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Abstract: The realization of the third-generation artificial intelligence (AI) requires the evolution1

from perceptual intelligence to cognitive intelligence, where knowledge graphs may not meet2

the practical needs anymore. Based on the dual channel theory, cognitive graphs are established3

and developed through coordinating the implicit extraction module and the explicit reasoning4

module as well as integrating knowledge graphs, cognitive reasoning and logical expressions,5

which have achieved successes in multi-hop question answering. It is desired for cognitive graphs6

to be widely used in advanced AI applications such as large-scale knowledge representations7

and intelligent responses, promoting the development of Al dramatically. This review discusses8

cognitive graphs systematically and elaborately, including basic concepts, generations, theories9

and technologies. Moreover, we try to predict the development of cognitive intelligence in the10

short-term future and further enlighten more researches and studies.11

Keywords: Cognitive Graph; Knowledge Graph; Knowledge Reasoning; Natural Language12

Generating.13

1. Introduction14

The previous few decades have witnessed the dramatic development of artificial15

intelligence (AI). Broadly speaking, there have been three major stages during the16

evolution of AI [1], as can be seen in Figure 1.17

Figure 1. The development stages of AI.

The first stage is computational intelligence, which is owing to the fast computing18

and mass storage capacities of computers. With the maturity of technologies such as grid19

computing, distributed storage and quantum storage, the computing power of machines20

has far exceeded that of human beings and laid a solid foundation for the next stages.21

The second stage is perceptual intelligence, which is the current stage of AI. Perceptual22
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intelligence understands the world through auditory, visual and tactile sensing systems,23

so that machines can acquire abilities of "listening”, “speaking” and “watching" [2–12].24

Perceptual intelligence is mainly concerned with two schools, namely data-driven25

AI represented by deep learning [13] and knowledge-driven AI represented by knowl-26

edge graphs. With the support of big data, computing power and advanced algorithms,27

data-driven AI has approached or even surpassed humans in many tasks. For example,28

the error rate of image recognition on ImageNet has become lower than that of humans29

since 2015 [14]. The speech recognition in a single Chinese sentence also achieves a lower30

error rate [15]. However, the effect of neural networks heavily depends on the training31

data, where massive high-quality annotated data are usually required. Furthermore, the32

inference results are lack of explainability [16], poor in robustness [17,18], and easy to be33

disturbed [19–21]. The model is usually oriented to a specific task and difficult to migrate34

for different tasks. On the contrast, the symbolic knowledge-driven AI represents the35

relationships between entities through symbol transformation. Different from deep36

learning, knowledge graphs are highly interpretable and widely applicable to different37

tasks [22–27]. However, the incompleteness of knowledge graphs results in low accuracy38

of logical inference rules learned from sparse data, especially when the order of inference39

rules is increased. Symbol-based knowledge reasoning methods mostly use logic rules40

written manually or learned from the existing knowledge base. It is difficult for the41

manual method of writing logic rules to meet the demands of large-scale knowledge rea-42

soning, with low reasoning coverage and low reasoning efficiency. Therefore, knowledge43

graphs face two fatal defects, which are high manually-built cost and low automatic-44

built precision. CYC [28] is one of the earliest knowledge projects, with each knowledge45

content cost $5.71 manually. On the other hand, although another knowledge project46

NELL [29] applies machine learning to realize automatic knowledge graph building, its47

error rate is increased to 10 times correspondingly. Therefore, the two notable projects48

are at a standstill. Characteristics of data-driven AI and knowledge-driven AI are shown49

in Table 1.

Table 1: The characteristics of data-driven AI and knowledge-driven AI.

Ability
performance

AI driven by data AI driven by
knowledge

Technology Deep learning Knowledge graph
Explainability Weak Strong

Robustness Weak Strong
Generalization

ability
Weak Strong

Input data
requirements

Massive
labeled-training

data

Structured,
noiseless data

Application scope Specific tasks,
difficult to

migrate

Widely applicable
to different tasks

50

To solve the problems mentioned above, some researchers proposed the concept of51

cognitive intelligence, which is considered as the third stage of AI. Bo Zhang unveiled52

a theoretical framework of the third-generation AI in 2018. The core goal of cognitive53

intelligence is to build up explainable and robust AI theories and methods, with secure,54

reliable, trusted and scalable AI technologies developed. To achieve this goal, one55

possible way is to combine knowledge-driven AI with data-driven AI and fully take56

advantages of both. As shown in Table 1, data-driven AI and knowledge-driven AI have57

apparent complementary relationships in inputs, outputs and functions. This situation58

is similar to that based on the dual-channel theory in human cognitive science.59
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Inspired by the dual-process theory in cognitive science, Ding et al. [30] built a cog-60

nitive graph iteratively by coordinating an implicit extraction module (System 1) and an61

explicit reasoning module (System 2). System 1 is conducted by an efficient knowledge-62

driven model called Bidirectional Encoder Representations from Transformers(BERT)63

[31], which can extract question-relevant entities and organize them into a cognitive64

graph. System 2 is processed by a data-driven neural network called Graph Neural65

Network (GNN) [32], which can carry out the reasoning procedure over the graph. The66

implementation based on BERT and GNN can not only reach accurate answers, but also67

provide explainable reasoning paths. The state-of-art results on the Hotpot QA dataset68

show the efficacy of cognitive graphs and indicate it is promising to develop cognitive69

graphs with the fusion of knowledge-driven AI and data-driven AI.70

Figure 2. The foundation of cognitive graphs.

This paper aims to present a comprehensive overview of the cognitive graphs, to71

provide researchers with synthesis and pointers to relevant researches, and to introduce72

the field to researchers who are less familiar with cognitive graphs. In this paper,73

we systematically and elaborately review information about cognitive graphs. We74

construct this paper in a top-down structure, as shown in Figure 3. The first part mainly75

introduces the background and basic concepts of cognitive graphs. The second part76

mainly introduces the critical technology road maps of cognitive graphs, including77

knowledge graphs, knowledge reasoning and natural language generating. Lastly, we78

identify the challenges and point out the most promising technical research directions of79

cognitive graphs.80

Figure 3. The overall structure of the paper.

2. Basic Information about Cognitive Graphs81

2.1. Dual Channel Theory82

The basic idea of cognitive graphs derives from the dual-channel theory in cognitive83

science, which classifies the cognitive systems of human brains according to functions of84

System 1 and System 2. As shown in Figure 4, System 1 is an intuitive system, which85

aims to find the answer through an intuitive matching of relevant information. So it86
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can only make intuitive and straightforward decisions, which actually fails to handle87

complex reasoning process. On the contrast, as an analysis system which finds answers88

through logic reasoning, System 2 improves the ability to handle complex reasoning.

Figure 4. The cognitive system of human brains: System 1 and System 2.
89

Similar to the situation of System 1, current deep learning technologies perform90

well in the intuitive, fast, unconscious and habitual system, while perform poorly in the91

slow, logical, sequential, conscious system. Yoshua Bengio, ACM Turing Award winner,92

issued a statement in the special report of NeurIPS 2019 [33], that deep learning needs to93

develop from System 1 to System 2. How to overcome the limitations of previous deep94

learning and realize the cognitive intelligence is an urgent problem. Fortunately, the95

cognitive graph which follows the dual-channel theory in cognitive psychology is able96

to unify System 1 and System 2 and take full advantages of both, overcoming the defects97

of the deep learning system and knowledge graphs.98

2.2. The Birth of Cognitive Graph99

Ding et al. [30] first proposed the cognitive graph and leveraged it to deal with100

question&answer (Q&A) of reading comprehensions in the multi-hop field, where101

a classical question is "Who is the director of the 2003 film which has scenes in it102

filmed at the Quality Cafe in Los Angeles?". In traditional methods, open-field Q&A103

mainly relies on a large-scale knowledge graph. Previous work DrQA [34] proposed a104

straightforward framework to solve open-domain Q&A. The researchers first retrieved105

5 most similar documents using a retriever model, and then turned the question into106

single-paragraph Q&A. However, in multi-hop questions, this method suffers from107

"short-sighted retrieval". This means that the relevance between the text of last few108

jumps and the question is very low, which is actually difficult to be directly retrieved,109

resulting in a poor effect. In addition to retrieval problems, there are also two challenges110

lying ahead, which are explainability and scalability.111

Grounded on the dual process theory, an ideal cognitive graph can contribute to112

all the three challenges significantly. It is an iterative framework to build the cognitive113

graph step by step. As for the example of "Who is the director of the 2003 film which has114

scenes in it filmed at the Quality Cafe in Los Angeles?", the overview procedure of the115

cognitive graph is shown in Figure 5.116

Models based on System 1 extract question-related entities from paragraphs to build117

the cognitive graph and generate semantic vectors for each node. Then the relevant118

paragraphs about new extracted entities are retrieved or just indexed from Wikipedia.119

Meanwhile, models based on System 2 carry out reasoning based on semantic vectors120

and compute clues to guide the extraction of System 1. After several iterations, System 2121

selects a node as the predicted answer based on the reasoning results. Figure 6 shows122

the detailed procedure of cognitive graph.123

System 1 and System 2 can be established by various types of models. Since the124

cognitive graph is initialized with entities extracted from questions, it is crucial to seek125

out a powerful module to extract useful entities and generate semantic vectors for each126

node. Recently, BERT [31] has been proved to be a successful language representation127

model. Therefore, BERT is designed to serve as System 1. The input of System 1 consists128

of three parts, including the question, the "clue" found in the previous paragraph and129
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Figure 5. An example of the cognitive graph for multi-hop Q&A. Each hop node corresponds to
an entity, followed by its introductory paragraph. The circles mean answer nodes, representing
answer candidates to the question. The solid black edges are the correct reasoning paths [30].

Figure 6. Procedure of cognitive graphs. System 1 extracts question-related entities from para-
graphs and generates semantic vectors for each node. System 2 carries out reasoning based on
semantic vectors and computes clues to guide the extraction of System 1. After several iterations,
System 2 selects a node as the predicted answer based on the reasoning results [30].

the Wikipedia document about an entity x (for example, x is the movie “Old School”).130

The goal of System 1 is to extract the "next hop entity name" and "answer candidate" in131

the document. For example, as shown in Figure 5, from the "quality café" paragraph,132

"old school" and "gone in 60 seconds" are extracted as the entity names of the next jump.133

These extracted entities and answer candidates will be added to the cognitive graph134

as nodes. In addition, System 1 will calculate the semantic vector of current entity x,135

which will be used as the initial value of relational reasoning in System 2. Owing to136

the inductive bias of graph structure, GNN has presented remarkable performances on137

relational reasoning. Correspondingly a variant of GNN is designed to serve as System138

2. GNN takes an semantic vector from System 1 as the initial hidden representation for139

each entity. At each step, hidden representations X for nodes are updated according to140

the propagation rules. A two-layer multilayer perceptron serves as the predictor, which141

predicts the final answer based on hidden representations X. To identify the correct142

answer node from the cognitive graph, the model in System 2 constructs a training143

sample for the reasoning task. Each training sample is the union of all correct reasoning144

paths and negative nodes. The losses of answer node prediction can not only optimize145

predictors and System 2, but also fine-tune System 1 through semantic vectors. The146

overview of cognitive graph implementation is illustrated in Figure 7.147
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Figure 7. Overview of the cognitive graph implementation. When visiting the node x, System
1 generates new hop and answer nodes based on the clues[x, G] discovered by System 2. It also
creates the initial representation sem[x, Q, clues], based on which the GNN in System 2 updates
the hidden representations X[x] [30].

2.3. The Advantages of Cognitive Graphs148

The cognitive graph achieves state-of-art results on the HotpotQA dataset with149

outstanding performances on all the evaluation metrics, reaching a winning joint F1150

score of 34.9, obviously higher when compared to 23.6 of the best competitor. More151

critically, the cognitive graph not only elevates the reasoning ability by solving the152

intractable short-sighted retrieval problem, but also attains unprecedented explainability153

and scalability. All the excellent performances mainly attribute to the superiority of154

the dual-channel-based cognitive graph framework over traditional retrieval-extraction155

methods. By iteratively expanding with clues and adding 1-hop entities spotted in156

the question, the cognitive graph improves the retrieval of multiple hops away from157

the question, which is often hard to be backtracked in traditional retrieval-extraction158

frameworks. Moreover, since the only operation purpose referred to all paragraphs is to159

acquire some specific paragraphs by their title indexes, the consumption of time does160

not have a significant growth along with the number of paragraphs. As a result, the161

cognitive graph can scale in nature. Benefiting from the explicit reasoning paths and162

collaborative reasoning processes, the cognitive graph enjoys marvelous explainability.163

Figure 8 shows its superiority in explainability.

Figure 8. Case Study. Circles are candidate answer nodes while rounded rectangles are hop nodes.
Green circles are the final answers given by the cognitive graph and check marks represent the
annotated ground truth [30].

164

As shown in Figure 8, for an intractable semantic retrieval question without any165

entity mentioned, the cognitive graph finally gets the answer “Marijus Adomaitis”,166

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0155.v1

https://doi.org/10.20944/preprints202108.0155.v1


Version August 6, 2021 submitted to Journal Not Specified 7 of 34

while the annotated standard answer is “Ten Walls”. However, considering that "Ten167

Walls" is the stage name of Marijus Adomaitis, the cognitive graph yields a more accurate168

result. When further tracing back to the reasoning process in the cognitive graph, it turns169

out that the model has already reached “Ten Walls” and finally answers with his real170

name, which seems to be more reasonable. Such explainable advantages are not enjoyed171

by black-box models. This explainability brings benefits to the users, that traditional172

black-box models do not have.173

3. The Contents of Cognitive Graphs174

Cognitive intelligence can reason the real world flexibly and dynamically, and trans-175

fer what it learn with the help of synthesized knowledge based on a large amount of data.176

It is well known that human cognition can successfully integrate the connectionist (brain-177

inspired) and symbolic (mind-inspired) paradigms, where the language is a compelling178

case in point. To build an intelligent cognitive graph, it is urgent and indispensable to179

develop a framework that can routinely acquire, represent, and manipulate knowledge,180

simultaneously using the knowledge in the service of reasoning logically like humans.181

Thus, as shown in Figure 9, three core technical supports are needed as prerequisites182

for building cognitive graphs: 1) large-scale knowledge graphs to support intuitive183

knowledge expansion; 2) reasoning mechanisms to conduct complex reasoning and184

make analytic decisions; 3) large-scale pre-trained natural language generating models185

to explain the inference process and express the reasoning results in a human-friendly186

way.187

Figure 9. The Cornerstone of Cognitive Graph. On the way to build cognitive graphs, three
core technical supports are needed as prerequisites for building a cognitive graph: large-scale
knowledge graphs to support intuitive knowledge expansion; reasoning mechanisms to conduct
complex reasoning and make analytic decisions; large-scale pre-trained natural language generat-
ing models to explain the inference process and express the reasoning results in a human-friendly
way.

3.1. Knowledge Graph188

The knowledge graph is regarded as an important cornerstone in the transformation189

from perceptual intelligence to cognitive intelligence. Edward Feigenbaum [35], Turing190

Award winner, the founder of knowledge engineering, once asserted that knowledge191

is the power in AI systems. Building large-scale and high-quality knowledge graphs192

is an essential link in the process of spanning from perceptual intelligence to cognitive193

intelligence.194

3.1.1. Basic Concept of Knowledge Graph195

A knowledge graph, also known as a semantic network, represents a network of196

real-world entities and illustrates the relationship between objects, events, situations197

and so on. The information is usually stored in a graph database and visualized as198

a graph structure, prompting the term knowledge graph. The knowledge graph is a199

multi-relational graph composed of entities (nodes) and relations (different types of200

edges). Each relational fact is represented as a triple of the form (head entity, relation,201

tail entity), indicating that two entities are connected by a specific relation. In essence, a202
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knowledge graph is a semantic network that reveals the relationship between entities,203

which can formally describe the real world and different relationships.204

3.1.2. Key Technologies of Knowledge Graph205

The techniques applied in knowledge graph building mainly include knowledge206

graph construction and knowledge graph representation.207

The overview framework of knowledge graph construction is shown in Figure208

10. As can be seen, the whole framework mainly consists of four parts, which are209

data acquisition, information acquisition, knowledge fusion and knowledge processing210

respectively.211

Figure 10. Overview of knowledge graph construction framework. The whole framework mainly
consists of four parts: data acquisition, information acquisition, knowledge fusion, and knowledge
processing [36].

Data Acquisition212

Data Acquisition is the cornerstone of knowledge graph, whose goal is to extract213

structured data from unstructured or semi-structured data. Then the knowledge graph214

is built up based on these data. This step is mainly carried out with a series of automatic215

or semi-automatic techniques, where knowledge ( actually a heap of entity relationships216

) is extracted from raw data and stored into the knowledge base.217

Information Acquisition218

Information acquisition aims to extract entity attributes and their interrelations from219

various data sources. This task can be divided into three categories: entity extraction,220

relation extraction and attribute extraction [37,38].221

Entity extraction [39], also known as Named Entity Recognition (NER), is created222

to make automatic identification of proper nouns (organization name, place name,223

person name, time, etc.) or meaningful noun phrases from text corpus. It is the basis of224

knowledge acquisition. The accuracy of entity extraction directly affects the quality and225

efficiency of knowledge acquisition.226

Attribute extraction [40] aims to achieve a complete description of entities. The227

attributes of entities can be regarded as a nominal relationship between entities and228

attribute values. Therefore, attribute extraction tasks can be transformed into relation229

extraction tasks.230

Relation extraction [41] is applied to solve the problem of semantic links between231

entities. The relationship extraction is mainly to identify entity relations through the232

artificial construction of semantic rules and templates. Subsequently, the relationship233

model between entities gradually replaces the manual predefined syntax and rules.234

Knowledge Fusion235

After acquiring new knowledge, it is necessary to integrate it to remove contradic-236

tions and ambiguities, improve knowledge quality.237

Knowledge fusion [42] was supposed to acquire multi-level, machine-processable238

and more complete innovative knowledge, and simultaneously remove uncertain and239

conflicting knowledge. So knowledge fusion is cosidered as an advanced stage of240

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0155.v1

https://doi.org/10.20944/preprints202108.0155.v1


Version August 6, 2021 submitted to Journal Not Specified 9 of 34

knowledge integration. When multiple sources bring incomplete and inconsistent241

information, knowledge fusion is applied to produce new information (knowledge) that242

is complete and accurate, thus improve knowledge consistency and knowledge quality.243

Knowledge Processing244

For new fused knowledge, qualified parts can be added to the knowledge base245

to ensure the quality of the knowledge base after quality assessment. Knowledge246

processing mainly consist of ontology construction and quality evaluation.247

a) Ontology Construction248

Ontology is the semantic basis of communication between different subjects in the249

same domain, which has a tree structure. The most important feature of ontology is250

that it is shared, and the knowledge appearing in ontology is a kind of well-defined251

consensus. Ontology can be constructed by manual editing, with the help of ontology252

editing software. Or it can be automatically constructed by data-driven method, and then253

modified and confirmed by combining algorithm evaluation. The main research work of254

current ontology generating methods mainly focuses on the entity clustering method255

[43,44]. The main challenge is that the entity descriptions obtained by information256

extraction are very few and necessary context information is absent, which leads to the257

unavailability of most statistical models [45,46].258

b) Quality Evaluation259

The task of quality assessment of knowledge base is usually carried out together260

with the entity alignment task. Its significance is that the credibility of knowledge can be261

quantified, and the quality of knowledge can be effectively guaranteed by retaining the262

higher reliability and abandoning the lower confidence.263

Knowledge Graph Representation264

The knowledge graph representation is also called knowledge graph embedding.265

The key idea is to embed entities and relationships into a low-dimensional continuous266

vector space, so as to simplify operation and retain the inherent structure of the knowl-267

edge graph. A classical knowledge graph embedding technique is usually made up of268

three steps: (i) representing entities and relations, (ii) defining a scoring function, (iii)269

learning entity and relation representations. The existing knowledge graph embedding270

technologies are mainly divided into two categories: translational distance models and271

semantic matching models [47].272

a) Translational distance model273

In a translational distance model, the knowledge is well-preserved via capturing274

and measuring monolingual relations among entities with a distance-based scoring275

function.276

In 2013, Mikolov et al. proposed Word2vec [48], a word representation model,277

and they discovered the translation-invariant phenomenon in the word representation278

space. Inspired by the translation-invariant phenomenon [48], Antoine Bordes et al.279

proposed TransE [49] to embed knowledge graphs into low-dimensional space via280

relational translation, which models the entity & relation representation as well as the281

monolingual relations. Since the TransE model has fewer parameters, the computational282

complexity is significantly reduced, and it also has better performances on the large-scale283

sparse knowledge graph. However, the TransE model has trouble dealing with complex284

relationships (such as 1-to-N, N-to-1, N-to-N). In response to the above problems of285

TransE model, an effective strategy called TransH was proposed [50]. It allows an entity286

to have distinct representations under different relationships by introducing the hyper-287

plane. Both TransE and TransH assume that entities and relationships are vectors in288

the same semantic space, so that similar entities can be located at similar positions in289

the space. However, each entity can have many aspects, while different relationships290

focus on different aspects of the entity. Therefore, the TransR model [51] establishes291

separate relationship spaces for different relationships. The TransR model is more292

complex than the TransE and TransH models because it introduces a projection matrix293

for each relationship. Thus, TransR is computationally intensive. The TransD model294
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[52] has made improvements to solving the above problems. It represents each entity or295

relationship with two vectors, one for semantics and another for building a mapping296

matrix. The process of mapping matrix and space transformation can also be replaced297

by vector multiplication, thus avoiding time-consuming matrix multiplication. Due298

to the uncertainty of semantics of entities and relationships in the knowledge graph,299

which has been ignored in previous research, TransG [53] proposed a KG2E model, using300

the Gaussian distribution to represent entities and relationships. The covariance of the301

Gaussian distribution indicates the uncertainty of the entity or relationship. TransG also302

models Gaussian entities, that is, TransG applies the Gaussian mixture model to describe303

the relationship between head and tail entities. By considering different semantics of304

relation, the TransG model could form multiple Gaussian distributions to distinguish305

correct and incorrect entities.306

b) Semantic matching model307

Semantic matching models exploit similarity-based scoring functions to measure308

plausibility of facts by matching latent semantics of entities and relations contained in309

their vector space representations.310

One of the most representative semantic matching models is RESCAL [54]. In this311

model, entities are represented as vectors and relationships are represented as matrices.312

This relational matrix is applied to model the paired interaction between potential factors,313

and the scoring function is defined by a bilinear function. DistMult [55] simplifies314

RESCAL by restricting the matrix associated with the relation to diagonal matrices.315

However, the over-simplified model can only deal with symmetric relationships, which316

is obviously not fully applicable to general knowledge graphs.317

By taking advantage of the expressiveness of RESCAL and the simplicity of Dist-318

Mult, the Holographic Embeddings (HolE) model [56] represents both entities and319

relations as vectors. Therefore, it can model asymmetric relations as RESCAL does but is320

more efficient than RESCAL.321

Inspired by the success of deep learning, some models attempt to integrate deep322

architectures into knowledge embedding, such as Semantic Matching Energy (SME)323

[57], Multilayer perceptron (MLP) [58], Neural Tensor Network (NTN) [59], and Neural324

Association Model (NAM) [60].325

3.1.3. Challenges of Knowledge Graph326

Although some neural networks have achieved impressive performance in knowl-327

edge graph representation and construction, they still have limitations in terms of328

transparency and explainability. Considering the basic requirements of knowledge329

graph based cognitive intelligence, we summarize the fundamental problems and corre-330

sponding challenges as follows:331

A) Challenges of data quality and scale332

Massive amounts of data are generated every day in the era of big data. Crawling,333

downloading, and indexing these web-page data requires a lot of storage and network334

resources. Traditional information extraction algorithms face the bottleneck of efficiency335

and it is difficult to cope with the dynamic changes of large-scale data. Meanwhile, web336

data also contain a lot of noise data, such as inconsistent data formats, diverse data337

types, and fuzzy naming, which bring great challenges to the information extraction338

technology.339

B) Challenges of knowledge graph representation340

The knowledge graph is a graphical representation of knowledge. It is necessary341

to establish a unified semantic space for knowledge so that the semantics can be cal-342

culated, so as to conduct prediction, reasoning and recommendation. Therefore, it343

has remained an urgent requirement to design more powerful knowledge graph repre-344

sentation learning algorithms to incorporate more ontology features and analyze the345

relationship between representation learning and ontology reasoning.346

C) Challenges of knowledge graph construction347
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Building a knowledge graph requires extracting knowledge of entities, relationships,348

and attributes from different types of data. The difficulty of extracting knowledge349

is up to the type of data. For example, text data involve a large amount of natural350

language understanding issues. Image data involve a large amount of vision recognition-351

related issues. Voice data involve a large amount of voice recognition-related issues.352

Multimodal noisy perceptual data brings burdensome challenges to the construction of353

knowledge graph because more cross-modal relations bring accompanying cross-modal354

disambiguation.355

D) Challenges of knowledge graph storage356

The current knowledge graphs are usually based on multiple data models, such as357

resource description framework (RDF) graphs and attribute graphs. Although the RDF358

graph model has a stronger expression ability than the attribute graph model, its exces-359

sive theoretical information affects its promotion in the industry. The attribute graph, in360

contrast, is not perfect in terms of its theoretical foundation. So far, it has not formed a361

uniformly recognized strict mathematical definition. Although the attribute graph has362

been applied in multiple graph databases, it has not yet formed an industry standard.363

In addition, for different data models, there are different query languages in different364

graph databases, including SPARQL, Cypher, PGOL and so on. The inconsistency of365

data models and query languages not only increases the cost of database development366

and maintenance but also brings difficulties to users’ learning.367

3.1.4. Future Directions of Knowledge Graph368

New challenges in knowledge graphs (e.g., knowledge representation, construction,369

and storage) also provide potential opportunities, and we explore a series of future370

directions as follows:371

Information Extraction in Open Domain372

In the stage of knowledge graph construction, information extraction is an im-373

portant part. Current relation [61] extraction algorithms are mainly divided into two374

classes: open-domain and closed-domain. While closed-domain algorithms mainly375

apply supervised methods [62,63] or weakly supervised methods [64,65] to identify a376

finite and fixed set of relations, the open-domain algorithms explore relations without377

predefined schema, thus resulting in a series of challenges. Corpus heterogeneity is an378

evident obstacle for practicable tools. In order to expand the scale and coverage of the379

knowledge graph, researchers have paid attentions to information extraction methods380

for open fields. Automatically extracting knowledge from unlimited data resources is a381

potential hopeful way to build large-scale knowledge graphs, and it is also the underly-382

ing support for other high-level technologies such as knowledge reasoning. Therefore,383

open-domain information extraction technology is the hot-spot of future researches in384

the construction of knowledge graphs.385

Unifying Data Model and Query Language386

In terms of knowledge graph storage, the data model and query language are not387

unified yet. The unified data model and query language not only reduce the research and388

development cost of the database management systems, but also reduce the cost of users389

designing, building, managing and maintaining the database, and reduce the learning390

difficulty for new users. Therefore, for a unified knowledge graph data model, the391

development of a unified knowledge graph query language, and the definition of precise392

syntax and semantics are important research directions for the future of knowledge393

graph storage.394

Improving Explainability and Reliability395

Although some neural networks have achieved impressive performance in knowl-396

edge graph representation and construction, they still have limitations in terms of397

transparency and explainability. Some methods try to combine the black-box neural398

network models with symbolic reasoning, and increase explainability by introducing399

logical rules. Because only the realization of explainability can convince human to400
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believe in the prediction results, researchers need to do more in terms of explainability401

and improving the credibility of prediction results.402

3.2. Cognitive Reasoning403

Cognitive reasoning is an essential part of cognitive intelligence. Combined with404

the reasoning process of human brains, cognitive reasoning can further solve the complex405

problem of reading comprehension and the inference problem of knowledge graph with406

fewer samples, cooperative structured reasoning process and unstructured semantic407

understanding. Cognitive reasoning can help machines acquire multimode perception408

abilities. Knowledge graphs provide strong supports for cognitive reasoning. The409

bottom realization of cognitive reasoning is knowledge reasoning. Therefore, from the410

perspective of knowledge reasoning based on knowledge graphs, this section introduces411

the concept, development process, key technologies, problems, challenges and future412

research directions.413

3.2.1. Basic Concept of Reasoning414

The basic concept of reasoning is generally defined as a process in which people415

analyze, synthesize and make decisions on various things [66]. Kompridis [67] points416

out that knowledge reasoning is to obtain new knowledge from existing knowledge417

based on specific rules and constraints. Tari [68] defines reasoning as a general term418

for a series of capabilities, including the abilities to consciously understand things, to419

establish and verify facts, and to infer new knowledge based on the existing facts and420

logic rules.421

3.2.2. Key Technologies of Reasoning422

Early traditional reasoning methods are divided into deductive reasoning, inductive423

reasoning and default reasoning. Traditional knowledge reasoning is mainly based on424

logic and rules, such as first-order logic and predicate logic [69].425

With the explosive growth of Internet data scale, traditional methods cannot adapt426

to the need to mine a large amount of knowledge in the era of big data. Recently,427

reasoning over knowledge graphs has become a hot research topic since it can obtain428

new knowledge and conclusions from existing data. With the emergence of distributed429

representations and neural network technologies, reasoning over knowledge graphs has430

attracted extensive attention. The reasoning methods are divided into three categories:431

rule-based reasoning, distributed representation-based reasoning and neural network-432

based reasoning.433

Reasoning based on logic rules434

Reasoning methods based on logic rules include logic reasoning, ontology reason-435

ing and random walk reasoning. In the early stage, first-order predicate logic rules are436

exploited for reasoning, with typical high-accurate knowledge graph-oriented applica-437

tions such as First-Order Inductive Learner (FOIL) [70]. Nevertheless, this universal438

protocol is suppressed by the complexity and diversity of large-scale knowledge graphs.439

On the contrast, balanced protocols such as the description logic [71], a decidable subset440

of predicate logical rules, are found to be more suitable. Subsequently, the well-defined441

semantics and powerful reasoning tools lay a crucial foundation for ontology reasoning.442

Classical ontology reasoning methods could be based on tableaux, logical program-443

ming, first-order queries, production rules and so on. For instance, the tableaux-based444

method [72] only supports reasoning with predefined ontology axioms. In contrast,445

the Datalog-oriented rewriting method based on logical programming can meet most446

user-defined reasoning needs. As supplementary, another rewriting method based on447

first-order queries, which is associated with different query languages, can efficiently448

combine data sources with different data formats.449

In 2001, a unique algorithm based on random walk reasoning, named Path Ranking450

Algorithm (PRA) [73], was introduced by Lao et al. to deal with related reasoning issues.451
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PRA is a typical technique for performing reasoning in a graph. To learn the inference452

model for a particular edge type in a knowledge base, PRA finds sequences of edge453

types that link nodes and then uses those types as features in a logistic regression model454

to predict missing edges in the graph. PRA dramatically improves the efficiency and455

robustness by replacing exhaustive searches with random walks and using unique paths456

as features in a per-target-relation binary classifier.457

Reasoning based on distributed representations458

Owing to the development of embedding technology, knowledge reasoning based459

on distributed representations has made great progress, using tensor decomposition,460

distance and semantic matching models. Its motivation is to project the entity and461

relation in the triple facts (head entity, relation and tail entity) into a low-dimensional462

vector form and perform inference predictions based on vector representations.463

The tensor decomposition model treats the fact triple of knowledge graph as an464

element to construct tensors, where unknown knowledge is inferred by tensor de-465

composition. In this process, high-dimensional arrays are decomposed into multiple466

low-dimensional matrices. The RESCAL model [54] is a typical tensor decomposition467

model, which can reduce the data dimension and retain characteristics of the original468

data by decomposing multi-relational and high-dimensional data into a third-order469

tensor. Advanced similar models include TRESCAL [74], PRESCAL [75] and a novel470

model combining matrix decomposition with tensor decomposition.471

The purpose of the distance model is to design a score function based on the transfer472

hypothesis to measure the validity score of the fact triple, where a higher score means473

better validity. TransE is one of the most widely-used distance models, in which potential474

feature representations are simply and efficiently translated by a relation-specific offset.475

However, due to the disability to quickly deal with 1-to-N, N-to-1 and N-to-N relations,476

TransE has been replaced by TransH in these cases. The latter realizes those relation477

treatments through introducing a relation-specific hyperplane.478

The original semantic matching model uses two separate matrices to project head479

and tail entities for each relationship, which actually cannot effectively represent the480

essential relationship. In order to solve this problem, a novel method, named Semantic481

Matching Energy (SME) [76], is put forward jietuwith both linear and bilinear forms of482

semantic matching energy functions well defined.483

Reasoning based on neural networks484

By imitating the human brain for perception and cognition, neural networks have485

a great ability to extract features, making it potential to knowledge graphs (as well as486

cognitive graphs) reasoning. Reasoning based on neural networks can be classified487

according to detailed models such as Convolutional Neural Network (CNN), Recurrent488

Neural Network (RNN) and Reinforcement Learning (RL).489

At the early stage, a single layer model based on CNN is proposed to connect the490

entity vectors implicitly, which is soon replaced by an advanced model named Neural491

Tensor Network (NTN). With the assistance of a bilinear tensor layer, NTN can improve492

the reasoning performance efficiently. Other models based on CNN include ProjE [77],493

DKRL [78] and so on.494

As for models based on RNN, a new approach to reason about conjunctions of multi-495

hop relations is proposed by Rajarshi Das et al. , which is called Path RNN [79]. In Path496

RNN, a path-sorting algorithm is exploited to find a different path for each relationship497

type, and the embedded representation of the binary relationship is treated as an input498

vector. Considering drawbacks of Path RNN such as the disability in downstream tasks,499

Single Model [80] is then put forward, which shares the relation type representation and500

the composition matrices of RNN across all target relations, enabling the same training501

data to be represented by a reduced number of parameters. Single Model significantly502

increases the accuracy and practicality of RNN based reasoning on Horn clause chains503

in large scale knowledge bases.504
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Models based on RL can work well because the process of inferring unknown505

answers over incomplete knowledge bases can be modeled as a serialized decision506

problem. For example, with a related framework called DeepPath [81], it is the first time507

for RL methods to be applied to multi-hop reasoning problems. Afterward, a neural RL508

method called MINERVA [82] is proposed, which learns how to find the predictive path509

according to the input query and avoids the requirement of modeling. In MINERVA, the510

large-action-space shortage of Deep Path has been well solved.511

3.2.3. Challenges of Reasoning512

Reasoning methods based on description logic and rules can capture semantic513

information hidden in a knowledge graph, significantly improving the accuracy of514

knowledge reasoning. Moreover, it can imitate human reasoning capabilities, making515

it possible to use prior knowledge to assist reasoning. However, the manual-defined516

logic rules have the limitations of high cost and low coverage, and the inference rules517

automatically mined by algorithms are likely to contain noise. In addition, the currently518

gained rules are relatively simple and have poor generalization ability.519

The method of reasoning based on distributed representation is to map entities520

and relationships to low-dimensional space vectors, and to use semantic expressions for521

reasoning. The advantage is that it fully utilizes the structural information in the knowl-522

edge graph, and the method is convenient to extend for large-scale knowledge graphs.523

The disadvantage is that this kind of approach does not consider prior knowledge when524

establishing the reasoning model. It only considers satisfying the constraint conditions of525

fact triples in the knowledge graph, leading to the lack of deeper component information,526

which limits the reasoning ability.527

The reasoning method based on the neural network directly models the fact triples,528

which has strong learning, reasoning and generalization abilities. However, the model is529

complicated and poor at explainability. Moreover, it is deficient in acquiring high-quality530

data to build a large-scale knowledge graph. Although on the internet, publicly available531

data is large in scale, it has the characteristics of fragmentation, diversity, irregularity,532

and noise. Besides the imperfect knowledge extraction technology, it is difficult to533

guarantee the quality of knowledge in the knowledge graph. Reasoning technologies534

based on rules, distributed representations, and neural networks are more sensitive to535

noisy data. Ambiguous data will lead to learning deviations and reduce the accuracy of536

inference results.537

3.2.4. Prospect of Reasoning538

Following with the fundamental challenges in knowledge graph reasoning, we539

further discuss and explore a series of possible future research directions as follows:540

Multi-source knowledge reasoning541

Knowledge reasoning based on multi-source information may reduce the connec-542

tivity and sparsity of knowledge graph by combining text corpus or other knowledge543

graphs so as to carry out effective reasoning. Knowledge reasoning based on multi-544

source information can improve reasoning performance by mixing different methods at545

a deeper level. In addition, in view of the outstanding performance of neural networks546

in various fields, including knowledge graph, the fusion of neural networks and other547

complementary methods will become the main research focus in the future, combining548

the vital learning and generalization ability of neural network with the high accuracy549

and explainability of rule method, excellent reasoning results are obtained. For the entity550

prediction task, the proposed method can be used to predict entities, the proportion551

of effective entities ranked in the top 10 reached 99.8% and 91.6%, respectively. How552

to fuse multi-source information and multiple methods to further improve reasoning553

performance will also become a major research direction in the future. Among them, the554

fusion mode, that is, how to fuse, is a major difficulty.555

Intuitive reasoning556
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Intuitive reasoning [83] is the ability of human beings to quickly judge the answer557

to a problem based on their own perception without step-by-step analysis and without558

being constrained by certain fixed logical rules. Intuitive reasoning can quickly find an559

effective initial iteration position, which will also determine whether the final iteration560

result is globally optimal. In addition, traditional machine algorithm will fall into local561

minimum value when solving complex problems [84], while intuitive reasoning inspired562

by human brain can make decisions through strategy optimization, action feedback,563

reward and punishment mechanism, so as to avoid such problems and improve the564

generalization ability of cognitive intelligence. A famous and successful leading card of565

machine intuitive reasoning is AlphaGo [85]. With the ongoing optimization of AlphaGo,566

AlphaZero [86] and Muzero [87] were born.567

AlphaZero merged the value network and the strategy network into a network on568

the basis of AlphaGo, which could randomly select an initial state under the condition569

of only given the game rules. Muzero can surpass the previous performance through the570

continuous reinforcement learning of self-playing games. Instead of learning the rules of571

relevant games, AlphaZero uses predictive strategies, value functions, and immediate572

rewards to calculate and plan future behavior, and the intellectual body can create rules573

to achieve the most accurate planning.574

A series of achievements such as AlphaGo, AlphaZero,and AlphaZero show the im-575

portance of intuitive reasoning for solving complex problems. Although the realization576

of machine intuitive reasoning can endow the machine with the ability to predict, judge577

and make decisions creatively and quickly, and adapt to the complex problems in the578

real environment, there are still many problems, such as how to combine the intuitive579

sense of with the explicit knowledge of game rules, so that the machine has the ability of580

associative memory. Secondly, it is difficult for the machine to obtain the appropriate581

return function under the current environment when the system applies reinforcement582

learning to realize intuitive reasoning, In addition, the problems of gradient fluctuation,583

convergence speed and exploration efficiency also need to be solved.584

Causal reasoning585

Causal reasoning is crucial to survival for human beings because learning about586

causes contributes to imposing order and then making sense of the world. The winner587

of the Turing Award Pearl [88] divides the causality into three levels, namely association,588

intervention, and counterfactual reasoning. The current AI has merely reached the589

first level, while humans can reach the counterfactual level through imagination. Pearl590

believes that the ultimate fatal defects is that the existing AI models are mainly driven591

by associations, so it is difficult for machines to distinguish between causal association592

reasoning and false associations in data. The key to solving the problem is to apply593

‘causal reasoning’ instead of ‘reasoning for associations’ .594

Causal reasoning can be combined with natural language processing to extract the595

causal relationship between terms or phrases from a large corpus of texts for capturing596

and understanding the causal relationship between events and actions. Luo et al. [89]597

proposed a data-driven method to solve the common sense causal reasoning problem598

among short texts, and came up with a framework which can automatically collect causal599

relationships from large-scale network corpus and can correctly model the strength of600

causal relationships among various items.601

Research on the combination of computer vision and causal reasoning has increased602

and has led to discovering causal signals in images [90] and generating unbiased scene603

graph from biased training [91]. The problem of visual reasoning has been extensively604

studied. Although these studies cover the complexity and diversity of vision, the basic605

logic, temporal and causal structures behind reasoning have rarely been explored. As606

moving forward, causal reasoning need further exploration to discover other potential607

causalities hidden in conversational visual dialog tasks and more extensive areas.608
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3.3. Natural Language Generating (NLG)609

To make a machine have cognitive intelligence, it not only requires the machine to610

understand the data, process the data, and make decisions through cognitive reason-611

ing, but more importantly, the machine is supposed to have the ability to express the612

reasoning results in a way that humans can understand. Therefore, how to make the613

machine generate natural language in line with human understanding is a crucial aspect614

of cognitive intelligence.615

Along the way to cognitive intelligence, NLG plays a crucial role: it is responsible616

for converts a cognitive system action into a human-understandable response. Therefore,617

the response is supposed to be fluent, adequate. NLG has significant influence on users’618

experience.619

In this section, we comprehensively review the concept, key technologies, problems620

and challenges and future research directions of NLG.621

3.3.1. Basic Concept of NLG622

As a crucial component in cognitive graphs, Natural Language Generation (NLG)623

technology is a hot topic which aims make computers have human-like expression,624

that is, automatically generate a high-quality natural language based on some essential625

information.626

In the most widely-cited surveys of NLG methods [92,93], NLG is characterized as627

the subfield of AI and computational linguistics that is concerned with the construction628

of computer systems that can produce understandable texts or other human languages629

from some underlying non-linguistic representation of information.630

It has been pointed out that precisely defining NLG is rather difficult [94]: every-631

body seems to agree on what the output of an NLG system should be text, but what the632

exact input is vary substantially [95]. Examples include flat semantic representations,633

numerical data and structured knowledge bases. More recently, generation from visual634

input such as image or video has become an important direction [96–98], which extend635

the concept of NLG to non-linguistic data.636

3.3.2. Key Technologies of NLG637

In this section, we systematic review the key technologies of NLG, including Markov638

Chains [99], RNN [100], LSTM [101], Transformer [102], ELMo [103], BERT [31].639

Markov chains640

Markov chains are the earliest algorithms for language generating. It predicts the641

next word in a sentence from the current word. For example, the model is trained in the642

following two sentences: "I drink coffee in the morning" and "I eat sandwiches with tea".643

The probability of "coffee" after "drink" is 100%, and the probability of "eat" and "drink"644

after "I" is 50%. When calculating the probability of the next word, Markov chain takes645

into account the relationship between each word. The model was first used to provide646

suggestions for the next word generating of smartphone input sentences.647

Recurrent Neural Network (RNN)648

Inspired by the working principle of the human brain, the neural network provides649

a new method for computing by modelling the nonlinear relationship between input650

and output data, which is called neural language modelling. Recurrent neural network651

(RNN) [100] is a kind of neural network which can capture the sequence characteristics of652

input data. As is shown in Figure 11, each item in the sequence is fed into a feedforward653

network, and the output of the model is taken as the next item of the sequence. This654

process can help to store the information of each previous step. Such "memory" makes655

RNN perform well in language generating because remembering past information can656

help better predict the future. Significantly different from the Markov chain, RNN657

focuses not only on the current word, but also on the processed word. But there is a658

big problem with RNN: the catastrophic forgetting [104]. With the increase of sequence659

length, RNNs can not store the words encountered long ago, so they can only predict660
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based on the latest words. This makes RNNs unable to be used to generate coherent661

long sentences.662

Figure 11. Overview architecture of RNN [100].

Long Short-Term Memory (LSTM)663

Long Short-Term Memory (LSTM) [101] is a variant of RNNs, which is more suitable664

for processing long sequences than RNNs. LSTM is widely used, and its structure is665

similar to that of RNNs. The difference is that RNN has only one simple layer structure,666

while LSTM has four layers. An LSTM consists of four parts: cell, input gate, output gate667

and forgetting gate. For example, when input is “I am from Spain. I am fluent in ___”.668

In order to correctly predict the next word "Spanish", LSTM will pay more attention to669

"span" in the previous sentence and use cell to memorize it. As the sequence is processed,670

the cell stores the acquired information, which is used to predict the next word. When a671

period is encountered, the forgetting gate will realize that the context of the sentence672

has changed and ignored the state information stored in the current cell. In other words,673

the function of the forgetting gate is to make the recurrent neural network "forget" the674

information not used before. LSTM and its variants can solve the problem of gradient675

disappearance and generate coherent sentences. However, LSTM also has its limitations:676

high computational requirements and difficult to train.

Figure 12. Overview architecture of LSTM [101].
677

Figure 13. The repeated module in LSTM containing four layers of interactive neural network
layer [101].

Transformer678
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Transformer [102] was first proposed by the Google team in the paper "Attention Is679

All You Need" in 2017, which involves a new method called self attention mechanism.680

Transformer is widely used to solve NLP problems, such as language modeling, machine681

translation, and text generating. The Transformer model consists of a group of encoders682

and a group of decoders. The former is responsible for processing any length of the683

input, and the latter is responsible for outputting the generated sentences.684

The encoder processes the input sentence and generates a representation for it. The685

decoder uses representation to generate sentences for output. The initial representation686

or embedding of each word is represented by a hollow circle. Afterward, the transformer687

model uses SAM to obtain the relationship between all other words and generate a new688

representation of each word, such as a single circle in Figure 14. Repeat this step for each689

word to generate new representations continuously. Similarly, the decoder generates690

words from left to right.691

Different from LSTM, Transformer needs fewer steps. The application of SAM can692

directly capture the relationship between all words in a sentence without considering693

the positions of them.694

Figure 14. Overview architecture of Transformer [102].

Transformer model architectures have garnered immense interest lately due to their695

effectiveness. In the field of natural language generating, for example, Transformers have696

become an indispensable staple in the modern deep learning stack. Recently, a dizzying697

number of "X-former" models have been proposed - Reformer [105], Linformer [106],698

Performer [107], Longformer [108], to name a few - which improve upon the original699

Transformer architecture, many of which make improvements around computational700

and memory efficiency.701

In 2018, OpenAI proposed the GPT model [109], a language model based Trans-702

former, which can be migrated to a variety of NLP tasks. The basic idea is to apply the703

pre-trained language model without changing the model structure as much as possible.704

It can capture a more extened range of information compared with RNN, and is faster705

than RNN in computing speed. However, it is not scalable, and the structure of input706

data needs to be adjusted for some types of tasks.707

Embeddings from Language Models(ELMo)708

ELMo is a new type of method deeply contextualized word representation [103],709

which can not only model the complex syntax and semantics features but also change710
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Figure 15. Overview architecture of GPT [109].

with linguistic context. ELMo adopts a two-layer bi-directional LSTM language model711

to understand the meaning in context. The structure of the model is shown in Figure 16.712

Figure 16. Overview architecture of ELMo [103].

The ELMo model is first trained on a large predictive library, and the vector of each713

word is represented by the function of the internal state of BiLSTM, thus, the internal714

state is mixed with all the semantics. The text of the downstream task is trained in a715

model where each word has a specific context, and each word is represented by a linear716

combination of internal states.The BiLSTM layer in the ELMo model can effectively717

encode different types of syntax and semantics in the context. A lot of studies have718

proved that Transformer is much better at extracting features than LSTM, so the ELMo719

would have a more dramatic impact if it adapted the Transformer as a feature extractor.720

In addition, the ability to adopt the fusion feature of bidirectional splicing may be weaker721

than that of Bert integration.722

The new ELMo faced some knotty problems to adopt the fusion feature of bidirec-723

tional splicing, so new methods are on the horizon.724

Bidirectional Encoder Representations from Transformers(BERT)725

In 2018, Google introduced a new language representation model called BERT,726

which stands for Bidirectional Encoder Representations from Transformers. As shown727

in Figure 17, BERT is designed to pre-train deep bidirectional representations from728

unlabeled texts by jointly conditioning on both left and right context in all layers. As a729

result, the pre-trained BERT model can be finetuned with just one additional output layer730

to create state-of-the-art models for a wide range of tasks, such as question answering731

and language inference, without substantial task-specific architecture modifications.732

The BERT model has three innovations: bidirectional transformer, masked language733

model, sentence-level relation.734

Bidirectional transformer: When understanding a language, pre-order words can735

be helpful in understanding post-order words, and in the same way, subsequent words736
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Figure 17. Overview architecture of BERT [31].

can be helpful in understanding forward words. Early language models could be trained737

from left to right or right-to-left, but the two could not be conducted at the same time.738

Masked language model: Humans understand language with contexts in mind.739

BERT cleverly utilized the idea of filling in the blanks, put forward the masked language740

model to achieve a two-way transformer.741

Sentence-level relation: Learn the relationship between sentences by predicting742

whether sentence B is the next sentence of sentence A.743

The BERT model extends the pre-training supervised fine-tuning model to a deeper744

two-way structure, where long-distance semantic information can be obtained, context745

semantics can be left and right, and can be performed in parallel. The disadvantages of746

the BERT model mainly come from the masked language model: the "Mask" tag does747

not appear in the actual prediction, too much use of the "Mask" during training affects748

model performance, and only 15% of each batch is predicted, so the BERT converges749

more slowly than the left-to-right model.750

Table 2: Key technologies of NLG.

Technology Reference Mechanism Advantage Disadvantage
Markov Chains [99] Probability

calculation of the
next word

Next-word
prediction in a

sentence

Only focusing on
the current word

RNN [100] Neural Network Consideration of
both the current

word and the
processed word

Catastrophic
forgetting

LSTM [101] A four-layer
structure

Long sequence
suitability

High computa-
tional require-
ments and train-
ing difficulties

ELMo [103] Two-layer
bi-directional

LSTM

Changeability
with linguistic

context

Weeker feature
extractor

BERT [31] Bidirectional
transformer,

masked language
model,

sentence-level
relation

Easier to create
state-of-the-art

models for a wide
range of tasks

Converging more
slowly
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3.3.3. Challenges of NLG751

Despite the recent success of pre-trained language models such as GPT-3 [110]752

on various language generation tasks, these models are still struggling on generation753

tasks that require reasoning over commonsense knowledge which is not explicitly stated754

in the context. A significant bottleneck of NLG is how to represent the semantics of755

natural language accurately. For example, in the process of human-computer interaction,756

the users’ intention must firstly be understood. At present, there are two methods757

commonly used in the industry: semantic analysis methods based on knowledge or758

semantic rules and semantic analysis methods based on statistics. Although both types759

of methods can derive natural language semantics to a certain extent and determine760

the association between information, the method based on knowledge and semantics761

rules cannot cover all language phenomena, the reasoning process is complex, and it762

cannot handle uncertain events. There are defects and limitations in the compatibility763

of rules and application levels. The establishment of knowledge and semantic rules is764

the bottleneck problem. The statistics-based methods rely too much on the support of765

large-scale corpora, and they are susceptible to data sparseness and data noise.766

With the increase of user needs, traditional template generation methods based767

on syntactic-semantic rules cannot meet the requirements of social development. With768

the continuous development and maturity of deep learning technology, deep learning769

research for natural language generation has achieved certain results, but there is no770

breakthrough. In the current existing deep learning models, the difficulty lies in the771

optimization and adjustment of parameters in the model construction process, mainly772

including the number of deep network layers, regularization problems and network773

learning rate. Possible solutions include the use of multi-core machines to improve the774

network training speed, select suitable optimization algorithms for different applications.775

Combining the two methods and learning from each other is the future research direction776

in NLG.777

3.3.4. Prospect of NLG778

For human-like cognitive interactive devices, a system should take various kinds779

of knowledge into consideration, decide what knowledge will be utilized in specific780

reasoning contexts, and make the final decision by taking all valuable knowledge into781

consideration.782

Various language generation models have achieved remarkably effective results.783

These models remain stuck in generation tasks that need to reason over commonsense784

knowledge that is not clearly stated in the context. Although some models have been785

proposed to enhance commonsense reasoning ability by elaboratively learning some786

relational patterns from large-scale corpora, they do not fully utilize the commonsense787

knowledge which can provide more explicit knowledge grounding [111]. Several at-788

tempts have been widely explored to deal with this defect [112–114]. By utilizing triple789

information in commonsense knowledge bases such as ConceptNet [115]and ATOMIC790

[116], transferring commonsense knowledge into pre-trained language models is a791

promising direction.792

However, these methods have several potential drawbacks. Firstly, they ignore the793

rich structural relevance of the concepts in the knowledge graphs. Secondly, recovering794

knowledge triples at the post-training stage is hardly conducive to exploit the encoded795

knowledge in generation tasks. Therefore, a straightforward way of making use of796

external commonsense knowledge is to take advantage of both structural and semantic797

information of the knowledge graph and reason over multi-hop relational paths, so798

multiple connected triples can provide chains of evidence for grounded text generation.799

To facilitate explicit commonsense reasoning in text generation, Haozhe Ji [117]800

proposed Generation with Multi-hop Reasoning Flow, a novel generation model that801

conduct dynamic multi-hop reasoning for knowledge-enriched language generation.802

This model leverages the structural and semantic information of the external knowledge803
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and aggregates evidence along relational paths which is beneficial for the generation of804

some critical concepts.805

In recent years, with the development of deep learning technology, the accumulation806

of large-scale data corpus and the actual needs of the industry, the related research and807

engineering implementation of natural language generation have received a lot of808

attention.809

The existing neural network-based natural language generation models are far810

from enough for the application of automatic NLG. It is clear that a full end-to-end811

goal-driven dialogue system should not only output a final sentence to respond to an812

input sentence, but also keep and update fruitful internal representations or memories813

for dialogues. At the same time, because of various factors such as fuzzy language814

boundaries, diverse ambiguities, irregular expressions, limited learning corpus scale,815

and complex application scenarios, NLG is not mature in practical applications, and there816

are still many problems and challenges in related research. Natural language generation817

technology is currently mainly based on rule-based template generation technology in818

practical applications. Although it can realize the automatic text generation function819

with a less complex text structure, the result is rigid, and the later expansion depends820

heavily on the initial planning. The specific manifestations are: (1) The format of the821

automatically generated text is fixed, the structure is not flexible, and it is difficult to822

modify. (2) The expression of generated sentences is not flexible and does not meet the823

characteristics of the diversity of language expression.824

The generation technology based on deep learning does not require a manual design825

of rule templates and grammar planning process, can automatically learn grammar and826

semantic rules, and can directly extract features from the text. In the automatically827

generated text, the expression of sentences is more flexible, and it is more in line with828

the diversity of language expression.829

4. Challenges of Cognitive Graphs830

Current advancements in AI have yielded tremendous improvements across aca-831

demic and industry research communities. AI researchers still face considerable chal-832

lenges in developing truly intelligent systems. Concerns about poor robustness and lack833

of explainability are raised by some influential thinkers. The cognitive graph which834

is based on neural-symbolic integration offers an opportunity to treat with these chal-835

lenges. However, previous researches have revealed that the realization of a symbolical836

understanding neural system is hard, requiring a great deal of work related to refined837

theories and engineering. Furthermore, at present it is quite unclear how symbolic pro-838

cessing emerges from neural activities of complex neural network. In contrast, human839

brains are impressive examples of the admirable neural system that have effectively840

descended upon humans. At the same time, human brains are able to deal with symbolic841

tasks successfully. Therefore, it is necessary to take inspiration from neural science as a842

breakthrough for cognitive intelligence.843

4.1. Challenges towards Neural-Symbolic based Cognitive Graphs844

Recently, there has been a clear tendency towards integrating symbolic reasoning845

and deep learning. Neural AI is continuous, distributed and good at dealing with large-846

scale perceptual data. Usually, neural AI is implemented efficiently using propagation of847

activation and units of tensor processing. Symbolic AI is generally localized and discrete,848

which has the ability of sophisticated reasoning, including epistemic, analogic and849

temporal reasoning. Recent researches have revealed that non-classical logics provide850

an applicable language for describing neural networks [118,119]. In [120], Marcus made851

his point clear by stating the necessity of hybrid systems, and attempted to identify852

what makes a system hybrid. At this point, all attempts to create such a bridge between853

System 1 and System 2 are beneficial and should be commended given our lack of854

understanding of how human brains work.855

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2021                   doi:10.20944/preprints202108.0155.v1

https://doi.org/10.20944/preprints202108.0155.v1


Version August 6, 2021 submitted to Journal Not Specified 23 of 34

The challenges for neural-symbolic integration emerge from the goal of robust856

learning, expressive reasoning and effective integration.857

Turing award winner Leslie Valiant pointed out that the key challenge is to build a858

rich semantics and robust representation language for intelligent cognitive behaviours859

[121]. Avila Garcez [122] identified representation as the bottleneck and argued for860

the importance of focusing on representation since representation precedes learning as861

well as reasoning. At the same time, the difficulty of neural networks in explainability862

and robustness also leads to the need for a bridge between distributed and localized863

representations for reasoning. For several years neural-symbolic computing has been864

seeking to establish such a bridge [123–125], leading to the emergence of several methods.865

According to Kautz’s taxonomy [126], there are roughly six different types. TYPE 1 is866

standard deep learning with symbolic input and output. TYPE 2 is a kind of hybrid867

system where the core neural network is loosely-coupled with a symbolic problem solver868

such as the Monte Carlo tree search. One typical example of TYPE 2 is DeepMind’s869

AlphaGo. TYPE 3 is a hybrid system where a neural network focusing on one task870

(e.g. object segmentation) interacts via its input and output with a symbolic system,871

subsequently followed by a commentary task (e.g. query answering). Recent efforts in872

this direction include Neuro-symbolic Concept Learner [127] and DeepProbLog [128].873

TYPE 4 refers to a learning architecture that extrapolates to harder symbolic reasoning874

problems [129,130]. Moreover, TYPE 4 includes tightly-coupled but localized neural-875

symbolic systems, where the key point is to build a one-to-one correspondence between876

neurons and elements of logical formulas [119]. TYPE 5 mainly refers to those tightly-877

coupled but distributed neural-symbolic systems in which a logic symbolic rule is878

mapped into the form of an embedding. Classical examples include Tensor Product879

Representations [131]. Finally, a TYPE 6 system is supposed to have the ability of true880

symbolic reasoning inside a neural engine by using an attention schema to achieve881

combinatorial reasoning. Recent researches include [132–134], and further researches on882

TYPE 6 systems come closer to the essence of neural-symbolic computing.883

In summary, by paying attention to the developments of neural-symbolic integra-884

tion, we are getting closer to the ultimate goal of promoting the faster development of885

cognitive science with expressive reasoning and robust learning capabilities.886

To develop neural network models with a symbolic interpretation, the key is to learn887

representations neurally and make them available for use symbolically. An adequate888

language for describing knowledge encoded in neural networks is an important ingredi-889

ent. As a part of the interplay between learning and reasoning, constraint satisfaction is890

therefore another ingredient. In addition to the above ingredients, there are a few tough891

challenges for neuro-symbolic AI. So far, there has been no proper way to achieve the892

combination of language and structure. Therefore, the neural-symbolic cognitive graph893

has a long way to go inevitably.894

4.2. Challenges towards Robust Cognitive Graph895

In a certain sense, considering the current technological development level, a896

hopefully achievable robust cognitive graph is not necessarily a superhuman, but at least897

can be counted on in a reliable way, to apply what it knows to a wide range of problems.898

Ernie Davis and Gary Marcus [120] put forward a view that we have no hope of899

achieving robust cognitive graphs without first developing systems with deep under-900

standing, which equips with the ability to identify subtle patterns in complex data sets901

and address questions like a journalist. Although GPT-3 [110] can produce stories and902

generate compelling examples, it often falls apart under close inspection and fails to903

grasp details [135]. The reality is that GPT-3 only has restricted representations and it904

fails to reflect a deep understanding.905

Achieving robustness is not just about developing the right cognitive prerequisites.906

Actually, it is about developing the right cognitive models. DeepMd’s Atari game907

system, DQN, for example, almost lacks cognitive models entirely. Fortunately, in908
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the reinforcement learning, there is some sort of internal model that is self-generated,909

pointing to the internal system that to some extent correlate with cognitive states, where910

a classical example is MuZero [136]. Model-free reinforcement learning often works911

remarkably well. However, this does not mean the model-free reinforcement learning is912

a good general solution to cognitive intelligence, because they lack rich cognitive models913

of the environments, where they operate and they require considerable retraining.914

4.3. Challenges towards Explainable Cognitive Graphs915

Explainability is the ability to provide explanations in understandable terms to a hu-916

man and provide human-understandable justifications for their actions. The importance917

of explainability in systems that should be highly-reliable, ethical or legal requirements918

has already been emphasized by many papers [137,138]. Explainability is crucial for919

some systems that are required to be highly reliable such as the medical system and920

the financial system, because an error may cause catastrophic results. Explainability921

can make potential failures easier to detect, avoiding severe consequences. Moreover, it922

can help engineers to find out the root cause and provide a fix accordingly. Knowledge923

extraction is an effective ingredient towards explainable AI systems. The main barrier is924

the efficient extraction of correct, compact and complete knowledge. In the case of local925

explanations, a knowledge-base is certainly more explainable than a neural network926

because it offers a trace showing how an outcome was obtained.927

Many aspects of the explainable cognitive graphs are being investigated at present.928

Some pendent research lines include: Is an explanation intended set to improve system929

performances and reduce bias fairness, or just to understand the decision process? Is930

an explanation required because one does not trust the system and would like to cre-931

ate a different outcome, or just want to doubt the normative system? Early efforts on932

these questions mainly focused on fidelity: a measure of the accuracy of the extracted933

knowledge in relation to the neural network. Without high fidelity results, an apparently934

good explanation is likely not to be an expected explanation of the underlying system.935

D’Avila Garcez [139] proposed a way of measuring fidelity with local methods, which936

should be adopted and promoted vigorously. Since soundness is normally intercon-937

nected with exponential complexity, a measure of fidelity may be available in practice938

and knowledge extraction should have communications between users and cognitive939

systems. Communications with the system mean being capable of asking questions940

(querying the system) and checking one’s understanding (obtaining a rationale for the941

result). The user can either agree or disagree with the outcome, then provide useful942

feedback or direct instruction to change the outcomes.943

The existing AI-based decision support systems deal with large scale data in a944

timely pattern. Thus, with a so-called human-in-the-loop approach where experts or945

end-users may be accountable to the decisions, domain experts or end-users may soon946

feel less capable of over-riding recommendations which are based on too much more947

data than they could handle with. The current reality is that in order to function well948

with Big Data, the current cognitive system must execute a form of triage of the data to be949

presented to the expert. Without the abilities of system communication and knowledge950

extraction, the decision maker will be out of control. Lastly, the simple extraction of rules951

is insufficient. We need to extract confidence values to rank extracted rules. In this way,952

a system will know when it does not know. The adversarial approaches and knowledge953

extraction for robustness have made a contribution here. In a nutshell, for many reasons954

discussed above, a measurable form of knowledge extraction is a fundamental part955

towards explainable cognitive graphs.956

5. Prospect of Cognitive Graphs957

In this second-to-last section of our survey, we give an overview of what are958

considered the most potentially theoretical challenges on the way towards robust and959
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explainable AI currently. In this section, the future directions and practical questions are960

discussed.961

It has been argued eloquently that to build a semantical, explainable and ultimately962

trustworthy AI system, one needs to pay attention to a lot of aspects, such as integrated963

neural-symbolic approaches, extraction of symbolic knowledge from trained neural964

networks, integrated neural-symbolic approaches to logical reasoning, cognitive and965

biologically-inspired neural-symbolic agents, and applications in robotics, fraud preven-966

tion, semantic web, software engineering, fault diagnosis, verification and validation,967

bioinformatics.968

New developments should investigate the previously unconsidered properties of969

symbolic and neural formalisms, which might shed light on offering explanations for970

the performances and the empirical applicability.971

In essence, the crucial innovation of cognitive graphs is to reduce the information972

loss during the construction of the graphs, transfer the pressure of information process-973

ing to retrieval and natural language understanding algorithms, and retain the graph974

structures for explainable relational reasoning.975

In the future, it is necessary to focus on how to capture structural information and976

learn rule knowledge at the same time, so as to improve the performance of cognitive977

graph reasoning. In the big data era, large-scale, diverse forms, scattered distribution, dy-978

namic changes and low-quality data features bring new challenges to AI technologies. It979

is necessary not only to learn the distribution representation of data from the perspective980

of perception but also to interpret the semantics of data from the perspective of cognition.981

The research and development of cognitive graphs that integrate core technologies such982

as common sense knowledge graphs, cognitive reasoning and logical expression will983

become the key to the breakthrough of the next generation of AI technologies. Given984

the fast pace at which developments occur both in industry and academia, we feel it is985

helpful to point to potential future directions.986

5.1. Common Sense Cognitive Graphs987

Common sense knowledge has long been a key component in human-like reasoning988

as a fundamental part of AI. The significance of having common sense knowledge will989

emerge when it comes to action, interpretation and decision-making. If you do not990

know what happens when a bottle breaks or what can cause a fire, it is difficult to make991

reasoning about what will happen surrounding you. Obviously, you cannot reliably992

make plans.993

As mentioned previously, deep learning is essentially based on a "big data for small994

tasks" paradigm, which has a demand for massive amounts of data in a single narrow995

task. Yixin Zhu [140] proposed "small data for big tasks" paradigm which is capable of996

solving a wide range of tasks with a few data. The new paradigm consider functionality,997

physics, intent, causality and utility (FPICU) as core ingredients of cognitive AI. Fig998

18 is an example of in-depth understanding through cognitive reasoning and joint999

parsing. Reasoning with FPICU relies on the combination of top-down reasoning based1000

on abstract knowledge and bottom-up reasoning based on visual patterns. This means1001

the systems would continue to make reasoning from the observation of visible, pixel-1002

represented scene aspects, as they can do today, and make reasoning with human-like1003

common senses based on FPICU understanding.1004

These processes can feed on each other, boosting the performance of the overall1005

system. The breakthroughs in human vision fields demonstrate the promising potential1006

power of the FPICU. Commonsense understanding is pivotal in the development of1007

cognitive intelligence. More efforts should be made to realize the acquisition and1008

understanding of common senses.1009
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Figure 18. An example of in-depth understanding through cognitive reasoning and joint parsing.
Reasoning with FPICU depends on the integration of bottom-up reasoning based on visual patterns
and top-down reasoning based on abstract knowledge [140].

5.2. Event Logic Cognitive Graphs1010

The existing cognitive graphs are still generally based on "concept and their rela-1011

tions between concepts", which failed to mine "envent evolutionary logic". In practical1012

applications, the evolutionary rules and patterns between events are valuable common1013

sense knowledge. It is of great significance to explore this kind of knowledge in order to1014

understand the laws of human behaviors and social developments.1015

The concept of Event Logic was proposed by X Ding et al. [141]. To reveal evolu-1016

tionary patterns and development patterns of real world events, J P Wang et al. [142]1017

proposed a directed cyclic graph called Event Logic Graph (ELG). Essentially, ELG is an1018

event evolutionary logic knowledge base, where nodes are events, and edges stand for1019

the causal, sequential, conditional or hypernym-hyponym relations between events. The1020

edges of ELG represent abundant logical rules, including concatenation relationships,1021

causality relationships and conditional relationships. The concepts, key techniques and1022

applications of ELG is shown in Figure19.1023

Figure 19. The event cognitive vault concepts, key techniques and applications [142].

Large-scale ELGs have tremendous potentials and can be applied to plenty of down-1024

stream tasks, including event prediction, commonsense reasoning, question answering,1025

dialogue generation, consumption intention mining and so on.1026

As a new way of knowledge organization, representation and management, the1027

ELG is an important breakthrough of cognitive intelligence. Future research should1028

focus on organizing the universal event evolutionary principles and patterns into a1029

knowledge graph based on the extracted temporal and causal event pairs.1030

5.3. Cognitive Robots1031

The emergence of industrial robots and emotional escort robots demonstrates that1032

cognitive AI is a tendency for AI to move from narrow weak intelligence to general1033
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strong intelligence. The human-robot interaction aims to build robotic systems that1034

can collaborate with humans. To support social interaction, robots need the ability to1035

generate and understand a variety of verbal expression and nonverbal behaviors of1036

humans. There are a series of technical challenges, including understanding context,1037

expressing tasks and domain knowledge and optimizing generated content.1038

Recent researches show that cognitive robots require a significant cognitive ability1039

for deep thinking and reasoning based on the development of cognitive systems and1040

brain-inspired systems. The emergence of language is considered as a fruitful accom-1041

plishment in multi-agent decentralized collaborations. Being able to communicate and1042

collaborate with other agents is a crucial component of cognitive AI. In classic AI, a1043

multi-agent communication strategy is modeled using a pre-defined rule-based system1044

(e.g., adaptive learning of communication strategies in MAS [143–145]). To scale up from1045

rule-based systems, decentralized partially observable Markov decision processes were1046

devised to model multi agent interactions, with communications considered as a special1047

type of actions [146,147]. With the success of RL in single agent games [148], generalizing1048

Q-learning [149] and actor–critic-based methods [143,150] from single-agent systems to1049

MAS have been booming topics in recent years.1050

It is conceivable that in the future, combined with psychological considerations on1051

embodied interactions and low-level representations of the agent’s sensing, cognitive1052

modelling is created as output of the ground layer of the envisioned architecture. This1053

output then is fed into a second layer which performs an extended form of anchoring,1054

not only grounding symbols referring to perceived physical objects, but also dynam-1055

ically adapting and repairing acquired mappings between environment and internal1056

representation.1057

6. Conclusion1058

AI has achieved remarkable results with the support of computing power, big data1059

and deep learning. To develop a more explicable and robust AI, we need a system1060

that can routinely acquire, represent and manipulate common senses and abstract1061

knowledge, subsequently applying that knowledge in the service of reasoning over1062

complex problems.1063

The advanced development stage of AI is supposed to be a hybrid, knowledge-1064

driven reasoning-based approach that could provide the substrate for the more explicable1065

and robust AI. The cognitive graph, which is based on the dual-channel theory and the1066

neuro-symbolic architecture, meets the requirement for critical cognitive prerequisites.1067

Taken together, progress towards these prerequisites could provide a substrate for richer,1068

more intelligent systems.1069

In this paper, we highlight the key ideas and principles of the cognitive graph and1070

illustrate the main methodological approaches for the integration of effective neural1071

learning with symbolic-based, knowledge representation and reasoning methods.1072

In summary, by paying attention to the developments of cognitive graph, we1073

are getting closer to the true artificial intelligence, or at least promoting the faster1074

development of cognitive sciences and AI.1075
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