Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 August 2021 d0i:10.20944/preprints202108.0146.v5

Noname manuscript No.
(will be inserted by the editor)

A Proof of the Riemann Hypothesis Based on
MacLaurin Expansion of the Completed Zeta
Function

Weicun Zhang

Received: date / Accepted: date

Abstract The basic idea is to expand the completed zeta function £(s) in
MacLaurin series (infinite polynomial). Thus, by £(s) = £(1 — s) = 0, we have
the following infinite polynomial equation
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which finally leads to s =1—s,s =a+j8;1 —a+j8,8 # 0, then a proof of
the Riemann Hypothesis can be achieved.
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1 Introduction and the problem description

It has been 162 years since the Riemann Hypothesis (RH) is proposed in
1859 [, Many efforts and achievements have been made towards proving the
hypothesis, but it is still an open problem [2=3,
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2 A Proof of Riemann Hypothesis

The Riemann zeta function is the function of the complex variable s, de-
fined in the half-plane R(s) > 1 by the absolutely convergent series [?l

=y 1)
n=1

Riemann showed how to extend zeta function to the whole complex plane C
by analytic continuation
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where 0(z) = >°° e’ I being the Gamma function in the following
equivalent form
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where v is Euler’s constant.
The connection between the zeta function and prime numbers can be es-
tablished through the well-known Euler product.

9= =Tl > 1 ()

P

the product being over the prime numbers p.

As shown by Riemann, ((s) extends to C as a meromorphic function with
only a simple pole at s = 1, with residue 1, and satisfies the following functional
equation

s s 1-s 1

S ()01 =) (5)

The Riemann zeta function ((s) has zeros at the negative even integers —2, —4, —6, —8, - - -
and one refers to them as the trivial zeros. The other zeros of ((s) are the
complex numbers, i.e., non-trivial zeros (2.

About the non-trivial zeros of ((s), the following results are well estab-
lished M.

Lemma 1: Non-trivial zeroes of {(s), noted as p = a4 j have the following
properties

1) The number of non-trivial zeroes is infinity;
2) B#0;
30<axg
4) p,p,1—p, 1 — p are all non-trivial zeroes.
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A Proof of Riemann Hypothesis 3

For further study, a completed zeta function £(s) is defined as

1 _ s S
£(s) = (s~ D3 0()C(s) (©
It is well-known that £(s) is an entire function of order 1.

Replacing s with 1 — s in Eq.(6), and considering Eq.(5), we have the
following functional equation

§(s) =€ —s) (7)

Considering the definition of £(s), i.e., Eq. (6), and recalling Eq.(3), the
trivial zeros of ((s) are canceled by the poles of I'(5). The zero of s — 1 and
the pole of ((s) cancel; the zero s = 0 and the pole of I'(5) cancel (561 Thus,
all the zeros of £(s) must be the nontrivial zeros of £(s), and vice versa. That
means the following result, i.e., Lemma 2.
Lemma 2: Zeros of £(s) coincide with nontrivial zeros of {(s).
According to Lemma 2, the following two statements for RH are equivalent.
Statement 1 of RH: The non-trivial zeros of ((s) have real part equal to %

Statement 2 of RH: All the zeros of £(s) have real part equal to %

It is well-known that £(s) can be expressed by the following infinite product,
which was first proposed by Riemann. However, it was Hadamard who showed

the validity of this infinite product expansion 7]
s
&s)=¢0) [ - ;) (8)

where p are precisely the roots of the Riemann zeta function ¢(s), the fac-
tor p and 1 — p are paired.

This paper will use another infinite expansion of £(s), i.e., MacLaurin series
(infinite polynomial) to open the door to the proof of RH.

2 A proof of RH

This section is planned to give a proof of the Statement 2 of RH. For this
purpose, we need the following result on infinite polynomial equation.
Lemma 3: Given two infinite polynomials

f(x):a0+a1$+(12$2—|—---—|—anxn+... (9)
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4 A Proof of Riemann Hypothesis
and

fy) =ao+ary+agy® +- +apy™ +--- (10)
where z and y are variables(either real or complex), ag, a1, as, -+ ,an, - € R

are all real coefficients, and n € N are integers.

Then we have
f@)=fly) ez=y (11)
Proof: The proof is delivered by mathematical induction.
First, it is obvious that Lemma 3 is true for n = 1, i.e.,

atar=ataysSr=y (12)

Second, suppose Lemma 3 is true for n = m, then we only need to prove
Lemma 3 is true for n = m + 1.
Thus we begin with the following Eq.(13)

apt+az+-+apr =agtay+--tapy" Sr=y (13)

Now, let’s consider

+1

ap+ a1+ -+ apmp”T =ag+ary+ -+ am+1ym+1 (14)

ie.,
z(ar 4+ aox - + amir2™) = y(ay + asy + - + amy™ ) (15)

It is trivial that = y = 0 makes Lemma 3 to be true, thus, we only consider
x # 0,y # 0. Then by Eq.(15), we get

T a1+ agy -+ ampry™

Z = (16)
Yy art+axx-c+ Gy ™
Without loss of generality, set
£:a1+a2y...+am+1y . (17)
Y ail + ag - + A1 ™
where k is a real or complex number to be determined.
Then Eq.(17) is equivalent to the following Eq.(18)
{kal + kasx -+ kamp12™ = a1 +ay + - + amp1y™ (18)
x=ky

According to Eq.(13) and the arbitrariness of its coefficients, we see that E-
q.(18) holds if and only if k = 1(z = y), i.e.,

ag+arxz+ - Fappz™t =atay -+ Fanmay" Tt er=y (19)

Then we conclude: Lemma 3 is true for n = m + 1.
Finally, by mathematical induction, Lemma 3 is true for any natural number
n.
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A Proof of Riemann Hypothesis 5

That completes the proof of Lemma 3.
Proof of RH: The details are delivered in three steps as follows.

Step 1: Since &(s) is an entire function, it is analytic in the whole complex
plane C. Then £(s) can be expanded in MacLaurin series (infinite polynomial)
at s =0, i.e.
€'(0) £ (0)

or ST

€M) _ ")
n!

£(s) = €(0) + £ (0)s +

st s < (20)

It is obvious that = ,n=0,1,2,--- are all real numbers.

n!

s=0
Thus, all the zeros of £(s) are the roots of the following infinite algebraic
equation with real coefficients.

"

€0 o £ ,

51 T+t S + - (21)
According to the well established theory of algebraic equation with real number
coefficients, complex roots always come in pairs (complex conjugate). Further
by Lemma 2, all the zeros of £(s) are complex pairs, then we denote the roots

of Eq.(21) as s = a £+ jB,5 # 0.

0=¢£(0) + £ (0)s +

Step2: Replacing s with 1 — s in Eq.(20) yields
£ (0)

n!

¢'(0)

o (1—s)? 4+

E(1—s) = £(0)+& (0)(1—s)+

(I=s)"+ -, |s| <o

(22)
Therefore, all the zeros of £(1—s) are the roots of the following infinite algebraic
equation with real coefficients.

, " (n)
0= +€0 -9+ 207+ 00 g e
where s=1—a =+ j8,8 # 0.
Step 3: Then we have by &(s) = £(1 — s) that
, " (n)
€0 + €@+ S S0
te n! . (24)
—e(0)+ € (0)(1—s5)+ & 2(!0)(1 R I m(o)u IR
By Lemma 3, Eq.(24) gives
s=1-s (25)

Of course, the roots of £(s) = 0, i.e., s = a £ jB, and the roots of £(1 —s) =0,
ie., s =1— a=jB, should obey Eq.(25), then we obtain

s=1-s,s=axjg (26)
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6 A Proof of Riemann Hypothesis
and
s=1—-s,s=1—azxjp (27)
It follows from both Eq.(26) and Eq.(27) that
1
atjif=1—-a+jf = a=1l-a = a=g (28)

Then we conclude that all the zeros of the completed zeta function £(s) have
real part equal to %

That completes the proof of the Statement 2 of RH.

Remark: According to Lemma 2, we know that the Statement 1 of RH
is also true, i.e., The non-trivial zeros of the Riemann zeta function ((s) have
real part equal to %

3 Conclusion

A proof of the Riemann Hypothesis is presented based on a new road map:
First, the completed zeta function £(s) is expressed as MacLaurin series (infi-
nite polynomial); Second, by Lemma 3, £(s) = £(1 — s) = 0 means

1
s=1l—-s,s=ax+jl—atjb,B#£0 = a=g

Then we conclude that the celebrated Riemann Hypothesis is true.
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