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Abstract Based on the Hadamard product ξ(s) = ξ(0)
∏

ρ(1 − s
ρ ), a new

expression of ξ(s) is obtained by paring ρ and ρ̄
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∞∏
i=1

( β2
i
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+
(s− αi)
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α2
i + β2

i

)di

where ξ(0) = 1
2 , ρi = αi + jβi and ρ̄i = αi − jβi are complex conjugate zeros

of ξ(s), 0 < αi < 1 and βi ̸= 0 are real numbers, di ≥ 1 are the multiplicities
of ρi, βi are in order of increasing |βi|, i.e., |β1| ≤ |β2| ≤ |β3| ≤ · · · . Then we
have, by the functional equation ξ(s) = ξ(1− s), that

ξ(0)
∞∏
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= ξ(0)
∞∏
i=1
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i
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i

)di

i.e.,
∞∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
∞∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

which, by Lemma 3, is equivalent to

αi =
1

2
, i = 1, 2, 3, · · · ,∞

Thus, we conclude that the Riemann Hypothesis is true.
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2 A Proof of the Riemann Hypothesis

1 Introduction

It has been almost 163 years since the Riemann Hypothesis (RH) was proposed
in 1859 [1]. Many efforts and achievements have been made towards proving
this celebrated hypothesis, but it is still an open problem [2−3].

The Riemann zeta function is the function of complex variable s, defined
in the half-plane ℜ(s) > 1 by the absolutely convergent series [2]

ζ(s) =

∞∑
n=1

1

ns
,ℜ(s) > 1 (1)

The connection between the Riemann zeta function and prime numbers
can be established through the well-known Euler product, i.e.

ζ(s) =

∞∑
n=1

1

ns
=

∏
p

(1− p−s)−1,ℜ(s) > 1 (2)

the product being over the prime numbers p.

Riemann showed how to extend zeta function to the whole complex plane
C by analytic continuation

ζ(s) =
πs/2

Γ (s/2)
{ 1

s(s− 1)
+

∫ ∞

1

(x
s
2−1 + x− s

2−
1
2 ) · (θ(x)− 1

2
)dx} (3)

where θ(x) =
∑∞

−∞ e−n2πx being the Jaccobi theta function, Γ being the
Gamma function in the following Weierstrass expression (Meanwhile, there
are also Gauss expression, Euler expression, and integral expression of the
Gamma function.)

1

Γ (s)
= s · eγs

∞∏
n=1

(1 +
s

n
)e−s/n (4)

where γ is the Euler-Mascheroni constant.
As shown by Riemann, ζ(s) extends to C as a meromorphic function with

only a simple pole at s = 1, with residue 1, and satisfies the following functional
equation

π− s
2Γ (

s

2
)ζ(s) = π− 1−s

2 Γ (
1− s

2
)ζ(1− s) (5)

The Riemann zeta function ζ(s) has zeros at the negative even integers: −2,
−4, −6, −8, · · · and one refers to them as the trivial zeros. The other zeros
of ζ(s) are the complex numbers, i.e., non-trivial zeros [2].

In 1896, Hadamard [4] and Poussin [5] independently proved that no zeros
could lie on the line ℜ(s) = 1. Together with the functional equation and the
fact that there are no zeros with real part greater than 1, this showed that all
non-trivial zeros must lie in the interior of the critical strip 0 < ℜ(s) < 1.
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A Proof of the Riemann Hypothesis 3

This was a key step in their first proofs of the famous Prime Number The-
orem.

Later on, Hardy (1914) [6], Hardy and Littlewood (1921) [7] showed that
there are infinitely many zeros on the critical line ℜ(s) = 1

2 , which was an
astonishing result at that time.

As a summary, we have the following results on the properties of the non-
trivial zeros of ζ(s) [4−9].
Lemma 1: Non-trivial zeroes of ζ(s), noted as ρ = α+ jβ, have the following
properties
1) The number of non-trivial zeroes is infinity;
2) β ̸= 0;
3) 0 < α < 1;
4) ρ, ρ̄, 1− ρ̄, 1− ρ are all non-trivial zeroes.

As further study, a completed zeta function ξ(s) is defined as

ξ(s) =
1

2
s(s− 1)π− s

2Γ (
s

2
)ζ(s) (6)

It is well-known that ξ(s) is an entire function of order 1. This implies ξ(s)
is analytic, and can be expressed as infinite polynomial, in the whole complex
plane C.

In addition, replacing s with 1 − s in Eq.(6), and combining Eq.(5), we
have the following functional equation

ξ(s) = ξ(1− s) (7)

Considering the definition of ξ(s), and recalling Eq.(4), the trivial zeros of
ζ(s) are canceled by the poles of Γ ( s2 ). The zero of s− 1 and the pole of ζ(s)

cancel; the zero s = 0 and the pole of Γ ( s2 ) cancel [9−10]. Thus, all the zeros
of ξ(s) are exactly the nontrivial zeros of ζ(s). Then we have the following
Lemma 2.

Lemma 2: Zeros of ξ(s) coincide with non-trivial zeros of ζ(s).

According to Lemma 2, the following two statements for the RH are equivalent.

Statement 1 of the RH: All the non-trivial zeros of ζ(s) have real part
equal to 1

2 .

Statement 2 of the RH: All the zeros of ξ(s) have real part equal to 1
2 .

To prove the RH, the natural thinking is to estimate the number of zeros of
ζ(s) in some certain closed areas according to the Argument Principle. Along
this train of thought, there are some famous research works. Let N(T ) denote
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4 A Proof of the Riemann Hypothesis

the number of zeros of ζ(s) inside the rectangle: 0 < α < 1, 0 < β ≤ T , and
let N0(T ) denote the number of zeros of ζ(s) on the line α = 1

2 , 0 < β ≤ T .
Selberg proved that there exist positive constants c and T0, such that N0(T ) >
cN(T ), (T > T0)

[11], later on, Levinson proved that c ≥ 1
3

[12], Lou and Yao

proved that c ≥ 0.3484 [13], Conrey proved that c ≥ 2
5

[14], Bui, Conrey and

Young proved that c ≥ 0.41 [15], Feng proved that c ≥ 0.4128 [16].

On the other hand, many zeros have been calculated by hand or by com-
puter programs. Among others, Riemann found the first three non-trivial zeros
[17]. Gram found the first 15 zeros based on Euler-Maclaurin summation [18].
Titchmarsh calculated the 138th to 195th zeros using the Riemann-Siegel for-
mula [19−20]. Here are the first three (pairs of) zeros: 1

2 ± j14.1347251; 1
2 ±

j21.0220396; 1
2 ± j25.0108575.

The idea of this paper is originated from Euler’s work on proving that

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
(8)

This interesting and famous result is deduced from two types of infinite ex-
pansions, i.e., infinite polynomial and infinite product as follows

sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

= (1− x2

π2
)(1− x2

4π2
)(1− x2

9π2
) · · ·

(9)

This paper is also motivated by the fact that ξ(s) can be expressed by the fol-
lowing Hadamard product, which was first proposed by Riemann. However, it
was Hadamard [21] who showed the validity of this infinite product expansion.

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
) (10)

where ξ(0) = 1
2 , ρ runs over the non-trivial zeros of the Riemann zeta

function ζ(s), or in another word, ρ runs over the zeros of the completed zeta
function ξ(s). To ensure the absolute convergence of the infinite product ex-
pansion, ρ and 1− ρ are paired. Later in Section 2, we will show that ρ and ρ̄
can also be paired to ensure the absolute convergence of the infinite product
expansion.

2 A Proof of the RH

This section is planned to present a proof of the Riemann Hypothesis. We first
prove that Statement 2 of the RH is true, and then by Lemma 2 we know that
Statement 1 of the RH is also true. For this purpose, we need the following
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A Proof of the Riemann Hypothesis 5

Lemma 3.

Lemma 3: Given two infinite products

f(s) =

∞∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

(11)

and

f(1− s) =
∞∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

(12)

where s is a complex variable, ρi = αi + jβi, ρ̄i = αi − jβi are complex
conjugate zeros of ξ(s), 0 < αi < 1 and βi ̸= 0 are real numbers, di ≥ 1 are
the multiplicities of ρi, i are natural numbers from 1 to infinity, βi are in order
of increasing |βi|, i.e., |β1| ≤ |β2| ≤ |β3| ≤ · · · .

Then we have that

f(s) = f(1− s) ⇔ αi =
1

2
, i = 1, 2, 3, · · · ,∞ (13)

where ” ⇔ ” is the equivalent sign.

Proof: First of all, we have the following fact:

(
1 +

(s− α)2

β2

)d
=

(
1 +

(1− s− α)2

β2

)d
⇔
(s− α)2 = (1− s− α)2

⇔ α =
1

2

(14)

where d ≥ 1 is a natural number, α ̸= 0 and β ̸= 0 are real numbers.

Next, the proof will be conducted in two steps:
Step 1 to prove that f(s) = f(1− s) ⇒ αi =

1
2 , i = 1, 2, 3, · · · ,∞;

Step 2 to prove that αi =
1
2 ⇒ f(s) = f(1− s), i = 1, 2, 3, · · · ,∞.

Step 1: This part of proof is based on Transfinite Induction.
Let P (n) be:

n∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
n∏

i=1

(
1 +

(1− s− αi)
2

β2
i

)di

⇒

αi =
1

2
, i = 1, 2, 3, · · · , n

(15)

According to Eq.(14), P (1) is an obvious fact as the Base Case, i.e.,
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6 A Proof of the Riemann Hypothesis

1∏
i=1

(
1 +

(s− αi)
2

β2
i

)d1

=
1∏

i=1

(
1 +

(1− s− αi)
2

β2
i

)d1

⇒

α1 =
1

2

(16)

As the Successor Case, we prove that P (n) ⇒ P (n+ 1) by contradiction.

Assume, for the sake of contradiction, that P (n) holds, but P (n+ 1) does

not hold, then by
∏n+1

i=1

(
1+ (s−αi)

2

β2
i

)di

=
∏n+1

i=1

(
1+ (1−s−αi)

2

β2
i

)di

, there exist

at least two pairs of zeros off the critical line (otherwise the above equality
can not hold), in which there must exist one pair of zeros with subscript not
greater than n, i.e., αl ̸= 1

2 , l ≤ n, which contradicts that P (n) holds, i.e.

n∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
n∏

i=1

(
1 +

(1− s− αi)
2

β2
i

)di

; αi =
1

2
, i = 1, · · · , n

Thus, the assumption that P (n) holds, but P (n+ 1) does not hold, is false.
Then the Successor Case is true, i.e., P (n) ⇒ P (n+ 1).

Next, we prove that P (∞) holds by considering well-ordered ordinal set
A indexing the family of statements P (γ : γ ∈ A), A = N

∪
{ω} with the

ordering that n < ω for all natural numbers n, ω is the first limit ordinal.
It is well-known that ω =

∪
{γ : γ < ω}.

To prove that P (∞) holds, it suffices to prove the Limit Case, i.e., P (γ <
ω) ⇒ P (ω).

In the following contents, we will prove the Limit Case by contradiction.

Assume, for the sake of contradiction, that P (γ < ω) holds, but P (ω) does

not hold, then by
∏ω

i=1

(
1 + (s−αi)

2

β2
i

)di

=
∏ω

i=1

(
1 + (1−s−αi)

2

β2
i

)di

, there exist

at least two pairs of zeros off the critical line (otherwise the above equality can
not hold), in which there must exist one pair of zeros with limited subscript,
i.e., αl ̸= 1

2 , l < ω, which contradicts that P (γ < ω) holds, i.e.

γ<ω∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=

γ<ω∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

; αi =
1

2
, i < ω

Thus, the assumption that P (γ < ω) holds, but P (ω) does not hold, is false.
Then the Limit Case is true, i.e., P (γ < ω) ⇒ P (ω).
Hence we conclude by Transfinite Induction that P (∞) holds, i.e., f(s) =
f(1− s) ⇒ αi =

1
2 , i = 1, 2, 3, · · · ,∞.
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A Proof of the Riemann Hypothesis 7

Step 2: Based on Eq.(14), we have

αi =
1

2
⇒ (s− αi)

2 = (1− s− αi)
2

⇒
(
1 +

(s− αi)
2

β2
i

)di

=
(
1 +

(1− s− αi)
2

β2
i

)di

⇒ f(s) = f(1− s)

where βi ̸= 0, i = 1, 2, 3, · · · ,∞. i.e.,

αi =
1

2
⇒ f(s) = f(1− s), i = 1, 2, 3, · · · ,∞

That completes the proof of Lemma 3.

Proof of the RH: The details are delivered in three steps as follows.

Step 1: By pairing ρi = αi + jβi and ρ̄i = αi − jβi in the Hadamard
product in Eq.(10), we have that

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
)

= ξ(0)
∞∏
i=1

(1− s

ρi
)(1− s

ρ̄i
)

= ξ(0)

∞∏
i=1

(1− s

αi + jβi
)(1− s

αi − jβi
)

= ξ(0)

∞∏
i=1

(
β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)

(17)

where ξ(0) = 1
2 .

The absolute convergence of the infinite product in Eq.(17) in the form

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
)(1− s

ρ̄
) = ξ(0)

∏
ρ

(
1− s(2α− s)

|ρ|2
)
, 0 < α = ℜ(ρ) < 1

depends on the convergence of infinite series
∑

ρ
1

|ρ|2 , which is an obvious fact

according to Theorem 2 in Section 2, Chapter IV of Ref.[22], i.e.,
Theorem 2.[22] The function ξ(s) is an entire function of order one that has
infinitely many zeros ρn such that 0 ≤ Re ρn ≤ 1. The series

∑
|ρn|−1 di-

verges, but the series
∑

|ρn|−1−ε converges for any ε > 0. The zeros of ξ(s)
are the nontrivial zeros of ζ(s).

Remarks: In Theorem 2 of Ref.[22], Re(·) is identical to ℜ(·) in this paper,
both Re(·) and ℜ(·) mean the real part of any complex number.
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8 A Proof of the Riemann Hypothesis

Further, taking into account the possibility of multiple zeros in Eq.(17),
we have

ξ(s) = ξ(0)

∞∏
i=1

( β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di
(18)

where di ≥ 1 are natural numbers, i are natural numbers from 1 to infinity.

Step 2: Replacing s with 1− s in Eq.(18), we obtain the infinite product
expression of ξ(1− s)

ξ(1− s) = ξ(0)
∞∏
i=1

(
β2
i

α2
i + β2

i

+
(1− s− αi)

2

α2
i + β2

i

)di (19)

Step 3: We have by ξ(s) = ξ(1− s) that

ξ(0)
∞∏
i=1

(
β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di = ξ(0)
∞∏
i=1

(
β2
i

α2
i + β2

i

+
(1− s− αi)

2

α2
i + β2

i

)di (20)

which is equivalent to

∞∏
i=1

(1 +
(s− αi)

2

β2
i

)di =
∞∏
i=1

(1 +
(1− s− αi)

2

β2
i

)di (21)

And that βi can be certainly arranged in order of increasing |βi| , i.e., |β1| ≤
|β2| ≤ |β3| ≤ · · · .
Then according to Lemma 3, Eq.(21) is equivalent to αi =

1
2 , with i from 1 to

infinity.
Thus, we conclude that all the zeros of the completed zeta function ξ(s) have
real part equal to 1

2 , i.e., Statement 2 of the RH is true. According to Lemma
2, Statement 1 of the RH is also true, i.e., All the non-trivial zeros of the
Riemann zeta function ζ(s) have real part equal to 1

2 .

That completes the proof of the RH.

Remarks: By Lemma 1, there are 2 pairs of complex zeros of ζ(s) simultane-
ously, i.e., ρ = α+ jβ, ρ̄ = α− jβ, 1−ρ = 1−α− jβ, 1− ρ̄ = 1−α+ jβ are all
non-trivial zeroes of ζ(s). With the proof of the RH, i.e., α = 1

2 , these 2 pairs of
zeros are actually only one pair, because ρ = 1−ρ̄ = 1

2+jβ, ρ̄ = 1−ρ = 1
2−jβ.

Thus Lemma 1 could be modified more precisely as follows.

Lemma 1*: Non-trivial zeroes of ζ(s), noted as ρ = α+jβ, have the following
properties
1) The number of non-trivial zeroes is infinity;
2) β ̸= 0;
3) 0 < α < 1;
4) ρ = 1− ρ̄, ρ̄ = 1− ρ are all non-trivial zeroes.
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3 Conclusion

The celebrated Riemann Hypothesis is proved to be true based on a new
expression of the completed zeta function ξ(s), i.e.,

ξ(s) = ξ(0)

∞∏
i=1

( β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di

where ξ(0) = 1
2 , ρi = αi + jβi, ρ̄i = αi − jβi are complex conjugate zeros of

ξ(s), 0 < αi < 1 and βi ̸= 0 are real numbers, di ≥ 1 are the multiplicities of
ρi, i are natural numbers from 1 to infinity, βi are in order of increasing |βi|,
i.e., |β1| ≤ |β2| ≤ |β3| ≤ · · · .
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