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Abstract. Modern scientific research particularly radio astronomi-
cal spectroscopic observations cannot be imagined without appropriate
software suite. That is necessary because of two reasons 1) data are in
digital form and 2) data processing is a complex multi-step process. In
this paper created in VIRAC data processing suite for a single radio
telescope, space maser observations are presented. Software Defined
Radio (SDR) backend data processing is described. Implementation
of the frequency switching algorithm, acquisition of observation data
and their format for storing are discussed. Multiple ways to display
the observation results are highlighted.
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1 Introduction

In the year 2017 Ventspils International Radio Astronomy Centre (VIRAC)
team of astronomers and engineers started to work on the maser monitoring
programme (Aberfelds et al., 2017). That included technical and scientific
development. The technical development was creating the radio telescope
backend and software package for data processing. The scientific development
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was the creation of source catalogue, developing mathematical background
for data processing, creating observation planning method and studying the
observed radio sources variability. Observations have been done with VIRAC
16 m and 32 m radio telescopes RT16 and RT32. Initially, both telescopes
had Digital Base Band Converter (DBBC) (Tuccari, 2003) backend, recently
SDR (Bleiders et al., 2020) based backend has been developed. Afterwards
tool complex for single-dish radio telescope space maser observation data
processing named Maser Data Processing Suite (MDPS). MDPS discussed
in this paper was developed in VIRAC. It is open-source software, with
user-friendly Graphical User Interface GUI distributed via GitHub repository
https://github.com/sklandrausis/Maser-Data-Processing-Suite.

There exist many other software packages for single dish data processing
like Common Astronomy Software Applications (CASA), GILDAS (it is used
to reduce all data acquired with the IRAM 30M telescope and the NOrthern
Extended Millimetre Array NOEMA), GBTIDL (is an interactive package
for reduction and analysis of spectral line data taken with the Robert C.
Byrd), but non of existing software packages are compatible with VIRAC
SDR based backend setup for example maser data reducing software used
for Effelsberg telescope is not publicly available and pipeline code is very
tailored to Effelsberg, so it would be a major effort to adapt it to VIRAC
needs. It is also tied to the Multi-Beam FITS Raw Data Format (MBFITS)
format and if MBFITs format is not used, it would be better off with a com-
plete re-write anyway (Information obtained in personal communication with
Benjamin Winkel). VIRAC setup produces the specific format of data that
these packages do not support. And these packages do not have monitoring
module. Additionally frequency shifting algorithm is not wide spread maser
calibration method, because of that MDPS is one of that first this kind of
software.

2 Overview of MDPS

MDPS currently allows 1) process SDR output, 2) display maser sources
spectral components variability over time monitoring and 3) Visualise data
for publications. MDPS also uses several Python libraries. The most impor-
tant of them are PyQt5 (riverbankcomputing.com, 2020), Astropy (Robitaille et al.,
2013) (Günther et al., 2018), Matplotlib (Hunter, 2007), Numpy (Oliphant,
2006), H5py (Collette, 2013), SciPy (Virtanen, 2020), jplephem (Rhodes,
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2011) and experimentsLogReader (Šteinbergs, 2020). It also needs planetary
ephemeris parameter file de435.bsp, that can be required by https://naif.jpl

.nasa.gov/pub/naif/generic_kernels/spk/planets/de435.bsp. Process-
ing suite also uses two configuration files – Python library Matplotlib configu-
ration file to modify plotting view, custom made configuration file, that spec-
ifying used directories and hard-coded variables. Most important of them are
1) velocity line parameters, 2) signal cut values, 3) observed source param-
eters (Right ascension, Declination, epoch), 4) base frequencies of observed
maser species and 5) station coordination’s. Velocity line parameter is used
to compute the local maximum of the spectrum and signal cut values are
used to compute signal to noise ratio. Base frequencies of species are labora-
tory determined maser frequencies for specific chemical specie and are used
to compute Doppler effect. Station coordination’s are three geocentric values
in metres (x,y,z) used to compute local standard of rest.

3 SDR backend output processing

3.1 SDR backend description

As backed on-the-shelf SDR Ettus Research USRP X300 equipped with
TwinRX daughterboard is used. (Bleiders et al., 2020) It is a multi-channel
SDR transceiver, that allows obtaining complex sample rates and since USRP
X300 is used together with TwinRX front-end daughterboard, it allows dual-
polarization spectroscopy. (Bleiders et al., 2020) Optimal linearity receiver
is find using calibration noise injection function. (Bleiders et al., 2020) Since
power values is measured with noise source on and off, it should not depend
on input signal level, that allows to find optimum attenuation values for
USRP unit, telescope receiver and IF signal chain itself. (Bleiders et al.,
2020)

3.2 Implementation of frequency switching algorithm

3.2.1 Mathematical implementation of frequency switching algo-

rithm

Observations are done in a frequency-switching mode described by (Winkel et al.,
2012) with four typically 15 seconds long integration stages. First two stages
are with noise diode turned off, the last two stages with noise diode turned on.
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These stages are marked as refoff , sigoff , refon and sigon. Definitions of ref,
sig correspond to the shift of the local oscillator frequency to up and down
from the calculated central frequency. Shifting local oscillator frequencies
allow to remove the bandpass dependence. Indexes on and off correspond to
noise diode turned on and off respectively. Sequential SDR backend creates
a file for each of these stages. Each of these files contains a matrix with three
columns – the first is frequency, the second and third are amplitudes of left
and the right polarisation. The system also generates a log file. It is parsed
and necessary information for calibration is extracted by using Python li-
brary experimentsLogReader. The first step of telescope data processing is
to rearrange data by shifting the centre-frequency component to the centre
of the array after that calibration process can start. The calibration process
is a multi-step process beginning with a conversion from telescope backend
relative amplitude units to Kelvins. Thereafter the system temperature for
noise diode turned off must be computed. This is done for both sig and ref
stages. For the first, it is done by the help of formula 1. For the next one,
the formula is similar only there is a Pref instead of Psig.

Tsysoff = Tcal
Psigon + Psigoff − ( ¯Psigon − Psigoff)

2( ¯Psigon − Psigoff)
(1)

Here Tcal is the temperature of noise diode obtained from the observation
log file. When observation log file is generated Tcal value is written 3.820791
K for both telescope, that is temperature of noise diode coresponding the
value of its generated signal. Psigon and Psigoff is sig stage on and off
amplitude. ( ¯Psigon − Psigoff) is an average value from the subtraction of
Psigon and Psigoff . Next calibrated amplitude for all four stages must be
computed. Since computation for sig and ref stage is similar only for sig
stage it will be shown. First Tcalsigoff for off -stage is computed using formula
2, thereafter Tcalsigon for on stage using formula 3.

Tcalsigoff = Tsysoff
Psigoff − Prefoff

Prefoff
(2)

where Psigoff is sig stage off amplitude.

Tcalsigon = (Tsysoff + Tcal)
Psigon − Prefon

Prefon
(3)

Next step is to compute average amplitude from their on and off stage values,
that can be done by formula 4.
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Tsig = (Tcalsigoff + Tcalsigon )/2 (4)

After that data are shifted by shifting factor, computed by formula 5. In sig
stage positive shifting factor is used in ref stage negative shifting factor is
used. That is done by using the Python library Numpy function roll.

nshift = ⌊fshift/fstep⌉ (5)

where fstep is the distance between frequencies points and fshift are computed
by the formula 6.

fshift = bw/dfdiv (6)

where bw is bandwidth and dfdiv is division factor. Both values are obtained
from the observation log. After that average of sig and ref stages are com-
puted by using formula 7.

T = (Tsig + Tref)/2 (7)

where Tref is calibrated ref stage amplitude obtained similar to Tsig. Finally,
conversion from amplitude in Kelvins to amplitude in Janskys is done by
formula 8.

S =
T

DPFUPolyval(gel, elevation)
(8)

where S is amplitude in Janskys, T is calibrated amplitude, DPFU is degrees-
per-flux-unit and Polyval(gel, elevation) is evaluated ordinary polynomial,
where the gel is polynomial coefficients. Elevation, gel and DPFU are ob-
tained from separately performed calibration sessions, targeting well known
continuum sources (Perley and Butler, 2013) and also are stored in log files.
Polynomial is evaluated using Python library Numpy function polyval. The
final part is to extract valuable part of data, that is done by computing two
indexes. These indexes i and j are 1/4 and 3/4 of sampling points. Example
of a frequency switching algorithm result screenshot is shown in figure 1.

3.2.2 Practical details

SDR backend creates a file for each of calibration stages (refoff , sigoff ,
refon, sigon) for each scan. Data in these files are stored in American Stan-
dard Code for Information Interchange (ASCII) format. Each of these files
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Figure 1: Upper panel amplitude in four stages as a function from frequency.
Bottom panel calibrated amplitude in Janskys as a function from frequency.
Source G109.871+2.114/Cepheus A was selected as example.

contains a matrix with three columns – the first is frequency, the second and
third are amplitudes of left and the right polarisation, no header information.
These files are read using Python library Numpy function loadtxt. Before
reading the data files they are sorted for each scan and is checked if every
scan have all four files, if not scan are deleted and user are warned about that.
SDR backend file naming scheme is this 〈source〉_f〈frequency〉_〈station
〉_〈iteration〉_no〈nOandstage〉.dat. Where nO and stage is scan number
and calibration stage index, example 001r0. All scan number and calibrator
stage index contains two parts scan number in example 001 and calibration
stage index r0. Calibration stage index is string that contains two parts
identification for sig and ref stages - letter r and s and identification for
on and off stages numbers 1 and 0. Theses files are read as Numpy arrays
and all mathematical computations mention in 3.2.1 are done using matrix
operation.

3.3 Computation of Doppler effect

After amplitudes are calibrated next step of data processing is to compute
the Doppler effect and transform data from the frequency domain to the
velocity domain, that is done using formula 9.

v = vr − (
fo
fb

− 1)c (9)

where fo is observed frequency, fb is laboratory determined maser frequency,
c is the speed of light and vr is the velocity of the receiver.
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Observed frequency is frequency from data file plus local oscillator fre-
quency. The velocity of the receiver in Local Standard of Rest frame is the
sum of Sun apex velocity, Earth orbital velocity and Earth rotation.

3.4 Observation data quality estimation

Data quality is determined by signal to noise ratio. This ratio is computed
in the velocity domain. To extract a signal from data MDPS configuration
file has section cuts, that contain velocities ranges where signal are located.
This information is used to compute indexes of ranges for a signal. Knowing
where a signal is in data, it is possible to know where noise is in data. Then
the signal to noise ratio is computed by the maximum value of signal divided
by 3 multiply by Standard deviation of the noise.

Additional option to estimate the quality of observation is to see the
system temperature over time. In a normal situation, it will be stable. The
result screenshot example is shown in figure 2

Figure 2: Upper panel amplitude as a function from velocity. The Bottom
panel left side system temperature as a function of time, right side signal to
noise ratio as a function of time. Source G109.871+2.114/Cepheus A was
selected as example.

3.5 Data normalisation and monitoring values extrac-
tion

After transformation to velocity domain is done scans of observation are
aligned so that the maximum value index is the same for all scans, then all
scans are averaged to avoid velocity drift during the observation time. When
a single spectrum is created from all scans in one observation, data must

7

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0156.v1

https://doi.org/10.20944/preprints202108.0156.v1


be normalised. It is necessary because during observations the effect from
system instabilities will correspond to no flat noise floor in the spectrum. It is
done by computing ordinary polynomial from the noise part of the spectrum
and this polynomial is subtracted from the spectrum. By default, MDPS use
polynomial order 3. An example screenshot is shown in 3.

Figure 3: Black dots data points of signal noise part, blue line polynomial.
Source G109.871+2.114/Cepheus A was selected as example.

After data are normalised, amplitudes for maser components can be ob-
tained. To do that maser component velocity values are used. First indexes
for component velocities are computed, after that ranges of local maximum
areas are constructed. This is done by using previously computed indexes
for component velocities and index range for local maximum are added and
subtracted to these indexes. For ranges of local maximum areas, a maximum
value for amplitude is computed and stored for monitoring. The result for
found amplitude values for maser components result screenshot is shown in
figure 4

Figure 4: Blue line spectrum, red dots amplitude values for maser compo-
nents. Source G109.871+2.114/Cepheus A was selected as example.
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3.6 Output data products of SDR backend data pro-
cessing and their formats

After processing SDR backend data MDPS creates two outputs 1) cali-
brated spectrum data and 2) data for spectra variability with time monitor-
ing. For calibrated spectrum data file format following specifications were
selected 1) It must have read and written a library in most popular pro-
gramming languages (output files can be distributed to other researchers
and they can use any tools they like to process these files) 2) It should be
possible to store data for each data processing stage in one file (it is neces-
sary to avoid complicated file naming schemes and that allow reprocessing
data from any data processing stage). To store and process astronomical
data many data formats are used. In this paper authors only will discuss
these data file formats (CSV, FITS (Wells et al., 1979), HDF5 (Folk et al.,
2011), NPY (community, 2020), MS (Kemball and Wieringa, 2000)). They
are given in table 3.6.
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File format Programming languages
supporting format

Comments

CSV Most of languages Cannot store multiple ma-
trices in one file

FITS C, Fortran, C++, C#,
Python, IDL, Java,
JavaScript, Julia, TCL,
Perl, MatLab, Mathemat-
ica, R, Go, Swift (McGlynn,
2020)

Primarily used for image
transport and archiving

HDF5 C, C++, Java, Python,
C#, Fortran, R, S-Lang,
MatLab, Mathematica
(hdfgroup.org/, 2020))

Can be used for storing
complex data structures

NPY Only Python Numpy matrix output for-
mat. Cannot be used store
multiple matrices and meta
data

MS C++, Python Primarily used for image
transport

Table 1: Overview of data files used in Astronomy

We see that both criteria are satisfying only by two data formats FITS
and HDF5. Although FITS file format has the support of more programming
languages, we favour HDF5, because of advantages that have HDF5. These
advantages are as improved I/O speed, compression (Price et al., 2015) and
HDF5 data format is used in new modern telescopes like LOFAR, CCAT
and MeerKat (Price et al., 2015) and will be used in the future telescope
SKA (Comrie et al., 2020) software. The Output file contains tables am-
plitude, amplitude_corrected, amplitude_corrected_not_smooht, specie and
system_temperature. Table amplitude is the result of frequency switching al-
gorithm, table amplitude_corrected_not_smooht contains normalises data,
amplitude_corrected smoothed data table specie a specie of observed source
and table system_temperature contains system temperature as a function of
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time.
For variability monitoring data following specifications were selected 1) It

must allow monitoring meta-data to change over time 2) It must have read-
ing and writing library in most popular programming languages. Therefore
JavaScript Object Notation (JSON) was chosen as data format.

4 Variability monitoring

4.1 Single source monitoring

This consists of two components: single source monitoring and multiple
source calibrator line monitoring. The monitoring result is a maser spectre
components amplitude as a function of time. A simple example can be seen
in figure 5. An additional option is to compute power as a function of periods,

Figure 5: G107.298+5.639 components amplitude as a function of time. Each
component has a different colour.

as seen in figure 6. Power as a function of periods is obtained by computing
Lomb-Scargle periodogram as described in (VanderPlas and Ivezic, 2015).
To compute periodogram Python library Astropy, modules time series func-
tion LombScargle was used. Monitoring module also can compute amplitude
changes not only for specific maser velocity component, but also can compute
amplitude change as a function in time for all spectrum. That is done by
computing triangulation between the velocity of maser and observed time.
After that contour of the created triangular grid is drawn, contour colours
correspond to observed fluxes. The result can be seen in figure 7.
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Figure 6: G33.641-0.228 power of velocity 60.99 component as a function of
periods.

Figure 7: G107.298+5.639 Amplitude change as a function in time for all
spectrum (spectrogramm).

4.2 Multiple source calibrator line monitoring

From all sources included in the maser monitoring programme, stable ve-
locity components are selected. Currently these G32.744-0.076 (30.49, 39.18),
G49.490-0.388/W51 (59.29), G59.783+0.065 (19.2), G69.540-0.976/ON1 (14.64),
G188.95+0.89/S252 (10.84), G111.542+0.777/NGC7538 (-58.04), G133.947+1.064/W3(OH))
(-44.6) components are selected. This kind of monitoring allows detecting
instrumental errors. Because selected velocity components have different
amplitude values, before plotting data must be normalised, that is done by
dividing each selected velocity components with an average for that compo-
nent. For each of these components, a second-order polynomial is computed.
The result can be seen in figure 8.
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Figure 8: Multiple source calibrator line monitoring.

5 Performance testing

Running Python scripts with option -m cProfile print in terminal profile
info (function calls, primitive calls, execution time in seconds) or importing
Python library cProfile to script it will allow to get profile info from any part
of script. In figure 9 show SDR backend output processing execution with
different number of scans, but all observations had 4096 numbers of points.
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Figure 9: X - axis Numbers of scan. Y axis left side numbers of function
calls, right side seconds of execution. On the right side functions O(logn)
and O(nlogn) is also shwon

Viewing figure 9 we can see that execution time is between functions
O(logn) and O(nlogn) that means that complexity of SDR backend data
processing algorithms is O(n).

Similar analyses are shown spectrogramm computation, results of that
can be seen in figure 10, but execution speed of spectrogramm computation is
determined by numbers of observation in monitoring and numbers of spectral
components.
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Figure 10: X - axis Numbers of spectral components. Y axis left side numbers
of function calls, right side seconds of execution. Colours scheme is based on
numbers of observation in monitoring.

6 Conclusions

This paper presents the developed Maser line monitoring processing suite.
It enables process SDR output, display monitoring and visualises data for
publications and presentation. The suite was entirely written in program-
ming language Python. For data storing modern and efficient technologies
were used, like HDF5. Implementation of the frequency switching algorithm
was described in detail. Variability monitoring module was described and
different ways to display monitoring results were shown. Also, data formats
for storing the processed data were discussed.
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