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Abstract: The realization of the third-generation artificial intelligence (AI) requires the evolution
from perceptual intelligence to cognitive intelligence, where knowledge graphs may not meet
the practical needs anymore. Based on the dual channel theory, cognitive graphs are established
and developed through coordinating the implicit extraction module and the explicit reasoning
module as well as integrating knowledge graphs, cognitive reasoning and logical expressions,
which have achieved successes in multi-hop question answering. It is desired for cognitive graphs
to be widely used in advanced Al applications such as large-scale knowledge representations
and intelligent responses, promoting the development of Al dramatically. This review discusses
cognitive graphs systematically and elaborately, including basic concepts, generations, theories
and technologies. Moreover, we try to predict the development of cognitive intelligence in the
short-term future and further enlighten more researches and studies.

Keywords: Cognitive Graph; Knowledge Graph; Knowledge Reasoning; Natural Language
Generating.

1. Introduction

The previous few decades have witnessed the dramatic development of artificial
intelligence (Al). Broadly speaking, there have been three major stages during the
evolution of Al [1], as can be seen in Figure 1.

Storage,
Computing

-

Computing Perceptual Cognitive
Intelligence Intelligence Intelligence

Figure 1. The development stages of Al

The first stage is computational intelligence, which is owing to the fast computing
and mass storage capacities of computers. With the maturity of technologies such as grid
computing, distributed storage and quantum storage, the computing power of machines
has far exceeded that of human beings and laid a solid foundation for the next stages.
The second stage is perceptual intelligence, which is the current stage of Al Perceptual
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intelligence understands the world through auditory, visual and tactile sensing systems,
so that machines can acquire abilities of "listening”, “speaking” and “watching" [2-12].

Perceptual intelligence is mainly concerned with two schools, namely data-driven
Al represented by deep learning [13] and knowledge-driven Al represented by knowl-
edge graphs. With the support of big data, computing power and advanced algorithms,
data-driven Al has approached or even surpassed humans in many tasks. For example,
the error rate of image recognition on ImageNet has become lower than that of humans
since 2015 [14]. The speech recognition in a single Chinese sentence also achieves a lower
error rate [15]. However, the effect of neural networks heavily depends on the training
data, where massive high-quality annotated data are usually required. Furthermore, the
inference results are lack of explainability [16], poor in robustness [17,18], and easy to be
disturbed [19-21]. The model is usually oriented to a specific task and difficult to migrate
for different tasks. On the contrast, the symbolic knowledge-driven Al represents the
relationships between entities through symbol transformation. Different from deep
learning, knowledge graphs are highly interpretable and widely applicable to different
tasks [22-27]. However, the incompleteness of knowledge graphs results in low accuracy
of logical inference rules learned from sparse data, especially when the order of inference
rules is increased. Symbol-based knowledge reasoning methods mostly use logic rules
written manually or learned from the existing knowledge base. It is difficult for the
manual method of writing logic rules to meet the demands of large-scale knowledge rea-
soning, with low reasoning coverage and low reasoning efficiency. Therefore, knowledge
graphs face two fatal defects, which are high manually-built cost and low automatic-
built precision. CYC [28] is one of the earliest knowledge projects, with each knowledge
content cost $5.71 manually. On the other hand, although another knowledge project
NELL [29] applies machine learning to realize automatic knowledge graph building, its
error rate is increased to 10 times correspondingly. Therefore, the two notable projects
are at a standstill. Characteristics of data-driven Al and knowledge-driven Al are shown
in Table 1.

Table 1: The characteristics of data-driven Al and knowledge-driven AL

Ability Al driven by data| Al driven by
performance knowledge
Technology Deep learning | Knowledge graph
Explainability Weak Strong
Robustness Weak Strong
Generalization Weak Strong
ability
Input data Massive Structured,
requirements labeled-training noiseless data
data
Application scope | Specific tasks, | Widely applicable
difficult to to different tasks
migrate

To solve the problems mentioned above, some researchers proposed the concept of
cognitive intelligence, which is considered as the third stage of Al. Bo Zhang unveiled
a theoretical framework of the third-generation Al in 2018. The core goal of cognitive
intelligence is to build up explainable and robust Al theories and methods, with secure,
reliable, trusted and scalable Al technologies developed. To achieve this goal, one
possible way is to combine knowledge-driven Al with data-driven Al and fully take
advantages of both. As shown in Table 1, data-driven Al and knowledge-driven Al have
apparent complementary relationships in inputs, outputs and functions. This situation
is similar to that based on the dual-channel theory in human cognitive science.
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Inspired by the dual-process theory in cognitive science, Ding et al. [30] built a cog-
nitive graph iteratively by coordinating an implicit extraction module (System 1) and an
explicit reasoning module (System 2). System 1 is conducted by an efficient knowledge-
driven model called Bidirectional Encoder Representations from Transformers(BERT)
[31], which can extract question-relevant entities and organize them into a cognitive
graph. System 2 is processed by a data-driven neural network called Graph Neural
Network (GNN) [32], which can carry out the reasoning procedure over the graph. The
implementation based on BERT and GNN can not only reach accurate answers, but also
provide explainable reasoning paths. The state-of-art results on the Hotpot QA dataset
show the efficacy of cognitive graphs and indicate it is promising to develop cognitive
graphs with the fusion of knowledge-driven Al and data-driven Al

Figure 2. The foundation of cognitive graphs.

This paper aims to present a comprehensive overview of the cognitive graphs, to
provide researchers with synthesis and pointers to relevant researches, and to introduce
the field to researchers who are less familiar with cognitive graphs. In this paper,
we systematically and elaborately review information about cognitive graphs. We
construct this paper in a top-down structure, as shown in Figure 3. The first part mainly
introduces the background and basic concepts of cognitive graphs. The second part
mainly introduces the critical technology road maps of cognitive graphs, including
knowledge graphs, knowledge reasoning and natural language generating. Lastly, we
identify the challenges and point out the most promising technical research directions of
cognitive graphs.
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Figure 3. The overall structure of the paper.

2. Basic Information about Cognitive Graphs
2.1. Dual Channel Theory

The basic idea of cognitive graphs derives from the dual-channel theory in cognitive
science, which classifies the cognitive systems of human brains according to functions of
System 1 and System 2. As shown in Figure 4, System 1 is an intuitive system, which
aims to find the answer through an intuitive matching of relevant information. So it
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can only make intuitive and straightforward decisions, which actually fails to handle
complex reasoning process. On the contrast, as an analysis system which finds answers
through logic reasoning, System 2 improves the ability to handle complex reasoning.

5

@) B
D i
G

Figure 4. The cognitive system of human brains: System 1 and System 2.

Similar to the situation of System 1, current deep learning technologies perform
well in the intuitive, fast, unconscious and habitual system, while perform poorly in the
slow, logical, sequential, conscious system. Yoshua Bengio, ACM Turing Award winner,
issued a statement in the special report of NeurIPS 2019 [33], that deep learning needs to
develop from System 1 to System 2. How to overcome the limitations of previous deep
learning and realize the cognitive intelligence is an urgent problem. Fortunately, the
cognitive graph which follows the dual-channel theory in cognitive psychology is able
to unify System 1 and System 2 and take full advantages of both, overcoming the defects
of the deep learning system and knowledge graphs.

2.2. The Birth of Cognitive Graph

Ding et al. [30] first proposed the cognitive graph and leveraged it to deal with
question&answer (Q&A) of reading comprehensions in the multi-hop field, where
a classical question is "Who is the director of the 2003 film which has scenes in it
filmed at the Quality Cafe in Los Angeles?". In traditional methods, open-field Q&A
mainly relies on a large-scale knowledge graph. Previous work DrQA [34] proposed a
straightforward framework to solve open-domain Q&A. The researchers first retrieved
5 most similar documents using a retriever model, and then turned the question into
single-paragraph Q&A. However, in multi-hop questions, this method suffers from
"short-sighted retrieval". This means that the relevance between the text of last few
jumps and the question is very low, which is actually difficult to be directly retrieved,
resulting in a poor effect. In addition to retrieval problems, there are also two challenges
lying ahead, which are explainability and scalability.

Grounded on the dual process theory, an ideal cognitive graph can contribute to
all the three challenges significantly. It is an iterative framework to build the cognitive
graph step by step. As for the example of "Who is the director of the 2003 film which has
scenes in it filmed at the Quality Cafe in Los Angeles?", the overview procedure of the
cognitive graph is shown in Figure 5.

Models based on System 1 extract question-related entities from paragraphs to build
the cognitive graph and generate semantic vectors for each node. Then the relevant
paragraphs about new extracted entities are retrieved or just indexed from Wikipedia.
Meanwhile, models based on System 2 carry out reasoning based on semantic vectors
and compute clues to guide the extraction of System 1. After several iterations, System 2
selects a node as the predicted answer based on the reasoning results. Figure 6 shows
the detailed procedure of cognitive graph.

System 1 and System 2 can be established by various types of models. Since the
cognitive graph is initialized with entities extracted from questions, it is crucial to seek
out a powerful module to extract useful entities and generate semantic vectors for each
node. Recently, BERT [31] has been proved to be a successful language representation
model. Therefore, BERT is designed to serve as System 1. The input of System 1 consists
of three parts, including the question, the "clue" found in the previous paragraph and
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Question: Who is the director of the 2003 film which has scenes
in it filmed at the Quality Cafe in Los Angeles?

. -
Quality Cafe Quality Cafe (diner) Los Angeles
(jazz club) -
S - Los Angeles
Quality Cafe was a location featured in a number of officially the City
1-hop historical Hollywood films, including "Old of Los Angeles
restaurant and School”, “Gone in 60 and often known
jazz club Seconds”... ~ _ by its initials
s = LA,.
- <
0Old School (film) Gone in 60 Seconds
Old School is a 2003 N Gone in 60 Seconds is a
2-hop American comedy film... 2000 American action heist
directed by film....

Todd Phillips. directed by Dominic Sena.

Y

P

’ N
3-hof Todd correct 1 Dominic \
—hop Phillips | answer \  Sena /‘

AN .

Figure 5. An example of the cognitive graph for multi-hop Q&A. Each hop node corresponds to
an entity, followed by its introductory paragraph. The circles mean answer nodes, representing
answer candidates to the question. The solid black edges are the correct reasoning paths [30].

BERT
__ystem 1 ot
input Quality café Los Angeles
rouk
clues PV
System 2 0ld school Gone in 60 seconds
GNN e
%t [Todd Philips Dominic Sena

Figure 6. Procedure of cognitive graphs. System 1 extracts question-related entities from para-
graphs and generates semantic vectors for each node. System 2 carries out reasoning based on
semantic vectors and computes clues to guide the extraction of System 1. After several iterations,
System 2 selects a node as the predicted answer based on the reasoning results [30].

the Wikipedia document about an entity x (for example, x is the movie “Old School”).
The goal of System 1 is to extract the "next hop entity name" and "answer candidate” in
the document. For example, as shown in Figure 5, from the "quality café" paragraph,
"old school" and "gone in 60 seconds" are extracted as the entity names of the next jump.
These extracted entities and answer candidates will be added to the cognitive graph
as nodes. In addition, System 1 will calculate the semantic vector of current entity x,
which will be used as the initial value of relational reasoning in System 2. Owing to
the inductive bias of graph structure, GNN has presented remarkable performances on
relational reasoning. Correspondingly a variant of GNN is designed to serve as System
2. GNN takes an semantic vector from System 1 as the initial hidden representation for
each entity. At each step, hidden representations X for nodes are updated according to
the propagation rules. A two-layer multilayer perceptron serves as the predictor, which
predicts the final answer based on hidden representations X. To identify the correct
answer node from the cognitive graph, the model in System 2 constructs a training
sample for the reasoning task. Each training sample is the union of all correct reasoning
paths and negative nodes. The losses of answer node prediction can not only optimize
predictors and System 2, but also fine-tune System 1 through semantic vectors. The
overview of cognitive graph implementation is illustrated in Figure 7.
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Cognitive Graph G
Before Visiting x

System 1 (BERT)
-

[ —;
Question + clues(x,8] Paragraph(x]

Figure 7. Overview of the cognitive graph implementation. When visiting the node x, System
1 generates new hop and answer nodes based on the clues|x, G] discovered by System 2. It also
creates the initial representation sem|x, Q, clues|, based on which the GNN in System 2 updates
the hidden representations X|[x] [30].

2.3. The Advantages of Cognitive Graphs

The cognitive graph achieves state-of-art results on the HotpotQA dataset with
outstanding performances on all the evaluation metrics, reaching a winning joint F1
score of 34.9, obviously higher when compared to 23.6 of the best competitor. More
critically, the cognitive graph not only elevates the reasoning ability by solving the
intractable short-sighted retrieval problem, but also attains unprecedented explainability
and scalability. All the excellent performances mainly attribute to the superiority of
the dual-channel-based cognitive graph framework over traditional retrieval-extraction
methods. By iteratively expanding with clues and adding 1-hop entities spotted in
the question, the cognitive graph improves the retrieval of multiple hops away from
the question, which is often hard to be backtracked in traditional retrieval-extraction
frameworks. Moreover, since the only operation purpose referred to all paragraphs is to
acquire some specific paragraphs by their title indexes, the consumption of time does
not have a significant growth along with the number of paragraphs. As a result, the
cognitive graph can scale in nature. Benefiting from the explicit reasoning paths and
collaborative reasoning processes, the cognitive graph enjoys marvelous explainability.
Figure 8 shows its superiority in explainability.

Q: What Lithuanian producer is best

known for a song that was one of the

most popular songs in lbiza in 2014?
|

v
is a song by Walking with
Lithuanian Elephants
producer Ten
Walls
... best known for
his 2014 single
Ten Walls piialingiwitn WEFh
Mariius Elephants".
Adomaitis...
his stage name l
Ten Walls.
Marijus
Adomaitis

Figure 8. Case Study. Circles are candidate answer nodes while rounded rectangles are hop nodes.
Green circles are the final answers given by the cognitive graph and check marks represent the
annotated ground truth [30].

As shown in Figure 8, for an intractable semantic retrieval question without any
entity mentioned, the cognitive graph finally gets the answer “Marijus Adomaitis”,
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while the annotated standard answer is “Ten Walls”. However, considering that "Ten
Walls" is the stage name of Marijus Adomaitis, the cognitive graph yields a more accurate
result. When further tracing back to the reasoning process in the cognitive graph, it turns
out that the model has already reached “Ten Walls” and finally answers with his real
name, which seems to be more reasonable. Such explainable advantages are not enjoyed
by black-box models. This explainability brings benefits to the users, that traditional
black-box models do not have.

3. The Contents of Cognitive Graphs

Cognitive intelligence can reason the real world flexibly and dynamically, and trans-
fer what it learn with the help of synthesized knowledge based on a large amount of data.
It is well known that human cognition can successfully integrate the connectionist (brain-
inspired) and symbolic (mind-inspired) paradigms, where the language is a compelling
case in point. To build an intelligent cognitive graph, it is urgent and indispensable to
develop a framework that can routinely acquire, represent, and manipulate knowledge,
simultaneously using the knowledge in the service of reasoning logically like humans.
Thus, as shown in Figure 9, three core technical supports are needed as prerequisites
for building cognitive graphs: 1) large-scale knowledge graphs to support intuitive
knowledge expansion; 2) reasoning mechanisms to conduct complex reasoning and
make analytic decisions; 3) large-scale pre-trained natural language generating models
to explain the inference process and express the reasoning results in a human-friendly

Way.
A Road to Intuitive Analysis :
Cognitive Knowledge Decision H“m““'!'ke
Graph Expansion Mai{ing Expression

1

Knowledge Cognitive (Natural Languag

Figure 9. The Cornerstone of Cognitive Graph. On the way to build cognitive graphs, three
core technical supports are needed as prerequisites for building a cognitive graph: large-scale
knowledge graphs to support intuitive knowledge expansion; reasoning mechanisms to conduct
complex reasoning and make analytic decisions; large-scale pre-trained natural language generat-
ing models to explain the inference process and express the reasoning results in a human-friendly
way.

3.1. Knowledge Graph

The knowledge graph is regarded as an important cornerstone in the transformation
from perceptual intelligence to cognitive intelligence. Edward Feigenbaum [35], Turing
Award winner, the founder of knowledge engineering, once asserted that knowledge
is the power in Al systems. Building large-scale and high-quality knowledge graphs
is an essential link in the process of spanning from perceptual intelligence to cognitive
intelligence.

3.1.1. Basic Concept of Knowledge Graph

A knowledge graph, also known as a semantic network, represents a network of
real-world entities and illustrates the relationship between objects, events, situations
and so on. The information is usually stored in a graph database and visualized as
a graph structure, prompting the term knowledge graph. The knowledge graph is a
multi-relational graph composed of entities (nodes) and relations (different types of
edges). Each relational fact is represented as a triple of the form (head entity, relation,
tail entity), indicating that two entities are connected by a specific relation. In essence, a
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knowledge graph is a semantic network that reveals the relationship between entities,
which can formally describe the real world and different relationships.

3.1.2. Key Technologies of Knowledge Graph

The techniques applied in knowledge graph building mainly include knowledge
graph construction and knowledge graph representation.

The overview framework of knowledge graph construction is shown in Figure
10. As can be seen, the whole framework mainly consists of four parts, which are
data acquisition, information acquisition, knowledge fusion and knowledge processing
respectively.

Knowledge Graph Construction/Update Process

»
s

|
|
I
:
|
Structed ! Knowledge Knowledge
Data . Fusion I
' nference
1| Attribute ¥ l
|
Semi-Structured | ! | Extraction Coreference -
Data 1| Relation Resolution Quality
: . - Evaluation
Unstructured | | Extraction Entity T
Data i Entity Disambiguat
i : i Ontolo
!'| Extract ton gy
L EXracton I Extraction

Data Acquisition ~ Information  Knowledge Knowledge
Acquisition Fusion Processing
Figure 10. Overview of knowledge graph construction framework. The whole framework mainly
consists of four parts: data acquisition, information acquisition, knowledge fusion, and knowledge
processing [36].

Data Acquisition

Data Acquisition is the cornerstone of knowledge graph, whose goal is to extract
structured data from unstructured or semi-structured data. Then the knowledge graph
is built up based on these data. This step is mainly carried out with a series of automatic
or semi-automatic techniques, where knowledge ( actually a heap of entity relationships
) is extracted from raw data and stored into the knowledge base.

Information Acquisition

Information acquisition aims to extract entity attributes and their interrelations from
various data sources. This task can be divided into three categories: entity extraction,
relation extraction and attribute extraction [37,38].

Entity extraction [39], also known as Named Entity Recognition (NER), is created
to make automatic identification of proper nouns (organization name, place name,
person name, time, etc.) or meaningful noun phrases from text corpus. It is the basis of
knowledge acquisition. The accuracy of entity extraction directly affects the quality and
efficiency of knowledge acquisition.

Attribute extraction [40] aims to achieve a complete description of entities. The
attributes of entities can be regarded as a nominal relationship between entities and
attribute values. Therefore, attribute extraction tasks can be transformed into relation
extraction tasks.

Relation extraction [41] is applied to solve the problem of semantic links between
entities. The relationship extraction is mainly to identify entity relations through the
artificial construction of semantic rules and templates. Subsequently, the relationship
model between entities gradually replaces the manual predefined syntax and rules.

Knowledge Fusion

After acquiring new knowledge, it is necessary to integrate it to remove contradic-
tions and ambiguities, improve knowledge quality.

Knowledge fusion [42] was supposed to acquire multi-level, machine-processable
and more complete innovative knowledge, and simultaneously remove uncertain and
conflicting knowledge. So knowledge fusion is cosidered as an advanced stage of
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knowledge integration. When multiple sources bring incomplete and inconsistent
information, knowledge fusion is applied to produce new information (knowledge) that
is complete and accurate, thus improve knowledge consistency and knowledge quality.

Knowledge Processing

For new fused knowledge, qualified parts can be added to the knowledge base
to ensure the quality of the knowledge base after quality assessment. Knowledge
processing mainly consist of ontology construction and quality evaluation.

a) Ontology Construction

Ontology is the semantic basis of communication between different subjects in the
same domain, which has a tree structure. The most important feature of ontology is
that it is shared, and the knowledge appearing in ontology is a kind of well-defined
consensus. Ontology can be constructed by manual editing, with the help of ontology
editing software. Or it can be automatically constructed by data-driven method, and then
modified and confirmed by combining algorithm evaluation. The main research work of
current ontology generating methods mainly focuses on the entity clustering method
[43,44]. The main challenge is that the entity descriptions obtained by information
extraction are very few and necessary context information is absent, which leads to the
unavailability of most statistical models [45,46].

b) Quality Evaluation

The task of quality assessment of knowledge base is usually carried out together
with the entity alignment task. Its significance is that the credibility of knowledge can be
quantified, and the quality of knowledge can be effectively guaranteed by retaining the
higher reliability and abandoning the lower confidence.

Knowledge Graph Representation

The knowledge graph representation is also called knowledge graph embedding.
The key idea is to embed entities and relationships into a low-dimensional continuous
vector space, so as to simplify operation and retain the inherent structure of the knowl-
edge graph. A classical knowledge graph embedding technique is usually made up of
three steps: (i) representing entities and relations, (ii) defining a scoring function, (iii)
learning entity and relation representations. The existing knowledge graph embedding
technologies are mainly divided into two categories: translational distance models and
semantic matching models [47].

a) Translational distance model

In a translational distance model, the knowledge is well-preserved via capturing
and measuring monolingual relations among entities with a distance-based scoring
function.

In 2013, Mikolov et al. proposed Word2vec [48], a word representation model,
and they discovered the translation-invariant phenomenon in the word representation
space. Inspired by the translation-invariant phenomenon [48], Antoine Bordes et al.
proposed TransE [49] to embed knowledge graphs into low-dimensional space via
relational translation, which models the entity & relation representation as well as the
monolingual relations. Since the TransE model has fewer parameters, the computational
complexity is significantly reduced, and it also has better performances on the large-scale
sparse knowledge graph. However, the TransE model has trouble dealing with complex
relationships (such as 1-to-N, N-to-1, N-to-N). In response to the above problems of
TransE model, an effective strategy called TransH was proposed [50]. It allows an entity
to have distinct representations under different relationships by introducing the hyper-
plane. Both TransE and TransH assume that entities and relationships are vectors in
the same semantic space, so that similar entities can be located at similar positions in
the space. However, each entity can have many aspects, while different relationships
focus on different aspects of the entity. Therefore, the TransR model [51] establishes
separate relationship spaces for different relationships. The TransR model is more
complex than the TransE and TransH models because it introduces a projection matrix
for each relationship. Thus, TransR is computationally intensive. The TransD model
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[52] has made improvements to solving the above problems. It represents each entity or
relationship with two vectors, one for semantics and another for building a mapping
matrix. The process of mapping matrix and space transformation can also be replaced
by vector multiplication, thus avoiding time-consuming matrix multiplication. Due
to the uncertainty of semantics of entities and relationships in the knowledge graph,
which has been ignored in previous research, TransG [53] proposed a KG2E model, using
the Gaussian distribution to represent entities and relationships. The covariance of the
Gaussian distribution indicates the uncertainty of the entity or relationship. TransG also
models Gaussian entities, that is, TransG applies the Gaussian mixture model to describe
the relationship between head and tail entities. By considering different semantics of
relation, the TransG model could form multiple Gaussian distributions to distinguish
correct and incorrect entities.

b) Semantic matching model

Semantic matching models exploit similarity-based scoring functions to measure
plausibility of facts by matching latent semantics of entities and relations contained in
their vector space representations.

One of the most representative semantic matching models is RESCAL [54]. In this
model, entities are represented as vectors and relationships are represented as matrices.
This relational matrix is applied to model the paired interaction between potential factors,
and the scoring function is defined by a bilinear function. DistMult [55] simplifies
RESCAL by restricting the matrix associated with the relation to diagonal matrices.
However, the over-simplified model can only deal with symmetric relationships, which
is obviously not fully applicable to general knowledge graphs.

By taking advantage of the expressiveness of RESCAL and the simplicity of Dist-
Mult, the Holographic Embeddings (HolE) model [56] represents both entities and
relations as vectors. Therefore, it can model asymmetric relations as RESCAL does but is
more efficient than RESCAL.

Inspired by the success of deep learning, some models attempt to integrate deep
architectures into knowledge embedding, such as Semantic Matching Energy (SME)
[57], Multilayer perceptron (MLP) [58], Neural Tensor Network (NTN) [59], and Neural
Association Model (NAM) [60].

3.1.3. Challenges of Knowledge Graph

Although some neural networks have achieved impressive performance in knowl-
edge graph representation and construction, they still have limitations in terms of
transparency and explainability. Considering the basic requirements of knowledge
graph based cognitive intelligence, we summarize the fundamental problems and corre-
sponding challenges as follows:

A) Challenges of data quality and scale

Massive amounts of data are generated every day in the era of big data. Crawling,
downloading, and indexing these web-page data requires a lot of storage and network
resources. Traditional information extraction algorithms face the bottleneck of efficiency
and it is difficult to cope with the dynamic changes of large-scale data. Meanwhile, web
data also contain a lot of noise data, such as inconsistent data formats, diverse data
types, and fuzzy naming, which bring great challenges to the information extraction
technology.

B) Challenges of knowledge graph representation

The knowledge graph is a graphical representation of knowledge. It is necessary
to establish a unified semantic space for knowledge so that the semantics can be cal-
culated, so as to conduct prediction, reasoning and recommendation. Therefore, it
has remained an urgent requirement to design more powerful knowledge graph repre-
sentation learning algorithms to incorporate more ontology features and analyze the
relationship between representation learning and ontology reasoning.

C) Challenges of knowledge graph construction
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Building a knowledge graph requires extracting knowledge of entities, relationships,
and attributes from different types of data. The difficulty of extracting knowledge
is up to the type of data. For example, text data involve a large amount of natural
language understanding issues. Image data involve a large amount of vision recognition-
related issues. Voice data involve a large amount of voice recognition-related issues.
Multimodal noisy perceptual data brings burdensome challenges to the construction of
knowledge graph because more cross-modal relations bring accompanying cross-modal
disambiguation.

D) Challenges of knowledge graph storage

The current knowledge graphs are usually based on multiple data models, such as
resource description framework (RDF) graphs and attribute graphs. Although the RDF
graph model has a stronger expression ability than the attribute graph model, its exces-
sive theoretical information affects its promotion in the industry. The attribute graph, in
contrast, is not perfect in terms of its theoretical foundation. So far, it has not formed a
uniformly recognized strict mathematical definition. Although the attribute graph has
been applied in multiple graph databases, it has not yet formed an industry standard.
In addition, for different data models, there are different query languages in different
graph databases, including SPARQL, Cypher, PGOL and so on. The inconsistency of
data models and query languages not only increases the cost of database development
and maintenance but also brings difficulties to users’ learning.

3.1.4. Future Directions of Knowledge Graph

New challenges in knowledge graphs (e.g., knowledge representation, construction,
and storage) also provide potential opportunities, and we explore a series of future
directions as follows:

Information Extraction in Open Domain

In the stage of knowledge graph construction, information extraction is an im-
portant part. Current relation [61] extraction algorithms are mainly divided into two
classes: open-domain and closed-domain. While closed-domain algorithms mainly
apply supervised methods [62,63] or weakly supervised methods [64,65] to identify a
finite and fixed set of relations, the open-domain algorithms explore relations without
predefined schema, thus resulting in a series of challenges. Corpus heterogeneity is an
evident obstacle for practicable tools. In order to expand the scale and coverage of the
knowledge graph, researchers have paid attentions to information extraction methods
for open fields. Automatically extracting knowledge from unlimited data resources is a
potential hopeful way to build large-scale knowledge graphs, and it is also the underly-
ing support for other high-level technologies such as knowledge reasoning. Therefore,
open-domain information extraction technology is the hot-spot of future researches in
the construction of knowledge graphs.

Unifying Data Model and Query Language

In terms of knowledge graph storage, the data model and query language are not
unified yet. The unified data model and query language not only reduce the research and
development cost of the database management systems, but also reduce the cost of users
designing, building, managing and maintaining the database, and reduce the learning
difficulty for new users. Therefore, for a unified knowledge graph data model, the
development of a unified knowledge graph query language, and the definition of precise
syntax and semantics are important research directions for the future of knowledge
graph storage.

Improving Explainability and Reliability

Although some neural networks have achieved impressive performance in knowl-
edge graph representation and construction, they still have limitations in terms of
transparency and explainability. Some methods try to combine the black-box neural
network models with symbolic reasoning, and increase explainability by introducing
logical rules. Because only the realization of explainability can convince human to
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believe in the prediction results, researchers need to do more in terms of explainability
and improving the credibility of prediction results.

3.2. Cognitive Reasoning

Cognitive reasoning is an essential part of cognitive intelligence. Combined with
the reasoning process of human brains, cognitive reasoning can further solve the complex
problem of reading comprehension and the inference problem of knowledge graph with
fewer samples, cooperative structured reasoning process and unstructured semantic
understanding. Cognitive reasoning can help machines acquire multimode perception
abilities. Knowledge graphs provide strong supports for cognitive reasoning. The
bottom realization of cognitive reasoning is knowledge reasoning. Therefore, from the
perspective of knowledge reasoning based on knowledge graphs, this section introduces
the concept, development process, key technologies, problems, challenges and future
research directions.

3.2.1. Basic Concept of Reasoning

The basic concept of reasoning is generally defined as a process in which people
analyze, synthesize and make decisions on various things [66]. Kompridis [67] points
out that knowledge reasoning is to obtain new knowledge from existing knowledge
based on specific rules and constraints. Tari [68] defines reasoning as a general term
for a series of capabilities, including the abilities to consciously understand things, to
establish and verify facts, and to infer new knowledge based on the existing facts and
logic rules.

3.2.2. Key Technologies of Reasoning

Early traditional reasoning methods are divided into deductive reasoning, inductive
reasoning and default reasoning. Traditional knowledge reasoning is mainly based on
logic and rules, such as first-order logic and predicate logic [69].

With the explosive growth of Internet data scale, traditional methods cannot adapt
to the need to mine a large amount of knowledge in the era of big data. Recently,
reasoning over knowledge graphs has become a hot research topic since it can obtain
new knowledge and conclusions from existing data. With the emergence of distributed
representations and neural network technologies, reasoning over knowledge graphs has
attracted extensive attention. The reasoning methods are divided into three categories:
rule-based reasoning, distributed representation-based reasoning and neural network-
based reasoning.

Reasoning based on logic rules

Reasoning methods based on logic rules include logic reasoning, ontology reason-
ing and random walk reasoning. In the early stage, first-order predicate logic rules are
exploited for reasoning, with typical high-accurate knowledge graph-oriented applica-
tions such as First-Order Inductive Learner (FOIL) [70]. Nevertheless, this universal
protocol is suppressed by the complexity and diversity of large-scale knowledge graphs.
On the contrast, balanced protocols such as the description logic [71], a decidable subset
of predicate logical rules, are found to be more suitable. Subsequently, the well-defined
semantics and powerful reasoning tools lay a crucial foundation for ontology reasoning.

Classical ontology reasoning methods could be based on tableaux, logical program-
ming, first-order queries, production rules and so on. For instance, the tableaux-based
method [72] only supports reasoning with predefined ontology axioms. In contrast,
the Datalog-oriented rewriting method based on logical programming can meet most
user-defined reasoning needs. As supplementary, another rewriting method based on
first-order queries, which is associated with different query languages, can efficiently
combine data sources with different data formats.

In 2001, a unique algorithm based on random walk reasoning, named Path Ranking
Algorithm (PRA) [73], was introduced by Lao et al. to deal with related reasoning issues.


https://doi.org/10.20944/preprints202108.0155.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2021 d0i:10.20944/preprints202108.0155.v1

13 of 34

PRA is a typical technique for performing reasoning in a graph. To learn the inference
model for a particular edge type in a knowledge base, PRA finds sequences of edge
types that link nodes and then uses those types as features in a logistic regression model
to predict missing edges in the graph. PRA dramatically improves the efficiency and
robustness by replacing exhaustive searches with random walks and using unique paths
as features in a per-target-relation binary classifier.

Reasoning based on distributed representations

Owing to the development of embedding technology, knowledge reasoning based
on distributed representations has made great progress, using tensor decomposition,
distance and semantic matching models. Its motivation is to project the entity and
relation in the triple facts (head entity, relation and tail entity) into a low-dimensional
vector form and perform inference predictions based on vector representations.

The tensor decomposition model treats the fact triple of knowledge graph as an
element to construct tensors, where unknown knowledge is inferred by tensor de-
composition. In this process, high-dimensional arrays are decomposed into multiple
low-dimensional matrices. The RESCAL model [54] is a typical tensor decomposition
model, which can reduce the data dimension and retain characteristics of the original
data by decomposing multi-relational and high-dimensional data into a third-order
tensor. Advanced similar models include TRESCAL [74], PRESCAL [75] and a novel
model combining matrix decomposition with tensor decomposition.

The purpose of the distance model is to design a score function based on the transfer
hypothesis to measure the validity score of the fact triple, where a higher score means
better validity. TransE is one of the most widely-used distance models, in which potential
feature representations are simply and efficiently translated by a relation-specific offset.
However, due to the disability to quickly deal with 1-to-N, N-to-1 and N-to-N relations,
TransE has been replaced by TransH in these cases. The latter realizes those relation
treatments through introducing a relation-specific hyperplane.

The original semantic matching model uses two separate matrices to project head
and tail entities for each relationship, which actually cannot effectively represent the
essential relationship. In order to solve this problem, a novel method, named Semantic
Matching Energy (SME) [76], is put forward jietuwith both linear and bilinear forms of
semantic matching energy functions well defined.

Reasoning based on neural networks

By imitating the human brain for perception and cognition, neural networks have
a great ability to extract features, making it potential to knowledge graphs (as well as
cognitive graphs) reasoning. Reasoning based on neural networks can be classified
according to detailed models such as Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN) and Reinforcement Learning (RL).

At the early stage, a single layer model based on CNN is proposed to connect the
entity vectors implicitly, which is soon replaced by an advanced model named Neural
Tensor Network (NTN). With the assistance of a bilinear tensor layer, NTN can improve
the reasoning performance efficiently. Other models based on CNN include ProjE [77],
DKRL [78] and so on.

As for models based on RNN, a new approach to reason about conjunctions of multi-
hop relations is proposed by Rajarshi Das et al. , which is called Path RNN [79]. In Path
RNN, a path-sorting algorithm is exploited to find a different path for each relationship
type, and the embedded representation of the binary relationship is treated as an input
vector. Considering drawbacks of Path RNN such as the disability in downstream tasks,
Single Model [80] is then put forward, which shares the relation type representation and
the composition matrices of RNN across all target relations, enabling the same training
data to be represented by a reduced number of parameters. Single Model significantly
increases the accuracy and practicality of RNN based reasoning on Horn clause chains
in large scale knowledge bases.
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Models based on RL can work well because the process of inferring unknown
answers over incomplete knowledge bases can be modeled as a serialized decision
problem. For example, with a related framework called DeepPath [81], it is the first time
for RL methods to be applied to multi-hop reasoning problems. Afterward, a neural RL
method called MINERVA [82] is proposed, which learns how to find the predictive path
according to the input query and avoids the requirement of modeling. In MINERVA, the
large-action-space shortage of Deep Path has been well solved.

3.2.3. Challenges of Reasoning

Reasoning methods based on description logic and rules can capture semantic
information hidden in a knowledge graph, significantly improving the accuracy of
knowledge reasoning. Moreover, it can imitate human reasoning capabilities, making
it possible to use prior knowledge to assist reasoning. However, the manual-defined
logic rules have the limitations of high cost and low coverage, and the inference rules
automatically mined by algorithms are likely to contain noise. In addition, the currently
gained rules are relatively simple and have poor generalization ability.

The method of reasoning based on distributed representation is to map entities
and relationships to low-dimensional space vectors, and to use semantic expressions for
reasoning. The advantage is that it fully utilizes the structural information in the knowl-
edge graph, and the method is convenient to extend for large-scale knowledge graphs.
The disadvantage is that this kind of approach does not consider prior knowledge when
establishing the reasoning model. It only considers satisfying the constraint conditions of
fact triples in the knowledge graph, leading to the lack of deeper component information,
which limits the reasoning ability.

The reasoning method based on the neural network directly models the fact triples,
which has strong learning, reasoning and generalization abilities. However, the model is
complicated and poor at explainability. Moreover, it is deficient in acquiring high-quality
data to build a large-scale knowledge graph. Although on the internet, publicly available
data is large in scale, it has the characteristics of fragmentation, diversity, irregularity,
and noise. Besides the imperfect knowledge extraction technology, it is difficult to
guarantee the quality of knowledge in the knowledge graph. Reasoning technologies
based on rules, distributed representations, and neural networks are more sensitive to
noisy data. Ambiguous data will lead to learning deviations and reduce the accuracy of
inference results.

3.2.4. Prospect of Reasoning

Following with the fundamental challenges in knowledge graph reasoning, we
further discuss and explore a series of possible future research directions as follows:

Multi-source knowledge reasoning

Knowledge reasoning based on multi-source information may reduce the connec-
tivity and sparsity of knowledge graph by combining text corpus or other knowledge
graphs so as to carry out effective reasoning. Knowledge reasoning based on multi-
source information can improve reasoning performance by mixing different methods at
a deeper level. In addition, in view of the outstanding performance of neural networks
in various fields, including knowledge graph, the fusion of neural networks and other
complementary methods will become the main research focus in the future, combining
the vital learning and generalization ability of neural network with the high accuracy
and explainability of rule method, excellent reasoning results are obtained. For the entity
prediction task, the proposed method can be used to predict entities, the proportion
of effective entities ranked in the top 10 reached 99.8% and 91.6%, respectively. How
to fuse multi-source information and multiple methods to further improve reasoning
performance will also become a major research direction in the future. Among them, the
fusion mode, that is, how to fuse, is a major difficulty.

Intuitive reasoning
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Intuitive reasoning [83] is the ability of human beings to quickly judge the answer
to a problem based on their own perception without step-by-step analysis and without
being constrained by certain fixed logical rules. Intuitive reasoning can quickly find an
effective initial iteration position, which will also determine whether the final iteration
result is globally optimal. In addition, traditional machine algorithm will fall into local
minimum value when solving complex problems [84], while intuitive reasoning inspired
by human brain can make decisions through strategy optimization, action feedback,
reward and punishment mechanism, so as to avoid such problems and improve the
generalization ability of cognitive intelligence. A famous and successful leading card of
machine intuitive reasoning is AlphaGo [85]. With the ongoing optimization of AlphaGo,
AlphaZero [86] and Muzero [87] were born.

AlphaZero merged the value network and the strategy network into a network on
the basis of AlphaGo, which could randomly select an initial state under the condition
of only given the game rules. Muzero can surpass the previous performance through the
continuous reinforcement learning of self-playing games. Instead of learning the rules of
relevant games, AlphaZero uses predictive strategies, value functions, and immediate
rewards to calculate and plan future behavior, and the intellectual body can create rules
to achieve the most accurate planning.

A series of achievements such as AlphaGo, AlphaZero,and AlphaZero show the im-
portance of intuitive reasoning for solving complex problems. Although the realization
of machine intuitive reasoning can endow the machine with the ability to predict, judge
and make decisions creatively and quickly, and adapt to the complex problems in the
real environment, there are still many problems, such as how to combine the intuitive
sense of with the explicit knowledge of game rules, so that the machine has the ability of
associative memory. Secondly, it is difficult for the machine to obtain the appropriate
return function under the current environment when the system applies reinforcement
learning to realize intuitive reasoning, In addition, the problems of gradient fluctuation,
convergence speed and exploration efficiency also need to be solved.

Causal reasoning

Causal reasoning is crucial to survival for human beings because learning about
causes contributes to imposing order and then making sense of the world. The winner
of the Turing Award Pearl [88] divides the causality into three levels, namely association,
intervention, and counterfactual reasoning. The current Al has merely reached the
first level, while humans can reach the counterfactual level through imagination. Pearl
believes that the ultimate fatal defects is that the existing AI models are mainly driven
by associations, so it is difficult for machines to distinguish between causal association
reasoning and false associations in data. The key to solving the problem is to apply
‘causal reasoning’ instead of ‘reasoning for associations’ .

Causal reasoning can be combined with natural language processing to extract the
causal relationship between terms or phrases from a large corpus of texts for capturing
and understanding the causal relationship between events and actions. Luo et al. [89]
proposed a data-driven method to solve the common sense causal reasoning problem
among short texts, and came up with a framework which can automatically collect causal
relationships from large-scale network corpus and can correctly model the strength of
causal relationships among various items.

Research on the combination of computer vision and causal reasoning has increased
and has led to discovering causal signals in images [90] and generating unbiased scene
graph from biased training [91]. The problem of visual reasoning has been extensively
studied. Although these studies cover the complexity and diversity of vision, the basic
logic, temporal and causal structures behind reasoning have rarely been explored. As
moving forward, causal reasoning need further exploration to discover other potential
causalities hidden in conversational visual dialog tasks and more extensive areas.
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3.3. Natural Language Generating (NLG)

To make a machine have cognitive intelligence, it not only requires the machine to
understand the data, process the data, and make decisions through cognitive reason-
ing, but more importantly, the machine is supposed to have the ability to express the
reasoning results in a way that humans can understand. Therefore, how to make the
machine generate natural language in line with human understanding is a crucial aspect
of cognitive intelligence.

Along the way to cognitive intelligence, NLG plays a crucial role: it is responsible
for converts a cognitive system action into a human-understandable response. Therefore,
the response is supposed to be fluent, adequate. NLG has significant influence on users’
experience.

In this section, we comprehensively review the concept, key technologies, problems
and challenges and future research directions of NLG.

3.3.1. Basic Concept of NLG

As a crucial component in cognitive graphs, Natural Language Generation (NLG)
technology is a hot topic which aims make computers have human-like expression,
that is, automatically generate a high-quality natural language based on some essential
information.

In the most widely-cited surveys of NLG methods [92,93], NLG is characterized as
the subfield of Al and computational linguistics that is concerned with the construction
of computer systems that can produce understandable texts or other human languages
from some underlying non-linguistic representation of information.

It has been pointed out that precisely defining NLG is rather difficult [94]: every-
body seems to agree on what the output of an NLG system should be text, but what the
exact input is vary substantially [95]. Examples include flat semantic representations,
numerical data and structured knowledge bases. More recently, generation from visual
input such as image or video has become an important direction [96-98], which extend
the concept of NLG to non-linguistic data.

3.3.2. Key Technologies of NLG

In this section, we systematic review the key technologies of NLG, including Markov
Chains [99], RNN [100], LSTM [101], Transformer [102], ELMo [103], BERT [31].

Markov chains

Markov chains are the earliest algorithms for language generating. It predicts the
next word in a sentence from the current word. For example, the model is trained in the
following two sentences: "I drink coffee in the morning" and "I eat sandwiches with tea".
The probability of "coffee" after "drink" is 100%, and the probability of "eat" and "drink"
after "I" is 50%. When calculating the probability of the next word, Markov chain takes
into account the relationship between each word. The model was first used to provide
suggestions for the next word generating of smartphone input sentences.

Recurrent Neural Network (RNN)

Inspired by the working principle of the human brain, the neural network provides
a new method for computing by modelling the nonlinear relationship between input
and output data, which is called neural language modelling. Recurrent neural network
(RNN) [100] is a kind of neural network which can capture the sequence characteristics of
input data. As is shown in Figure 11, each item in the sequence is fed into a feedforward
network, and the output of the model is taken as the next item of the sequence. This
process can help to store the information of each previous step. Such "memory" makes
RNN perform well in language generating because remembering past information can
help better predict the future. Significantly different from the Markov chain, RNN
focuses not only on the current word, but also on the processed word. But there is a
big problem with RNN: the catastrophic forgetting [104]. With the increase of sequence
length, RNNs can not store the words encountered long ago, so they can only predict
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based on the latest words. This makes RNNs unable to be used to generate coherent
long sentences.

Output Need o Rent A Car

O

O

INPUT We
Figure 11. Overview architecture of RNN [100].

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [101] is a variant of RNNs, which is more suitable
for processing long sequences than RNNs. LSTM is widely used, and its structure is
similar to that of RNNs. The difference is that RNN has only one simple layer structure,
while LSTM has four layers. An LSTM consists of four parts: cell, input gate, output gate
and forgetting gate. For example, when input is “I am from Spain. I am fluentin ___”.
In order to correctly predict the next word "Spanish", LSTM will pay more attention to
"span" in the previous sentence and use cell to memorize it. As the sequence is processed,
the cell stores the acquired information, which is used to predict the next word. When a
period is encountered, the forgetting gate will realize that the context of the sentence
has changed and ignored the state information stored in the current cell. In other words,
the function of the forgetting gate is to make the recurrent neural network "forget" the
information not used before. LSTM and its variants can solve the problem of gradient
disappearance and generate coherent sentences. However, LSTM also has its limitations:
high computational requirements and difficult to train.

Output am fluent in Spanish

L L L L L

1S _ S S |s ]S

T T T 1T 1T

Y M M M M
INPUT |

Figure 12. Overview architecture of LSTM [101].

—
Figure 13. The repeated module in LSTM containing four layers of interactive neural network

layer [101].

Transformer
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Transformer [102] was first proposed by the Google team in the paper "Attention Is
All You Need" in 2017, which involves a new method called self attention mechanism.
Transformer is widely used to solve NLP problems, such as language modeling, machine
translation, and text generating. The Transformer model consists of a group of encoders
and a group of decoders. The former is responsible for processing any length of the
input, and the latter is responsible for outputting the generated sentences.

The encoder processes the input sentence and generates a representation for it. The
decoder uses representation to generate sentences for output. The initial representation
or embedding of each word is represented by a hollow circle. Afterward, the transformer
model uses SAM to obtain the relationship between all other words and generate a new
representation of each word, such as a single circle in Figure 14. Repeat this step for each
word to generate new representations continuously. Similarly, the decoder generates
words from left to right.

Different from LSTM, Transformer needs fewer steps. The application of SAM can
directly capture the relationship between all words in a sentence without considering
the positions of them.

—Snllnm\
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Figure 14. Overview architecture of Transformer [102].

Transformer model architectures have garnered immense interest lately due to their
effectiveness. In the field of natural language generating, for example, Transformers have
become an indispensable staple in the modern deep learning stack. Recently, a dizzying
number of "X-former" models have been proposed - Reformer [105], Linformer [106],
Performer [107], Longformer [108], to name a few - which improve upon the original
Transformer architecture, many of which make improvements around computational
and memory efficiency.

In 2018, OpenAl proposed the GPT model [109], a language model based Trans-
former, which can be migrated to a variety of NLP tasks. The basic idea is to apply the
pre-trained language model without changing the model structure as much as possible.
It can capture a more extened range of information compared with RNN, and is faster
than RNN in computing speed. However, it is not scalable, and the structure of input
data needs to be adjusted for some types of tasks.

Embeddings from Language Models(ELMo)

ELMo is a new type of method deeply contextualized word representation [103],
which can not only model the complex syntax and semantics features but also change
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Figure 15. Overview architecture of GPT [109].

with linguistic context. ELMo adopts a two-layer bi-directional LSTM language model
to understand the meaning in context. The structure of the model is shown in Figure 16.

Figure 16. Overview architecture of ELMo [103].

The ELMo model is first trained on a large predictive library, and the vector of each
word is represented by the function of the internal state of BILSTM, thus, the internal
state is mixed with all the semantics. The text of the downstream task is trained in a
model where each word has a specific context, and each word is represented by a linear
combination of internal states.The BiLSTM layer in the ELMo model can effectively
encode different types of syntax and semantics in the context. A lot of studies have
proved that Transformer is much better at extracting features than LSTM, so the ELMo
would have a more dramatic impact if it adapted the Transformer as a feature extractor.
In addition, the ability to adopt the fusion feature of bidirectional splicing may be weaker
than that of Bert integration.

The new ELMo faced some knotty problems to adopt the fusion feature of bidirec-
tional splicing, so new methods are on the horizon.

Bidirectional Encoder Representations from Transformers(BERT)

In 2018, Google introduced a new language representation model called BERT,
which stands for Bidirectional Encoder Representations from Transformers. As shown
in Figure 17, BERT is designed to pre-train deep bidirectional representations from
unlabeled texts by jointly conditioning on both left and right context in all layers. As a
result, the pre-trained BERT model can be finetuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks, such as question answering
and language inference, without substantial task-specific architecture modifications.

The BERT model has three innovations: bidirectional transformer, masked language
model, sentence-level relation.

Bidirectional transformer: When understanding a language, pre-order words can
be helpful in understanding post-order words, and in the same way, subsequent words
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Figure 17. Overview architecture of BERT [31].

can be helpful in understanding forward words. Early language models could be trained
from left to right or right-to-left, but the two could not be conducted at the same time.

Masked language model: Humans understand language with contexts in mind.
BERT cleverly utilized the idea of filling in the blanks, put forward the masked language
model to achieve a two-way transformer.

Sentence-level relation: Learn the relationship between sentences by predicting
whether sentence B is the next sentence of sentence A.

The BERT model extends the pre-training supervised fine-tuning model to a deeper
two-way structure, where long-distance semantic information can be obtained, context
semantics can be left and right, and can be performed in parallel. The disadvantages of
the BERT model mainly come from the masked language model: the "Mask" tag does
not appear in the actual prediction, too much use of the "Mask" during training affects
model performance, and only 15% of each batch is predicted, so the BERT converges
more slowly than the left-to-right model.

Table 2: Key technologies of NLG.

Technology Reference Mechanism Advantage Disadvantage
Markov Chains [99] Probability Next-word Only focusing on

calculation of the predictionina | the current word

next word sentence
RNN [100] Neural Network | Consideration of Catastrophic
both the current forgetting
word and the
processed word
LSTM [101] A four-layer Long sequence | High  computa-
structure suitability tional require-
ments and train-
ing difficulties
ELMo [103] Two-layer Changeability Weeker feature
bi-directional with linguistic extractor
LSTM context
BERT [31] Bidirectional Easier to create Converging more
transformer, state-of-the-art slowly
masked language | models for a wide
model, range of tasks
sentence-level
relation
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3.3.3. Challenges of NLG

Despite the recent success of pre-trained language models such as GPT-3 [110]
on various language generation tasks, these models are still struggling on generation
tasks that require reasoning over commonsense knowledge which is not explicitly stated
in the context. A significant bottleneck of NLG is how to represent the semantics of
natural language accurately. For example, in the process of human-computer interaction,
the users’ intention must firstly be understood. At present, there are two methods
commonly used in the industry: semantic analysis methods based on knowledge or
semantic rules and semantic analysis methods based on statistics. Although both types
of methods can derive natural language semantics to a certain extent and determine
the association between information, the method based on knowledge and semantics
rules cannot cover all language phenomena, the reasoning process is complex, and it
cannot handle uncertain events. There are defects and limitations in the compatibility
of rules and application levels. The establishment of knowledge and semantic rules is
the bottleneck problem. The statistics-based methods rely too much on the support of
large-scale corpora, and they are susceptible to data sparseness and data noise.

With the increase of user needs, traditional template generation methods based
on syntactic-semantic rules cannot meet the requirements of social development. With
the continuous development and maturity of deep learning technology, deep learning
research for natural language generation has achieved certain results, but there is no
breakthrough. In the current existing deep learning models, the difficulty lies in the
optimization and adjustment of parameters in the model construction process, mainly
including the number of deep network layers, regularization problems and network
learning rate. Possible solutions include the use of multi-core machines to improve the
network training speed, select suitable optimization algorithms for different applications.
Combining the two methods and learning from each other is the future research direction
in NLG.

3.3.4. Prospect of NLG

For human-like cognitive interactive devices, a system should take various kinds
of knowledge into consideration, decide what knowledge will be utilized in specific
reasoning contexts, and make the final decision by taking all valuable knowledge into
consideration.

Various language generation models have achieved remarkably effective results.
These models remain stuck in generation tasks that need to reason over commonsense
knowledge that is not clearly stated in the context. Although some models have been
proposed to enhance commonsense reasoning ability by elaboratively learning some
relational patterns from large-scale corpora, they do not fully utilize the commonsense
knowledge which can provide more explicit knowledge grounding [111]. Several at-
tempts have been widely explored to deal with this defect [112-114]. By utilizing triple
information in commonsense knowledge bases such as ConceptNet [115]and ATOMIC
[116], transferring commonsense knowledge into pre-trained language models is a
promising direction.

However, these methods have several potential drawbacks. Firstly, they ignore the
rich structural relevance of the concepts in the knowledge graphs. Secondly, recovering
knowledge triples at the post-training stage is hardly conducive to exploit the encoded
knowledge in generation tasks. Therefore, a straightforward way of making use of
external commonsense knowledge is to take advantage of both structural and semantic
information of the knowledge graph and reason over multi-hop relational paths, so
multiple connected triples can provide chains of evidence for grounded text generation.

To facilitate explicit commonsense reasoning in text generation, Haozhe Ji [117]
proposed Generation with Multi-hop Reasoning Flow, a novel generation model that
conduct dynamic multi-hop reasoning for knowledge-enriched language generation.
This model leverages the structural and semantic information of the external knowledge
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and aggregates evidence along relational paths which is beneficial for the generation of
some critical concepts.

In recent years, with the development of deep learning technology, the accumulation
of large-scale data corpus and the actual needs of the industry, the related research and
engineering implementation of natural language generation have received a lot of
attention.

The existing neural network-based natural language generation models are far
from enough for the application of automatic NLG. It is clear that a full end-to-end
goal-driven dialogue system should not only output a final sentence to respond to an
input sentence, but also keep and update fruitful internal representations or memories
for dialogues. At the same time, because of various factors such as fuzzy language
boundaries, diverse ambiguities, irregular expressions, limited learning corpus scale,
and complex application scenarios, NLG is not mature in practical applications, and there
are still many problems and challenges in related research. Natural language generation
technology is currently mainly based on rule-based template generation technology in
practical applications. Although it can realize the automatic text generation function
with a less complex text structure, the result is rigid, and the later expansion depends
heavily on the initial planning. The specific manifestations are: (1) The format of the
automatically generated text is fixed, the structure is not flexible, and it is difficult to
modify. (2) The expression of generated sentences is not flexible and does not meet the
characteristics of the diversity of language expression.

The generation technology based on deep learning does not require a manual design
of rule templates and grammar planning process, can automatically learn grammar and
semantic rules, and can directly extract features from the text. In the automatically
generated text, the expression of sentences is more flexible, and it is more in line with
the diversity of language expression.

4. Challenges of Cognitive Graphs

Current advancements in Al have yielded tremendous improvements across aca-
demic and industry research communities. Al researchers still face considerable chal-
lenges in developing truly intelligent systems. Concerns about poor robustness and lack
of explainability are raised by some influential thinkers. The cognitive graph which
is based on neural-symbolic integration offers an opportunity to treat with these chal-
lenges. However, previous researches have revealed that the realization of a symbolical
understanding neural system is hard, requiring a great deal of work related to refined
theories and engineering. Furthermore, at present it is quite unclear how symbolic pro-
cessing emerges from neural activities of complex neural network. In contrast, human
brains are impressive examples of the admirable neural system that have effectively
descended upon humans. At the same time, human brains are able to deal with symbolic
tasks successfully. Therefore, it is necessary to take inspiration from neural science as a
breakthrough for cognitive intelligence.

4.1. Challenges towards Neural-Symbolic based Cognitive Graphs

Recently, there has been a clear tendency towards integrating symbolic reasoning
and deep learning. Neural Al is continuous, distributed and good at dealing with large-
scale perceptual data. Usually, neural Al is implemented efficiently using propagation of
activation and units of tensor processing. Symbolic Al is generally localized and discrete,
which has the ability of sophisticated reasoning, including epistemic, analogic and
temporal reasoning. Recent researches have revealed that non-classical logics provide
an applicable language for describing neural networks [118,119]. In [120], Marcus made
his point clear by stating the necessity of hybrid systems, and attempted to identify
what makes a system hybrid. At this point, all attempts to create such a bridge between
System 1 and System 2 are beneficial and should be commended given our lack of
understanding of how human brains work.
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The challenges for neural-symbolic integration emerge from the goal of robust
learning, expressive reasoning and effective integration.

Turing award winner Leslie Valiant pointed out that the key challenge is to build a
rich semantics and robust representation language for intelligent cognitive behaviours
[121]. Avila Garcez [122] identified representation as the bottleneck and argued for
the importance of focusing on representation since representation precedes learning as
well as reasoning. At the same time, the difficulty of neural networks in explainability
and robustness also leads to the need for a bridge between distributed and localized
representations for reasoning. For several years neural-symbolic computing has been
seeking to establish such a bridge [123-125], leading to the emergence of several methods.
According to Kautz’s taxonomy [126], there are roughly six different types. TYPE 1 is
standard deep learning with symbolic input and output. TYPE 2 is a kind of hybrid
system where the core neural network is loosely-coupled with a symbolic problem solver
such as the Monte Carlo tree search. One typical example of TYPE 2 is DeepMind’s
AlphaGo. TYPE 3 is a hybrid system where a neural network focusing on one task
(e.g. object segmentation) interacts via its input and output with a symbolic system,
subsequently followed by a commentary task (e.g. query answering). Recent efforts in
this direction include Neuro-symbolic Concept Learner [127] and DeepProbLog [128].
TYPE 4 refers to a learning architecture that extrapolates to harder symbolic reasoning
problems [129,130]. Moreover, TYPE 4 includes tightly-coupled but localized neural-
symbolic systems, where the key point is to build a one-to-one correspondence between
neurons and elements of logical formulas [119]. TYPE 5 mainly refers to those tightly-
coupled but distributed neural-symbolic systems in which a logic symbolic rule is
mapped into the form of an embedding. Classical examples include Tensor Product
Representations [131]. Finally, a TYPE 6 system is supposed to have the ability of true
symbolic reasoning inside a neural engine by using an attention schema to achieve
combinatorial reasoning. Recent researches include [132-134], and further researches on
TYPE 6 systems come closer to the essence of neural-symbolic computing.

In summary, by paying attention to the developments of neural-symbolic integra-
tion, we are getting closer to the ultimate goal of promoting the faster development of
cognitive science with expressive reasoning and robust learning capabilities.

To develop neural network models with a symbolic interpretation, the key is to learn
representations neurally and make them available for use symbolically. An adequate
language for describing knowledge encoded in neural networks is an important ingredi-
ent. As a part of the interplay between learning and reasoning, constraint satisfaction is
therefore another ingredient. In addition to the above ingredients, there are a few tough
challenges for neuro-symbolic Al So far, there has been no proper way to achieve the
combination of language and structure. Therefore, the neural-symbolic cognitive graph
has a long way to go inevitably.

4.2. Challenges towards Robust Cognitive Graph

In a certain sense, considering the current technological development level, a
hopefully achievable robust cognitive graph is not necessarily a superhuman, but at least
can be counted on in a reliable way, to apply what it knows to a wide range of problems.

Ernie Davis and Gary Marcus [120] put forward a view that we have no hope of
achieving robust cognitive graphs without first developing systems with deep under-
standing, which equips with the ability to identify subtle patterns in complex data sets
and address questions like a journalist. Although GPT-3 [110] can produce stories and
generate compelling examples, it often falls apart under close inspection and fails to
grasp details [135]. The reality is that GPT-3 only has restricted representations and it
fails to reflect a deep understanding.

Achieving robustness is not just about developing the right cognitive prerequisites.
Actually, it is about developing the right cognitive models. DeepMd’s Atari game
system, DQN, for example, almost lacks cognitive models entirely. Fortunately, in
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the reinforcement learning, there is some sort of internal model that is self-generated,
pointing to the internal system that to some extent correlate with cognitive states, where
a classical example is MuZero [136]. Model-free reinforcement learning often works
remarkably well. However, this does not mean the model-free reinforcement learning is
a good general solution to cognitive intelligence, because they lack rich cognitive models
of the environments, where they operate and they require considerable retraining.

4.3. Challenges towards Explainable Cognitive Graphs

Explainability is the ability to provide explanations in understandable terms to a hu-
man and provide human-understandable justifications for their actions. The importance
of explainability in systems that should be highly-reliable, ethical or legal requirements
has already been emphasized by many papers [137,138]. Explainability is crucial for
some systems that are required to be highly reliable such as the medical system and
the financial system, because an error may cause catastrophic results. Explainability
can make potential failures easier to detect, avoiding severe consequences. Moreover, it
can help engineers to find out the root cause and provide a fix accordingly. Knowledge
extraction is an effective ingredient towards explainable Al systems. The main barrier is
the efficient extraction of correct, compact and complete knowledge. In the case of local
explanations, a knowledge-base is certainly more explainable than a neural network
because it offers a trace showing how an outcome was obtained.

Many aspects of the explainable cognitive graphs are being investigated at present.
Some pendent research lines include: Is an explanation intended set to improve system
performances and reduce bias fairness, or just to understand the decision process? Is
an explanation required because one does not trust the system and would like to cre-
ate a different outcome, or just want to doubt the normative system? Early efforts on
these questions mainly focused on fidelity: a measure of the accuracy of the extracted
knowledge in relation to the neural network. Without high fidelity results, an apparently
good explanation is likely not to be an expected explanation of the underlying system.
D’ Avila Garcez [139] proposed a way of measuring fidelity with local methods, which
should be adopted and promoted vigorously. Since soundness is normally intercon-
nected with exponential complexity, a measure of fidelity may be available in practice
and knowledge extraction should have communications between users and cognitive
systems. Communications with the system mean being capable of asking questions
(querying the system) and checking one’s understanding (obtaining a rationale for the
result). The user can either agree or disagree with the outcome, then provide useful
feedback or direct instruction to change the outcomes.

The existing Al-based decision support systems deal with large scale data in a
timely pattern. Thus, with a so-called human-in-the-loop approach where experts or
end-users may be accountable to the decisions, domain experts or end-users may soon
feel less capable of over-riding recommendations which are based on too much more
data than they could handle with. The current reality is that in order to function well
with Big Data, the current cognitive system must execute a form of triage of the data to be
presented to the expert. Without the abilities of system communication and knowledge
extraction, the decision maker will be out of control. Lastly, the simple extraction of rules
is insufficient. We need to extract confidence values to rank extracted rules. In this way,
a system will know when it does not know. The adversarial approaches and knowledge
extraction for robustness have made a contribution here. In a nutshell, for many reasons
discussed above, a measurable form of knowledge extraction is a fundamental part
towards explainable cognitive graphs.

5. Prospect of Cognitive Graphs

In this second-to-last section of our survey, we give an overview of what are
considered the most potentially theoretical challenges on the way towards robust and
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explainable Al currently. In this section, the future directions and practical questions are
discussed.

It has been argued eloquently that to build a semantical, explainable and ultimately
trustworthy Al system, one needs to pay attention to a lot of aspects, such as integrated
neural-symbolic approaches, extraction of symbolic knowledge from trained neural
networks, integrated neural-symbolic approaches to logical reasoning, cognitive and
biologically-inspired neural-symbolic agents, and applications in robotics, fraud preven-
tion, semantic web, software engineering, fault diagnosis, verification and validation,
bioinformatics.

New developments should investigate the previously unconsidered properties of
symbolic and neural formalisms, which might shed light on offering explanations for
the performances and the empirical applicability.

In essence, the crucial innovation of cognitive graphs is to reduce the information
loss during the construction of the graphs, transfer the pressure of information process-
ing to retrieval and natural language understanding algorithms, and retain the graph
structures for explainable relational reasoning.

In the future, it is necessary to focus on how to capture structural information and
learn rule knowledge at the same time, so as to improve the performance of cognitive
graph reasoning. In the big data era, large-scale, diverse forms, scattered distribution, dy-
namic changes and low-quality data features bring new challenges to Al technologies. It
is necessary not only to learn the distribution representation of data from the perspective
of perception but also to interpret the semantics of data from the perspective of cognition.
The research and development of cognitive graphs that integrate core technologies such
as common sense knowledge graphs, cognitive reasoning and logical expression will
become the key to the breakthrough of the next generation of Al technologies. Given
the fast pace at which developments occur both in industry and academia, we feel it is
helpful to point to potential future directions.

5.1. Common Sense Cognitive Graphs

Common sense knowledge has long been a key component in human-like reasoning
as a fundamental part of Al The significance of having common sense knowledge will
emerge when it comes to action, interpretation and decision-making. If you do not
know what happens when a bottle breaks or what can cause a fire, it is difficult to make
reasoning about what will happen surrounding you. Obviously, you cannot reliably
make plans.

As mentioned previously, deep learning is essentially based on a "big data for small
tasks" paradigm, which has a demand for massive amounts of data in a single narrow
task. Yixin Zhu [140] proposed "small data for big tasks" paradigm which is capable of
solving a wide range of tasks with a few data. The new paradigm consider functionality,
physics, intent, causality and utility (FPICU) as core ingredients of cognitive Al Fig
18 is an example of in-depth understanding through cognitive reasoning and joint
parsing. Reasoning with FPICU relies on the combination of top-down reasoning based
on abstract knowledge and bottom-up reasoning based on visual patterns. This means
the systems would continue to make reasoning from the observation of visible, pixel-
represented scene aspects, as they can do today, and make reasoning with human-like
common senses based on FPICU understanding.

These processes can feed on each other, boosting the performance of the overall
system. The breakthroughs in human vision fields demonstrate the promising potential
power of the FPICU. Commonsense understanding is pivotal in the development of
cognitive intelligence. More efforts should be made to realize the acquisition and
understanding of common senses.
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Figure 18. An example of in-depth understanding through cognitive reasoning and joint parsing.
Reasoning with FPICU depends on the integration of bottom-up reasoning based on visual patterns
and top-down reasoning based on abstract knowledge [140].

5.2. Event Logic Cognitive Graphs

The existing cognitive graphs are still generally based on "concept and their rela-
tions between concepts", which failed to mine "envent evolutionary logic". In practical
applications, the evolutionary rules and patterns between events are valuable common
sense knowledge. It is of great significance to explore this kind of knowledge in order to
understand the laws of human behaviors and social developments.

The concept of Event Logic was proposed by X Ding et al. [141]. To reveal evolu-
tionary patterns and development patterns of real world events, ] P Wang et al. [142]
proposed a directed cyclic graph called Event Logic Graph (ELG). Essentially, ELG is an
event evolutionary logic knowledge base, where nodes are events, and edges stand for
the causal, sequential, conditional or hypernym-hyponym relations between events. The
edges of ELG represent abundant logical rules, including concatenation relationships,
causality relationships and conditional relationships. The concepts, key techniques and
applications of ELG is shown in Figure19.
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Figure 19. The event cognitive vault concepts, key techniques and applications [142].

Large-scale ELGs have tremendous potentials and can be applied to plenty of down-
stream tasks, including event prediction, commonsense reasoning, question answering,
dialogue generation, consumption intention mining and so on.

As a new way of knowledge organization, representation and management, the
ELG is an important breakthrough of cognitive intelligence. Future research should
focus on organizing the universal event evolutionary principles and patterns into a
knowledge graph based on the extracted temporal and causal event pairs.

5.3. Cognitive Robots

The emergence of industrial robots and emotional escort robots demonstrates that
cognitive Al is a tendency for Al to move from narrow weak intelligence to general
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strong intelligence. The human-robot interaction aims to build robotic systems that
can collaborate with humans. To support social interaction, robots need the ability to
generate and understand a variety of verbal expression and nonverbal behaviors of
humans. There are a series of technical challenges, including understanding context,
expressing tasks and domain knowledge and optimizing generated content.

Recent researches show that cognitive robots require a significant cognitive ability
for deep thinking and reasoning based on the development of cognitive systems and
brain-inspired systems. The emergence of language is considered as a fruitful accom-
plishment in multi-agent decentralized collaborations. Being able to communicate and
collaborate with other agents is a crucial component of cognitive Al In classic Al, a
multi-agent communication strategy is modeled using a pre-defined rule-based system
(e.g., adaptive learning of communication strategies in MAS [143-145]). To scale up from
rule-based systems, decentralized partially observable Markov decision processes were
devised to model multi agent interactions, with communications considered as a special
type of actions [146,147]. With the success of RL in single agent games [148], generalizing
Q-learning [149] and actor—critic-based methods [143,150] from single-agent systems to
MAS have been booming topics in recent years.

It is conceivable that in the future, combined with psychological considerations on
embodied interactions and low-level representations of the agent’s sensing, cognitive
modelling is created as output of the ground layer of the envisioned architecture. This
output then is fed into a second layer which performs an extended form of anchoring,
not only grounding symbols referring to perceived physical objects, but also dynam-
ically adapting and repairing acquired mappings between environment and internal
representation.

6. Conclusion

Al has achieved remarkable results with the support of computing power, big data
and deep learning. To develop a more explicable and robust Al, we need a system
that can routinely acquire, represent and manipulate common senses and abstract
knowledge, subsequently applying that knowledge in the service of reasoning over
complex problems.

The advanced development stage of Al is supposed to be a hybrid, knowledge-
driven reasoning-based approach that could provide the substrate for the more explicable
and robust AL The cognitive graph, which is based on the dual-channel theory and the
neuro-symbolic architecture, meets the requirement for critical cognitive prerequisites.
Taken together, progress towards these prerequisites could provide a substrate for richer,
more intelligent systems.

In this paper, we highlight the key ideas and principles of the cognitive graph and
illustrate the main methodological approaches for the integration of effective neural
learning with symbolic-based, knowledge representation and reasoning methods.

In summary, by paying attention to the developments of cognitive graph, we
are getting closer to the true artificial intelligence, or at least promoting the faster
development of cognitive sciences and Al.
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