which relates the increase S of entropy with 
an increase molecular energy E  due to temperature T , such as expressed by the 
thermodynamic definition, 

STE  .                                                                                                                                           (78) 
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Boltzmann’s famous conjecture connects entropy with information, by stating  

BB kS  log(# microstates).                                                                                                               (79) 

This conjecture expresses the expectation that entropy can be expressed in terms of the 
total number of states that can be assumed by an assembly of molecules. Boltzmann’s 
constant shows up to correct for dimensionality. I would like to emphasize here that (76) and 
(79) are different definitions for the entropy S , and not necessarily identical. Knowing that 
(76) has been derived from (78) and accepting Boltzmann’s conjecture, we would have, 

A
G

c

4

3

log(#microstates).                                                                                                              (80)    

Both sides of this expression are dimensionless. Omitting Boltzmann’s constant makes 
entropy a dimensionless measure of information, which, of course, is very appealing. At this 
point, I wish to elaborate on a subtlety, which has been shown by Verlinde. According to 
Boltzmann’s conjecture, an elementary step S in entropy would imply BkS  . Verlinde 

has proven, however, that an elementary step in entropy from the Hawking-Bekenstein 
entropy implies BkS 2 . If not, the Hawking-Bekenstein’s formula would violate 

Newton’s gravity law [48]. Because Boltzmann’s expression is a conjecture without proof, 
the problem can be settled by modifying the dimensionless expression of entropy (73) into, 

 A
G

c
S

42

1 3


log(#microstates).                                                                                                (81)   

Considering the well-known relationship between the event horizon Hct  of the visible 

universe and the Schwarzschild radius from the critical mass enclosed within that horizon (

Ht  is the Hubble time scale) that allows conceiving the visible universe as a virtual black hole 

[39], the entropy within the event horizon of the universe can be established as 

2
3

)(4
8 Hct
G

c
S 

 
  .                                                                                                                         (82) 

Equating (82) with (75) gives, 

H
B t

c
a Ω

4

15
0  .                                                                                                                                   (83)   

This is just the same expression as (55), which has been derived from quite a different point 
of view. This identity proves the viability of both approaches, thereby strengthening the 
validity of the theory developed in this article.  

Summarizing: the energetic background fluid in the universe is built up by quantum particles. 
These quantum particles have a polarisable dipole moment G with an eigen value to the 
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amount of cG 2/ . The volume density of these quantum particles as calculated from 
(64) amounts to N/m3 = 1.7 x 1041 or, equivalently, 1.7 x 1014 particles per cubic nanometer. 
This makes the energetic background fluid rather smooth. From this volume density and the 
critical matter density of the universe the mass of these particles can be calculated.   
 
The critical mass density c can be expressed in terms of Hubble time Ht from the 
consideration that the universe is a bubble from which light cannot escape. Hence as a black 
hole with radius HS ctR  , such that   
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c
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c

Gc
ct

c

G
ct

c

GM
ctR


  .                                 (84) 

 
It gives 9.4 10-27 kg/m3. Divided over 1.7 x 1041 particles, it gives a mass of 5.55 10-68 kg per 
particle, which corresponds to a massive energy of 3 10-32 eV. This makes the darks virtually 
mass less.  
 
 

5. Discussion 
 

 While under adoption of Hubble’s law and the FLRW-metric the relationship between 
matter ( m ) and dark energy (  ), as expressed by (52-55) is a straightforward 

consequence of Einstein’s Field Equation, such as established in the Lambda-CDM (ΛCDM) 
model of the Planck collaboration group [36], the relationship between dark matter ( D ) 

and baryonic matter )( B  is in ΛCDM empirically assessed. In this article, I have given it a 

theoretical basis. A crucial element in this, is the interpretation of Einstein’s Λ in his Field 
Equation. Usually, this quantity is considered as a constant of nature. In the context of ΛCDM 
its value is established from (44) as a relationship between Λ  and gravitational matter, such 
that  

  G

c
cc c 


8

4
22 .                                                                                                               (85) 

 
From (84) and (85),  
 

4
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c

aL
 ;  

H
L t

c
a  .     (   1.25 x 10-52 m-2)                                                                (86) 

 
This expression assesses a numerical value of Einstein’s Λ  at the level of the universe. At this 
level it makes sense to indicate this value as the Cosmological Constant. Although this 
quantity is a measure for the gravitational energy in the universe its magnitude is very small. 
This small value shows about a difference of about 120 orders of magnitude with the zero-
point energy suggested by quantum field energy [50]. This discrepancy is known as “the 
Cosmological Constant catastrophe. In the view as discussed in this article, the magnitude of 
the Cosmological Constant is a result from the linearization of Einstein’s Equation with a 
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removal of the background bias. It has to be taken into account, however, that in quantum 
field theory such a removal is required as well. This removal is known as renormalization.   
 
In this article, though, I have demonstrated in this article that in the application of Einstein’s 
Field Equation at the level of solar systems and galaxies Einstein’s Λ, while being a constant 
indeed in terms of independence of space-time coordinates, depends on the baryonic 
matter content BM of the system under consideration, such that 
 

 
GM

a

B

0

5

1
 .                                                                                                                                      (87) 

 
The dependence on the baryonic matter content is obviously present at the level of the 
universe as well, although it remained hidden as part of the critical mass content in the 
considerations (85-86). It wouldn’t be correct to analyze the universe as a simple spherical 
system with a central gravitational force, as if it were a huge galaxy. The universe is a 
distributed assembly of such spherical subsystems. It is for that reason that the critical mass 
of the universe, has been related in (33) to distributed baryonic kernels as fractions of 
gravitational matter. This not only allows assigning a numerical value to the constant 0a , but 
but it also allows establishing it as a true cosmological invariant as a second gravitational 
constant next to the Newtonian .G  Curiously, whereas Einstein’s  is not a true 
cosmological constant, Milgrom’s acceleration seemsto be. It has to be noted, though, that 
the description of the universe in the few simple parameters Ga ,0  and Ht is a status quo in 
the sense that there is no guarantee that the numerical values of the first two of these are 
true invariants over cosmological time, nor that Hubble’s law has been true back to the big 
bang.  
 
 

6. Conclusion 
 
The visible universe is a space filled with energetic vacuum particles that inherit their energy 
from their Heisenberg uncertainty in spatial position. It are virtually mass less ( 3 10-32 eV) 
gravitational quantum particles that possess a polarisable dipole moment with an eigen 
value .2/ c  In free state, the particle density is N/m3  )2//()20/( 0 cGa   1.7 1014 
particles per cubic naometer, in which 0a is a true cosmological invariant, with a numerical 
value equal to Milgrom’s empirical acceleration constant for dark matter. If all these dipole 
moments were randomly orientated, the universe would show a perfect symmetry. The 
major part of these dipole moments (74%) is randomly oriented indeed, because these 
don’t feel a polarisable influence from a baryonic cluster. This part composes the dark 
energy of the universe. A significant part still (21%) of the polarisable dipole moments are 
polarized around baryonic clusters. This part, with its frozen symmetries, composes the dark 
matter, which enhances the gravitational strength of the baryonic clusters. The baryonic 
clusters are densely packed energetic particles that composes the observable baryonic 
matter ( B 5%) of the universe. This amount is related with Milgrom’s constant as 

catHB 15/4 0 .  
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It might well be that the anti-dogmatic views on Einstein’s Lambda and on the constituting 
elements of the energetic background energy may meet opposition. However, as shown in 
this article, these starting points allows a consistent derivation by theory of  two important 
results, which so far are only established as empirical quantities. In most articles on Milgrom’s 
constant, the analysis is restricted to spherical systems with a centric force. Those articles are subject 
to criticism because of that reason. In my article, I have demonstrated that the analysis can be 
extended to a universe with distributed matter. The second important result is the calculation by 
theory of the matter distribution in the universe in terms 1 ΛΩΩΩ DB (resulting into 0.0486 + 
0.210 + 0.741 = 1).  
 
 
APPENDIX: CONSTRAINTS ON THE LINEARIZATION OF EINSTEIN’S FIELD EQUATION  
 
The main reason of including the appendix is to show the validity range for the weak field 
limited modification of Newton’s gravitation law, due to Einstein’s gauge constant  . To do 
so properly, the derivation requires a short summary of common textbook stuff without  , 
before extending it to meet the objective. This objective implies that we have to solve 
Einstein’s Field Equation for a spherically symmetric space-time metric that is given by the 
line element (2), 
 

2222222
0

2 ddsind),(d),(d  rrrtrgqtrgs rrtt  ,                                                            (A-1) 
 
in which ctq i0  .  
 
Note: The space-time (ict, r, , ) is described on the basis of the “Hawking” metric (+,+,+,+). 
Once more, I would like to emphasize its merit that, by handling time as an imaginary 
quantity instead of a real one, the ugly minus sign in the metric (-,+,+,+) disappears owing to 
the obtained full symmetry between the temporal domain and the spatial one.  
 
The components g compose the metric tensor g , which determine the Ricci tensor R

and the Ricci scalar R . These quantities play a decisive role in Einstein’s Field Equation, 
which reads as 
 


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G
gG

4

8
     with   RgRG

2

1
 .                                                                 (A-2) 

 
In a space without massive sources, the Einstein Field Equation under this symmetric 
spherical isotropy, reduces to a simple set of equations for the elements R  of the Ricci 

tensor,  
 

0
2

1
 tttttt gRgR ;           0

2

1
 rrrrrr gRgR ;                                                 (A-3a,b,c,d) 

 0
2

1
  gRgR ;    .0

2

1
  gRgR               

 
Let us proceed by considering the Ricci scalar. It is defined generically as 
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 
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
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.                                                                                                                            (A-4) 

 
In spherical symmetry the matrices contain diagonal elements only, so that (A-4) reduces to 
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This result can be applied to (A-3). Multiplying the first one with )(00 ttgg  , the second one 
with 11g , etc., and subsequent addition results of the terms  1,2,3 gives,   
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hence   3
2

1
RRg tt

tt .                                                                                                             (A-7) 

 
Repeating this recipe for )/1( 

 gg  , we have for reasons of symmetry 

  

 3
2

1
RRg 

 .                                                                                                                      (A-8) 

 
Note that the subscripts and superscripts 00, 11 ,22, and 33 are, respectively, identical to 

,, rrtt  and  . Applying this result to Einstein’s equation set gives, 
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such that after multiplication by g , we have  
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Let us first proceed under the conditions of the absence of massive sources ( 0T ) and let 

us consider the Ricci tensor components ttR  and rrR under use of the results shown in Table 
A-1, that can be found in basic textbooks [16]. Note: gand g  means differentiation, 
respectively double differentiation of g  into r ; g and g  means differentiation, respectively 
double differentiation of g  into t . Multiplying (A-3a) by ttg/1  and  (A-3b) by rrg/1  gives, 
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which, under the assumption of a zero Cosmological Constant (  0), after subtraction and 
under use of the expressions in Table A-1 results into. 
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Hence 
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which can be integrated to (the Schwarzschild condition), 
 

1ttrr gg .                                                                                                                                         (A-14) 
 
This, in turn, gives 
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Using (A-13), (A-15) and the Table A-1 values on ttR  gives 
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Hence, from (A-10) and (A-16) , 
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or, equivalently,  
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Applying well-known conditions, 
 

  0    (already assumed)                                (no cosmological constant), 
 

),(1),( trhtrg tt  , where 1),( trh         (the weak field limit) 

 
 )(32 rMcTtt  ,                                                      (pointlike massive source)                (A-19a,b,c)     
 
 yields the proper wave equation 
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where )(tU is Heaviside’s step function.  In the static regime, the equation results into  
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This is similar to Poisson’s equation, 
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the solution of which is the Newtonian potential, 
 

r

GM
 [m2s-2].                                                                                                                          (A-23) 

 
Comparing (A-20) with (A-22) gives the equivalence 
 

2

2

c
h


 .                                                                                                                                          (A-24) 

 
So far, this is just textbook stuff, such as can be found, for example, in [16]. It is needed as a 
basis for deriving the conditions under which the modification of the 0  wave equation 
(A-20) toward the 0 one shown in (11) is justified. Let us first consider the case  0 
under absence of a massive source. Obviously, (A-10) is only satisfied if the influence of the 
cosmological constant is counter balanced by the hypothetical source 
 

 pTtt ,  where 
G

c
p

8

4

 .                                                                                                       (A-25) 

 
Because all four members of the Einstein set (A-10) have to be satisfied, we have, under 
consideration of (A-10) and Table A1, 
 

  pgT  and  ),sin,1,1( 222 rrg    .                                                                           

 
This particular stress-energy tensor with equal diagonal elements corresponds with the one 
for a perfect fluid in thermodynamic equilibrium. So, where empty space corresponds with 
virtual sources T 0, the fluidal space corresponds with virtual sources  pT , with

),sin,1,1( 222 rrg   . Insertion of a massive pointlike source in this fluid and modifying 

(A-17) by adding the virtual sources, after redefining the weak limit condition as, 
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),(1),( trhtrg ttt   ; ),(1),( trhtrg rtr  ; 1,  rt hh ,  

 
gives, for the static parts,  
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and, secondly, 
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As long as   0, and assuming a pointlike source embodied in ttT , the Schwarzschild 
condition shows up. This is obvious by subtracting the latter equation from the former one, 
thereby allowing exclusion of a singularity at r  0. It reveals that, under this condition, the 
homogeneous formats of the two equations are identical. However, because this is no longer 
true for  0, we have to cope with two equations. These two equations are non-linear. 
However, because th  and rh are small in the weak field limit, the two equations can be 

linearized under the condition that the last term in the left-hand part of these equations is 
dominant over their preceding terms. This assumption, to be checked later, allows to rewrite 
(A-26) for r  0, as 
 

0)(2)(   tt rhrh .                                                                                                              (A-28) 

 
A simple format for the second equation is obtained after subtraction (A-27) from (A-26), 
resulting into, 
 

 ttrr rhhrhh  2222 .                                                                                                 (A-29) 

 
Obviously, rh can be calculated as soon as th  is found as a solution of (A-28).  Re-inserting 

the pointlike source, similarly as in the case   0 and including the time derivatives, yield a 
wave equation as a generalization of (A-28). After rewriting,  
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we have from (A-28) the inhomogeneous generalization,         
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If  0, we have under static conditions, a similarity with Helmholtz’ equation [51] with the 
screened Poisson’s equation, the solution of which is Yukawa’s potential, 
 

)exp( r
r

GM  ,                                                                                                                        (A-32) 

 
which reduces to  Poisson’s one for  0.  
 
If  0, we have under static conditions, a similarity with Helmholtz’ equation with a 
characteristic solution, 
 

}sin{cos rr
r

GM   .                                                                                                            (A-33) 

 
This solution reduces to  Poisson’s one for  0 as well. 
 
This is the weak field limit solution of Einstein’s Equation if one does not take the validity of 
Poisson’s equation of gravity for granted, but adopts Helmholtz equation instead under an 
appropriate choice of the Cosmological Constant.  
 
We are not done yet. There are two remaining issues. The first one is the justification of the 
linearization approximation by moving from (A-26) to (A-28). Moreover, we have to take into 
consideration that, although the derived gravitational potential field satisfies (A-3a) and (A-
3b), we are not sure that it satisfies (A-3c) and (A-3d) as well. It should do, to prevent 
violation of the metric (A-1). Assessment of it is the second thing to be done.  
 
The remaining issues: (a) the linearization approximation 
The linearity approximation (A-26)(A-28) is justified as long as 
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Under consideration of (A-29), it can be written as, 
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r


 4

11
2

.                                                                                                                      (A-35)             

 
This condition enforces calculation of rh from th . From (A-29), 
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This first order differential equation for rh can be readily solved, albeit that the resulting 

analytical expression from the generic solution 
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is a rather complicated one. 
 
 

 
 
Fig. A-1: Relative values of the metric quantities th (black) and rh (blue) as a function of .r The red 

curve represents the function in the right-hand part of (A-36). 
 
Figure A-1 illustrates the behavior of the calculated rh as a function of r compared with 

th . From (A-36), it is obvious that if r  0,  tr hh  . The vertical axis is normalized to a 

dimensionless quantity, by writing, under consideration of (A-30) and (A-33), 
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Note that SR is the Schwarzschild radius of the cosmological system (with central force) 

under consideration. The black curve shows the normalized value of th  . It is gradually 

decreasing by 1r . The blue curve shows the normalized value of rh as calculated from the 

differential equation (A-36). This quantity tend to explode with increasing r . Nevertheless 
the functions on both sides of (A-36) remain the same and show the gradual finite behavior, 
shown by the red curve. The reason is due to sign differences between the left-hand part 
and the right-hand part of (A-35). Subtraction of two large quantities makes the result still 
small enough. Nevertheless, the exponential increase of rh may violate the linearization 

approximation. This requires proper investigation. Because eventually (for relatively large 
r )  tr hh  , and considering that 22  , we may reformulate (A-35) as, 
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Hence, the cross over value 0r is determined as,    
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where )( rhr  is given by (A-37). From (A-39) it is obvious that as long as rh  1, the 

upper limit is far beyond r  8. However, because of the exponential growth of Sr Rh  /

with r , the limit can be shifted near to this limit or even shifted below. This may spoil the 
weak field limit assumption. Hence, the actual validity range of the linearization heavily 
depends on the value of the product SR . Once this product is known, the cross-over value 

of 0r  and the associated value of the metric component rh can be calculated from the 

known curve Sr Rh  / shown in fig. A-1. Because of its exponential growth, the upper limit 

for r  that justifies the linearization approximation, is below, but probably near, to the 
cross-over value.  
 
The assessment of a meaningful quantitative value to the product SR  is possible by invoking 
the value of Einstein’s   for cosmological systems with a central mass. As shown in the main 
text, this is obtained by the application of the theory to Milgrom’s MOND, expressed by eq. 
(30). This expression relates Einstein’s Cosmological Constant with Milgrom’s acceleration 
constant 0a as, 
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Hence, 
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a
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c
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 ,                                                                                                          (A-42) 

 
where La is the gravitational acceleration constant at distance L from the centre of the 
cosmological system under consideration. Choosing L as the Hubble range HctL   and 
defining LaLc /2 as the acceleration at the verge of the Hubble range, and considering that 
Milgrom’s acceleration constant amounts to 0a  1.25x10-10 m/s2, the ratio 0/ aaL  amounts 
to, 0/ aaL 6.9/1.25 = 5.52. The Schwarzschild radius SR of a typical galaxy, like the Milky 
Way, is about 0.2 lightyear, while the Hubble time amounts to Ht  13.5 Gyear. Hence, 
typically 
 

SR 3.3 x 10-6.                                                                                                                              (A-43) 
 
From (A-42), (A-40) and (A-37), it is found that the cross-over 0r  amounts to 
 

0r 7.25.                                                                                                                                        (A-44) 
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The associated value of the metric component amounts to rh 1.01. That violates the weak 

field approximation. However, at r 6, the metric component is drops to rh 0.017. 

Hence, It is fair to say that, up to a normalized spatial distance near to 0r 6, the derived 
gravitational wave equation (A-31) for galaxies akin to the Milky Way maintains its validity.  
 
The remaining issues: (b) the other two equations 
Before appearance of the massive source, we have for (A-3c),  
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After appearance of the massive source, we have  
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 where ),sin,1,1( 222 rrg   .                                                                                                  (A-46)    

 
Due to the change of curving by the source, we have, 
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Under the constraint of the weak field limit, this equation can be rewritten as,  
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As long as g is close to 2r , the metric (A-1) maintains it validity. This is true as long as 
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The split into two conditions is made for ease of analysis. Under consideration of (A-29), (A-
48b) can be rewritten as, 
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Because with increasing r the quantity rh is dominating over th , (A-50) can be replaced 

by, 
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thereby concluding that the condition (A-49b) is covered by the weak field constraint.   
 
Now we have established the upper spatial limit  justified the linearization condition and 
concluded that condition (A-48b) is covered by the weak field constraint, we are left with a 
single issue. That is condition (A-48a). Considering that, 
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we have for (A-49a), 
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Hence, 

GRr  ,  where 2/1
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As already noted, the Schwarzschild radius SR of a typical galaxy, like the Milky Way, is about 
0.2 lightyear. For such a galaxy, the range GR calculated from (A-54) appears being GR  278 
lightyear. Considering that the radius of the Milky Way is estimated as 100.000-180.000 
lightyear and that our solar system is at about 26.000 lightyear from the center, it will be 
clear that the wave equation (A-31) holds for the major part of the galaxy, thereby solving 
the anomaly problem of the stellar rotation problem.  
 
 
Table A1: metric tensor and Ricci tensor 
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