A Proof Of The Riemann Hypothesis Based On A New Expression Of The Completed Zeta Function

Weicun Zhang

Abstract Based on the Hadamard product $\xi(s)=\xi(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right)$, a new expression of $\xi(s)$ is obtained by paring ρ and $\bar{\rho}$

$$
\xi(s)=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}}
$$

where $\xi(0)=\frac{1}{2}, \rho_{i}=\alpha_{i}+j \beta_{i}$ and $\bar{\rho}_{i}=\alpha_{i}-j \beta_{i}$ are complex conjugate zeros of $\xi(s), 0<\alpha_{i}<1$ and $\beta_{i} \neq 0$ are real numbers, $d_{i} \geq 1$ are the multiplicities of ρ_{i}, β_{i} are in order of increasing $\left|\beta_{i}\right|$, i.e., $\left|\beta_{1}\right| \leq\left|\beta_{2}\right| \leq\left|\beta_{3}\right| \leq \cdots$. Then we have, by the functional equation $\xi(s)=\xi(1-s)$, that

$$
\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}}=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}}
$$

i.e.,

$$
\prod_{i=1}^{\infty}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{\infty}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}
$$

which, by Lemma 3, is equivalent to

$$
\alpha_{i}=\frac{1}{2}, i=1,2,3, \cdots, \infty
$$

Thus, we conclude that the Riemann Hypothesis is true.
Keywords Riemann Hypothesis (RH) • Proof • Completed zeta function
Mathematics Subject Classification (2020) 11M26

[^0]
1 Introduction

It has been almost 163 years since the Riemann Hypothesis (RH) was proposed in $1859{ }^{[1]}$. Many efforts and achievements have been made towards proving this celebrated hypothesis, but it is still an open problem ${ }^{[2-3]}$.

The Riemann zeta function is the function of complex variable s, defined in the half-plane $\Re(s)>1$ by the absolutely convergent series ${ }^{[2]}$

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \Re(s)>1 \tag{1}
\end{equation*}
$$

The connection between the Riemann zeta function and prime numbers can be established through the well-known Euler product, i.e.

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}, \Re(s)>1 \tag{2}
\end{equation*}
$$

the product being over the prime numbers p.
Riemann showed how to extend zeta function to the whole complex plane \mathbb{C} by analytic continuation

$$
\begin{equation*}
\zeta(s)=\frac{\pi^{s / 2}}{\Gamma(s / 2)}\left\{\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(x^{\frac{s}{2}-1}+x^{-\frac{s}{2}-\frac{1}{2}}\right) \cdot\left(\frac{\theta(x)-1}{2}\right) d x\right\} \tag{3}
\end{equation*}
$$

where $\theta(x)=\sum_{-\infty}^{\infty} e^{-n^{2} \pi x}$ being the Jaccobi theta function, Γ being the Gamma function in the following Weierstrass expression (Meanwhile, there are also Gauss expression, Euler expression, and integral expression of the Gamma function.)

$$
\begin{equation*}
\frac{1}{\Gamma(s)}=s \cdot e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n} \tag{4}
\end{equation*}
$$

where γ is the Euler-Mascheroni constant.
As shown by Riemann, $\zeta(s)$ extends to \mathbb{C} as a meromorphic function with only a simple pole at $s=1$, with residue 1 , and satisfies the following functional equation

$$
\begin{equation*}
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) \tag{5}
\end{equation*}
$$

The Riemann zeta function $\zeta(s)$ has zeros at the negative even integers: -2 , $-4,-6,-8, \cdots$ and one refers to them as the trivial zeros. The other zeros of $\zeta(s)$ are the complex numbers, i.e., non-trivial zeros ${ }^{[2]}$.

In 1896, Hadamard ${ }^{[4]}$ and Poussin ${ }^{[5]}$ independently proved that no zeros could lie on the line $\Re(s)=1$. Together with the functional equation and the fact that there are no zeros with real part greater than 1 , this showed that all non-trivial zeros must lie in the interior of the critical strip $0<\Re(s)<1$.

This was a key step in their first proofs of the famous Prime Number Theorem.

Later on, Hardy (1914) ${ }^{[6]}$, Hardy and Littlewood (1921) ${ }^{[7]}$ showed that there are infinitely many zeros on the critical line $\Re(s)=\frac{1}{2}$, which was an astonishing result at that time.

As a summary, we have the following results on the properties of the nontrivial zeros of $\zeta(s){ }^{[4-9]}$.
Lemma 1: Non-trivial zeroes of $\zeta(s)$, noted as $\rho=\alpha+j \beta$, have the following properties

1) The number of non-trivial zeroes is infinity;
2) $\beta \neq 0$;
3) $0<\alpha<1$;
4) $\rho, \bar{\rho}, 1-\bar{\rho}, 1-\rho$ are all non-trivial zeroes.

As further study, a completed zeta function $\xi(s)$ is defined as

$$
\begin{equation*}
\xi(s)=\frac{1}{2} s(s-1) \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) \tag{6}
\end{equation*}
$$

It is well-known that $\xi(s)$ is an entire function of order 1. This implies $\xi(s)$ is analytic, and can be expressed as infinite polynomial, in the whole complex plane \mathbb{C}.

In addition, replacing s with $1-s$ in Eq.(6), and combining Eq.(5), we have the following functional equation

$$
\begin{equation*}
\xi(s)=\xi(1-s) \tag{7}
\end{equation*}
$$

Considering the definition of $\xi(s)$, and recalling Eq.(4), the trivial zeros of $\zeta(s)$ are canceled by the poles of $\Gamma\left(\frac{s}{2}\right)$. The zero of $s-1$ and the pole of $\zeta(s)$ cancel; the zero $s=0$ and the pole of $\Gamma\left(\frac{s}{2}\right)$ cancel ${ }^{[9-10]}$. Thus, all the zeros of $\xi(s)$ are exactly the nontrivial zeros of $\zeta(s)$. Then we have the following Lemma 2.

Lemma 2: Zeros of $\xi(s)$ coincide with non-trivial zeros of $\zeta(s)$.
According to Lemma 2, the following two statements for the RH are equivalent.
Statement 1 of the RH: All the non-trivial zeros of $\zeta(s)$ have real part equal to $\frac{1}{2}$.

Statement 2 of the RH: All the zeros of $\xi(s)$ have real part equal to $\frac{1}{2}$.
To prove the RH, the natural thinking is to estimate the number of zeros of $\zeta(s)$ in some certain closed areas according to the Argument Principle. Along this train of thought, there are some famous research works. Let $N(T)$ denote
the number of zeros of $\zeta(s)$ inside the rectangle: $0<\alpha<1,0<\beta \leq T$, and let $N_{0}(T)$ denote the number of zeros of $\zeta(s)$ on the line $\alpha=\frac{1}{2}, 0<\beta \leq T$. Selberg proved that there exist positive constants c and T_{0}, such that $N_{0}(T)>$ $c N(T),\left(T>T_{0}\right){ }^{[11]}$, later on, Levinson proved that $c \geq \frac{1}{3}{ }^{[12]}$, Lou and Yao proved that $c \geq 0.3484{ }^{[13]}$, Conrey proved that $c \geq \frac{2}{5}{ }^{[14]}$, Bui, Conrey and Young proved that $c \geq 0.41{ }^{[15]}$, Feng proved that $c \geq 0.4128^{[16]}$.

On the other hand, many zeros have been calculated by hand or by computer programs. Among others, Riemann found the first three non-trivial zeros [17]. Gram found the first 15 zeros based on Euler-Maclaurin summation ${ }^{[18]}$. Titchmarsh calculated the $138^{\text {th }}$ to $195^{\text {th }}$ zeros using the Riemann-Siegel formula ${ }^{[19-20]}$. Here are the first three (pairs of) zeros: $\frac{1}{2} \pm j 14.1347251 ; \frac{1}{2} \pm$ $j 21.0220396 ; ~ \frac{1}{2} \pm j 25.0108575$.

The idea of this paper is originated from Euler's work on proving that

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{6} \tag{8}
\end{equation*}
$$

This interesting and famous result is deduced from two types of infinite expansions, i.e., infinite polynomial and infinite product as follows

$$
\begin{align*}
\frac{\sin x}{x} & =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots \tag{9}\\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right) \cdots
\end{align*}
$$

This paper is also motivated by the fact that $\xi(s)$ can be expressed by the following Hadamard product, which was first proposed by Riemann. However, it was Hadamard ${ }^{[21]}$ who showed the validity of this infinite product expansion.

$$
\begin{equation*}
\xi(s)=\xi(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right) \tag{10}
\end{equation*}
$$

where $\xi(0)=\frac{1}{2}, \rho$ runs over the non-trivial zeros of the Riemann zeta function $\zeta(s)$, or in another word, ρ runs over the zeros of the completed zeta function $\xi(s)$. To ensure the absolute convergence of the infinite product expansion, ρ and $1-\rho$ are paired. Later in Section 2, we will show that ρ and $\bar{\rho}$ can also be paired to ensure the absolute convergence of the infinite product expansion.

2 A Proof of the RH

This section is planned to present a proof of the Riemann Hypothesis. We first prove that Statement 2 of the RH is true, and then by Lemma 2 we know that Statement 1 of the RH is also true. For this purpose, we need the following

Lemma 3.
Lemma 3: Given two infinite products

$$
\begin{equation*}
f(s)=\prod_{i=1}^{\infty}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
f(1-s)=\prod_{i=1}^{\infty}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \tag{12}
\end{equation*}
$$

where s is a complex variable, $\rho_{i}=\alpha_{i}+j \beta_{i}, \bar{\rho}_{i}=\alpha_{i}-j \beta_{i}$ are complex conjugate zeros of $\xi(s), 0<\alpha_{i}<1$ and $\beta_{i} \neq 0$ are real numbers, $d_{i} \geq 1$ are the multiplicities of ρ_{i}, i are natural numbers from 1 to infinity, β_{i} are in order of increasing $\left|\beta_{i}\right|$, i.e., $\left|\beta_{1}\right| \leq\left|\beta_{2}\right| \leq\left|\beta_{3}\right| \leq \cdots$.

Then we have that

$$
\begin{equation*}
f(s)=f(1-s) \Leftrightarrow \alpha_{i}=\frac{1}{2}, i=1,2,3, \cdots, \infty \tag{13}
\end{equation*}
$$

where " $\Leftrightarrow "$ is the equivalent sign.
Proof: First of all, we have the following fact:

$$
\begin{align*}
& \left(1+\frac{(s-\alpha)^{2}}{\beta^{2}}\right)^{d}=\left(1+\frac{(1-s-\alpha)^{2}}{\beta^{2}}\right)^{d} \\
& \Leftrightarrow \tag{14}\\
& (s-\alpha)^{2}=(1-s-\alpha)^{2} \\
& \Leftrightarrow \alpha=\frac{1}{2}
\end{align*}
$$

where $d \geq 1$ is a natural number, $\alpha \neq 0$ and $\beta \neq 0$ are real numbers.
Next, the proof will be conducted in two steps:
Step 1 to prove that $f(s)=f(1-s) \Rightarrow \alpha_{i}=\frac{1}{2}, i=1,2,3, \cdots, \infty$;
Step 2 to prove that $\alpha_{i}=\frac{1}{2} \Rightarrow f(s)=f(1-s), i=1,2,3, \cdots, \infty$.
Step 1: This part of proof is based on Transfinite Induction.
Let $P(n)$ be:

$$
\begin{align*}
& \prod_{i=1}^{n}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{n}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \\
& \Rightarrow \tag{15}\\
& \alpha_{i}=\frac{1}{2}, i=1,2,3, \cdots, n
\end{align*}
$$

According to Eq.(14), $P(1)$ is an obvious fact as the Base Case, i.e.,

$$
\begin{align*}
& \prod_{i=1}^{1}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{1}}=\prod_{i=1}^{1}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{1}} \\
& \Rightarrow \tag{16}\\
& \alpha_{1}=\frac{1}{2}
\end{align*}
$$

As the Successor Case, we prove that $P(n) \Rightarrow P(n+1)$ by contradiction.
Assume, for the sake of contradiction, that $P(n)$ holds, but $P(n+1)$ does not hold, then by $\prod_{i=1}^{n+1}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{n+1}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}$, there exist at least two pairs of zeros off the critical line (otherwise the above equality can not hold), in which there must exist one pair of zeros with subscript not greater than n, i.e., $\alpha_{l} \neq \frac{1}{2}, l \leq n$, which contradicts that $P(n)$ holds, i.e.

$$
\prod_{i=1}^{n}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{n}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \nRightarrow \alpha_{i}=\frac{1}{2}, i=1, \cdots, n
$$

Thus, the assumption that $P(n)$ holds, but $P(n+1)$ does not hold, is false.
Then the Successor Case is true, i.e., $P(n) \Rightarrow P(n+1)$.
Next, we prove that $P(\infty)$ holds by considering well-ordered ordinal set A indexing the family of statements $P(\gamma: \gamma \in A), A=\mathbb{N} \bigcup\{\omega\}$ with the ordering that $n<\omega$ for all natural numbers n, ω is the first limit ordinal.
It is well-known that $\omega=\bigcup\{\gamma: \gamma<\omega\}$.
To prove that $P(\infty)$ holds, it suffices to prove the Limit Case, i.e., $P(\gamma<$ $\omega) \Rightarrow P(\omega)$.

In the following contents, we will prove the Limit Case by contradiction.
Assume, for the sake of contradiction, that $P(\gamma<\omega)$ holds, but $P(\omega)$ does not hold, then by $\prod_{i=1}^{\omega}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{\omega}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}$, there exist at least two pairs of zeros off the critical line (otherwise the above equality can not hold), in which there must exist one pair of zeros with limited subscript, i.e., $\alpha_{l} \neq \frac{1}{2}, l<\omega$, which contradicts that $P(\gamma<\omega)$ holds, i.e.

$$
\prod_{i=1}^{\gamma<\omega}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{\gamma<\omega}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \nRightarrow \alpha_{i}=\frac{1}{2}, i<\omega
$$

Thus, the assumption that $P(\gamma<\omega)$ holds, but $P(\omega)$ does not hold, is false. Then the Limit Case is true, i.e., $P(\gamma<\omega) \Rightarrow P(\omega)$.
Hence we conclude by Transfinite Induction that $P(\infty)$ holds, i.e., $f(s)=$ $f(1-s) \Rightarrow \alpha_{i}=\frac{1}{2}, i=1,2,3, \cdots, \infty$.

Step 2: Based on Eq.(14), we have

$$
\begin{aligned}
\alpha_{i}=\frac{1}{2} & \Rightarrow\left(s-\alpha_{i}\right)^{2}=\left(1-s-\alpha_{i}\right)^{2} \\
& \Rightarrow\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \\
& \Rightarrow f(s)=f(1-s)
\end{aligned}
$$

where $\beta_{i} \neq 0, i=1,2,3, \cdots, \infty$. i.e.,

$$
\alpha_{i}=\frac{1}{2} \Rightarrow f(s)=f(1-s), i=1,2,3, \cdots, \infty
$$

That completes the proof of Lemma 3.
Proof of the RH: The details are delivered in three steps as follows.
Step 1: By pairing $\rho_{i}=\alpha_{i}+j \beta_{i}$ and $\bar{\rho}_{i}=\alpha_{i}-j \beta_{i}$ in the Hadamard product in Eq.(10), we have that

$$
\begin{align*}
\xi(s) & =\xi(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right) \\
& =\xi(0) \prod_{i=1}^{\infty}\left(1-\frac{s}{\rho_{i}}\right)\left(1-\frac{s}{\bar{\rho}_{i}}\right) \\
& =\xi(0) \prod_{i=1}^{\infty}\left(1-\frac{s}{\alpha_{i}+j \beta_{i}}\right)\left(1-\frac{s}{\alpha_{i}-j \beta_{i}}\right) \tag{17}\\
& =\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)
\end{align*}
$$

where $\xi(0)=\frac{1}{2}$.
The absolute convergence of the infinite product in Eq.(17) in the form

$$
\xi(s)=\xi(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{\bar{\rho}}\right)=\xi(0) \prod_{\rho}\left(1-\frac{s(2 \alpha-s)}{|\rho|^{2}}\right), 0<\alpha=\Re(\rho)<1
$$

depends on the convergence of infinite series $\sum_{\rho} \frac{1}{|\rho|^{2}}$, which is an obvious fact according to Theorem 2 in Section 2, Chapter IV of Ref.[22], i.e.,
Theorem 2. ${ }^{[22]}$ The function $\xi(s)$ is an entire function of order one that has infinitely many zeros ρ_{n} such that $0 \leq \boldsymbol{\operatorname { R e }} \rho_{n} \leq 1$. The series $\sum\left|\rho_{n}\right|^{-1}$ diverges, but the series $\sum\left|\rho_{n}\right|^{-1-\varepsilon}$ converges for any $\varepsilon>0$. The zeros of $\xi(s)$ are the nontrivial zeros of $\zeta(s)$.

Remarks: In Theorem 2 of Ref.[22], $\boldsymbol{\operatorname { R e }}(\cdot)$ is identical to $\Re(\cdot)$ in this paper, both $\boldsymbol{\operatorname { R e }}(\cdot)$ and $\Re(\cdot)$ mean the real part of any complex number.

Further, taking into account the possibility of multiple zeros in Eq.(17), we have

$$
\begin{equation*}
\xi(s)=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}} \tag{18}
\end{equation*}
$$

where $d_{i} \geq 1$ are natural numbers, i are natural numbers from 1 to infinity.
Step 2: Replacing s with $1-s$ in Eq.(18), we obtain the infinite product expression of $\xi(1-s)$

$$
\begin{equation*}
\xi(1-s)=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}} \tag{19}
\end{equation*}
$$

Step 3: We have by $\xi(s)=\xi(1-s)$ that

$$
\begin{equation*}
\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}}=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}} \tag{20}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+\frac{\left(s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}}=\prod_{i=1}^{\infty}\left(1+\frac{\left(1-s-\alpha_{i}\right)^{2}}{\beta_{i}^{2}}\right)^{d_{i}} \tag{21}
\end{equation*}
$$

And that β_{i} can be certainly arranged in order of increasing $\left|\beta_{i}\right|$, i.e., $\left|\beta_{1}\right| \leq$ $\left|\beta_{2}\right| \leq\left|\beta_{3}\right| \leq \cdots$.
Then according to Lemma 3, Eq.(21) is equivalent to $\alpha_{i}=\frac{1}{2}$, with i from 1 to infinity.
Thus, we conclude that all the zeros of the completed zeta function $\xi(s)$ have real part equal to $\frac{1}{2}$, i.e., Statement 2 of the RH is true. According to Lemma 2, Statement 1 of the RH is also true, i.e., All the non-trivial zeros of the Riemann zeta function $\zeta(s)$ have real part equal to $\frac{1}{2}$.

That completes the proof of the RH.
Remarks: By Lemma 1, there are 2 pairs of complex zeros of $\zeta(s)$ simultaneously, i.e., $\rho=\alpha+j \beta, \bar{\rho}=\alpha-j \beta, 1-\rho=1-\alpha-j \beta, 1-\bar{\rho}=1-\alpha+j \beta$ are all non-trivial zeroes of $\zeta(s)$. With the proof of the RH, i.e., $\alpha=\frac{1}{2}$, these 2 pairs of zeros are actually only one pair, because $\rho=1-\bar{\rho}=\frac{1}{2}+j \beta, \bar{\rho}=1-\rho=\frac{1}{2}-j \beta$. Thus Lemma 1 could be modified more precisely as follows.

Lemma 1*: Non-trivial zeroes of $\zeta(s)$, noted as $\rho=\alpha+j \beta$, have the following properties

1) The number of non-trivial zeroes is infinity;
2) $\beta \neq 0$;
3) $0<\alpha<1$;
4) $\rho=1-\bar{\rho}, \bar{\rho}=1-\rho$ are all non-trivial zeroes.

3 Conclusion

The celebrated Riemann Hypothesis is proved to be true based on a new expression of the completed zeta function $\xi(s)$, i.e.,

$$
\xi(s)=\xi(0) \prod_{i=1}^{\infty}\left(\frac{\beta_{i}^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}+\frac{\left(s-\alpha_{i}\right)^{2}}{\alpha_{i}^{2}+\beta_{i}^{2}}\right)^{d_{i}}
$$

where $\xi(0)=\frac{1}{2}, \rho_{i}=\alpha_{i}+j \beta_{i}, \bar{\rho}_{i}=\alpha_{i}-j \beta_{i}$ are complex conjugate zeros of $\xi(s), 0<\alpha_{i}<1$ and $\beta_{i} \neq 0$ are real numbers, $d_{i} \geq 1$ are the multiplicities of ρ_{i}, i are natural numbers from 1 to infinity, β_{i} are in order of increasing $\left|\beta_{i}\right|$, i.e., $\left|\beta_{1}\right| \leq\left|\beta_{2}\right| \leq\left|\beta_{3}\right| \leq \cdots$.

Acknowledgements The author would like to gratefully acknowledge the help received from Prof. Tianguang Chu (Peking University) while preparing this article.

References

1. Riemann B. (1859), Über die Anzahl der Primzahlen unter einer gegebenen Grösse Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 2, 671-680.
2. Bombieri E. (2000), Problems of the millennium: The Riemann Hypothesis, CLAY
3. Peter Sarnak (2004), Problems of the Millennium: The Riemann Hypothesis, CLAY
4. Hadamard J. (1896), Sur la distribution des zros de la fonction $\zeta(s)$ et ses consquences arithmtiques, Bulletin de la Socit Mathmatique de France, 14: 199-220, doi:10.24033/bsmf. 545 Reprinted in (Borwein et al. 2008).
5. de la Valle-Poussin Ch. J. (1896), Recherches analytiques sur la thorie des nombers premiers, Ann. Soc. Sci. Bruxelles, 20: 183-256
6. Hardy G. H. (1914), Sur les Zros de la Fonction $\zeta(s)$ de Riemann, C. R. Acad. Sci. Paris, 158: 1012-1014, JFM 45.0716.04 Reprinted in (Borwein et al. 2008)
7. Hardy G. H., Littlewood J. E. (1921), The zeros of Riemann's zeta-function on the critical line, Math. Z., 10 (3-4): 283-317.
8. Tom M. Apostol (1998), Introduction to Analytic Number Theory, New York: Springer.
9. Chengdong Pan, Chengbiao Pan (2016), Basic Analytic Number Theory (in Chinese) 2nd Edition, Harbin Institute of Technology Press.
10. Reyes E. O. (2004), The Riemann zeta function, Master Thesis of California State University, San Bernardino, Theses Digitization Project. 2648. https: //scholarworks.lib.csusb.edu /etd-project/2648
11. A. Selberg (1942), On the zeros of the zeta-function of Riemann, Der Kong. Norske Vidensk. Selsk. Forhand. 15, 59-62; also, Collected Papers, Springer- Verlag, Berlin Heidelberg - New York 1989, Vol. I, 156-159.
12. N. Levinson (1974), More than one-third of the zeros of the Riemann zeta function are on $\sigma=\frac{1}{2}$, Adv. Math. 13, 383-436.
13. S. Lou and Q. Yao (1981), A lower bound for zeros of Riemanns zeta function on the line $\sigma=\frac{1}{2}$, Acta Mathematica Sinica (in chinese), 24, 390-400.
14. J. B. Conrey (1989), More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399, 1-26.
15. H. M. Bui, J. B. Conrey and M. P. Young (2011), More than 41% of the zeros of the zeta function are on the critical line, http://arxiv.org/abs/1002.4127v2.
16. Feng S. (2012), Zeros of the Riemann zeta function on the critical line, Journal of Number Theory, 132(4), 511-542.
17. Siegel, C. L. (1932), Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen Studien zur Geschichte der Math. Astron. Und Phys. Abt. B: Studien 2: 45-80, Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966.
18. Gram, J. P. (1903), Note sur les zéros de la fonction $\zeta(s)$ de Riemann, Acta Mathematica, 27: 289-304.
19. Titchmarsh E. C. (1935), The Zeros of the Riemann Zeta-Function, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, The Royal Society, 151 (873): 234-255.
20. Titchmarsh E. C. (1936), The Zeros of the Riemann Zeta-Function, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, The Royal Society, 157 (891): 261-263.
21. Hadamard J. (1893), Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. Journal de mathématiques pures et appliquées, 9, 171-216.
22. Karatsuba A. A., Nathanson M. B. (1993), Basic Analytic Number Theory, Springer, Berlin, Heidelberg.

[^0]: Weicun Zhang
 University of Science and Technology Beijing, Beijing 100083, China
 ORCID: 0000-0003-0047-0558
 E-mail: weicunzhang@ustb.edu.cn

