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Abstract Based on Hadamard product, a new expression of the completed
zeta function ξ(s) is obtained, i.e.,

ξ(s) = ξ(0)
∞∏
i=1

( β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di

where ρi = αi + jβi, ρ̄i = αi − jβi are complex conjugate zeros of ξ(s),
di ≥ 1 (natural numbers) are the multiplicities of ρi, 0 < αi < 1 and βi ̸= 0
are real numbers, i ∈ N are natural numbers from 1 to infinity. βi are in order
of increasing |βi|, i.e., |β1| ≤ |β2| ≤ |β3| ≤, · · · . According to the functional
equation ξ(s) = ξ(1− s), We have

ξ(0)
∞∏
i=1

( β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di

= ξ(0)
∞∏
i=1

( β2
i

α2
i + β2

i

+
(1− s− αi)

2

α2
i + β2

i

)di

i.e.,
∞∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
∞∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

which, by Lemma 3, is equivalent to

αi =
1

2
, i ∈ N, from 1 to infinity.

Thus, we conclude that the Riemann Hypothesis is true.

Keywords Riemann Hypothesis (RH) · Proof · Completed zeta function

Mathematics Subject Classification (2020) 11M26

Weicun Zhang
University of Science and Technology Beijing
Beijing 100083, China
ORCID: 0000-0003-0047-0558
E-mail: weicunzhang@ustb.edu.cn

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2022                   doi:10.20944/preprints202108.0146.v17

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202108.0146.v17
http://creativecommons.org/licenses/by/4.0/


2 A Complete Proof of the Riemann Hypothesis

1 Introduction

It has been almost 163 years since the Riemann Hypothesis (RH) was proposed
in 1859 [1]. Many efforts and achievements have been made towards proving
this celebrated hypothesis, but it is still an open problem [2−3].

The Riemann zeta function is the function of complex variable s, defined
in the half-plane ℜ(s) > 1 by the absolutely convergent series [2]

ζ(s) =
∞∑

n=1

1

ns
(1)

Riemann showed how to extend zeta function to the whole complex plane C
by analytic continuation

ζ(s) =
πs/2

Γ (s/2)
{ 1

s(s− 1)
+

∫ ∞

1

(x
s
2−1 + x− s

2−
1
2 ) · (θ(x)− 1

2
)dx} (2)

where θ(x) =
∑∞

−∞ e−n2πx being the Jaccobi theta function, Γ being the
Gamma function in the following Weierstrass expression (Meanwhile, there
are also Gauss expression, Euler expression, and integral expression of the
Gamma function.)

1

Γ (s)
= s · eγs

∞∏
n=1

(1 +
s

n
)e−s/n (3)

where γ is the Euler-Mascheroni constant.
The connection between the Riemann zeta function and prime numbers

can be established through the well-known Euler product.

ζ(s) =
∞∑

n=1

1

ns
=

∏
p

(1− p−s)−1,ℜ(s) > 1 (4)

the product being over the prime numbers p.

As shown by Riemann, ζ(s) extends to C as a meromorphic function with
only a simple pole at s = 1, with residue 1, and satisfies the following functional
equation

π− s
2Γ (

s

2
)ζ(s) = π− 1−s

2 Γ (
1− s

2
)ζ(1− s) (5)

The Riemann zeta function ζ(s) has zeros at the negative even integers:
−2,−4,−6,−8, · · · and one refers to them as the trivial zeros. The other
zeros of ζ(s) are the complex numbers, i.e., non-trivial zeros [2].

In 1896, Hadamard [4] and Poussin [5] independently proved that no zeros
could lie on the line ℜ(s) = 1. Together with the functional equation and the
fact that there are no zeros with real part greater than 1, this showed that all
non-trivial zeros must lie in the interior of the critical strip 0 < ℜ(s) < 1. This
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A Complete Proof of the Riemann Hypothesis 3

was a key step in their first proofs of the famous Prime Number Theorem.

Later on, Hardy (1914) [6], Hardy and Littlewood (1921) [7] showed that
there are infinitely many zeros on the critical line ℜ(s) = 1

2 , which was an
astonishing result at that time.

As a summary of the properties of the non-trivial zeros of ζ(s), we have
the following results [8−9].
Lemma 1: Non-trivial zeroes of ζ(s), noted as ρ = α+ jβ, have the following
properties
1) The number of non-trivial zeroes is infinity;
2) β ̸= 0;
3) 0 < α < 1;
4) ρ, ρ̄, 1− ρ̄, 1− ρ are all non-trivial zeroes.

As further study, a completed zeta function ξ(s) is defined as

ξ(s) =
1

2
s(s− 1)π− s

2Γ (
s

2
)ζ(s) (6)

It is well-known that ξ(s) is an entire function of order 1. This implies ξ(s)
is analytic, and can be expressed as infinite polynomial, in the whole complex
plane C.

In addition, replacing s with 1 − s in Eq.(6), and combining Eq.(5), we
have the following functional equation

ξ(s) = ξ(1− s) (7)

Considering the definition of ξ(s), and recalling Eq.(3), the trivial zeros of
ζ(s) are canceled by the poles of Γ ( s2 ). The zero of s− 1 and the pole of ζ(s)

cancel; the zero s = 0 and the pole of Γ ( s2 ) cancel [9−10]. Thus, all the zeros
of ξ(s) are exactly the nontrivial zeros of ζ(s). Then we have the following
Lemma 2.

Lemma 2: Zeros of ξ(s) coincide with non-trivial zeros of ζ(s).

According to Lemma 2, the following two statements for the RH are equivalent.

Statement 1 of the RH: All the non-trivial zeros of ζ(s) have real part
equal to 1

2 .

Statement 2 of the RH: All the zeros of ξ(s) have real part equal to 1
2 .

To prove the RH, the natural thinking is to estimate the number of zeros of
ζ(s) in some certain closed areas according to the Argument Principle. Along
this train of thought, there are some famous research works. Let N(T ) denote
the number of zeros of ζ(s) inside the rectangle: 0 < α < 1, 0 < β ≤ T , and
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4 A Complete Proof of the Riemann Hypothesis

let N0(T ) denote the number of zeros of ζ(s) on the line α = 1
2 , 0 < β ≤ T .

Selberg proved that there exist positive constants c and T0, such that N0(T ) >
cN(T ), (T > T0)

[11], later on, Levinson proved that c ≥ 1
3

[12], Lou and Yao

proved that c ≥ 0.3484 [13], Conrey proved that c ≥ 2
5

[14], Bui, Conrey and

Young proved that c ≥ 0.41 [15], Feng proved that c ≥ 0.4128 [16].

On the other hand, many zeros have been calculated by hand or by com-
puters. Among others, Riemann found the first three non-trivial zeros [17].
Gram found the first 15 zeros based on Euler-Maclaurin summation [18]. Titch-
marsh calculated the 138th to 195th zeros using the Riemann-Siegel formula
[19−20]. Here are the first three zeros: 1

2 ± j14.1347251; 1
2 ± j21.0220396; 1

2 ±
j25.0108575. Then we certainly have α1 = 1

2 .
The idea of this paper is originated from Euler’s work on proving that

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
(8)

This interesting and famous result is deduced from two types of infinite ex-
pansions, i.e., infinite polynomial and infinite product as follows

sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

= (1− x2

π2
)(1− x2

4π2
)(1− x2

9π2
) · · ·

(9)

This paper is also motivated by the fact that ξ(s) can be expressed by the fol-
lowing Hadamard product, which was first proposed by Riemann. However, it
was Hadamard [21] who showed the validity of this infinite product expansion.

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
) (10)

where ρ are precisely the non-trivial zeros of the Riemann zeta function
ζ(s), or in another word, ρ runs over the zeros of the completed zeta function
ξ(s). Besides, it is well-known that ξ(0) = 1

2 .

2 A Complete Proof of the RH

This section is planned to present a proof of the Riemann Hypothesis. We first
prove that Statement 2 of the RH is true, and then by Lemma 2 we know that
Statement 1 of the RH is also true. For this purpose, we need the following
Lemma 3.

Lemma 3: Given two infinite products

f(s) =
∞∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

(11)
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A Complete Proof of the Riemann Hypothesis 5

and

f(1− s) =
∞∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

(12)

where s is a complex variable, αi ̸= 0, βi ̸= 0 are real numbers, di ≥ 1 are
natural numbers, i ∈ N are natural numbers from 1 to infinity, βi are in order
of increasing |βi|, i.e., |β1| ≤ |β2| ≤ |β3| ≤, · · · .
Then we have

f(s) = f(1− s) ⇔ αi =
1

2
, i ∈ N, from 1 to infinity.

where ” ⇔ ” is the equivalent sign.

Proof: The proof is mainly based on Mathematical Induction. We first
prove that P (n) holds for all natural numbers n ∈ N, and then prove that
P (∞) holds. It should be noted that we prefer to use elementary method in-
stead of Transfinite Induction to complete the proof.

First of all, we have the following proposition:(
1 +

(s− α)2

β2

)di
=

(
1 +

(1− s− α)2

β2

)di ⇔ (s− α)2 = (1− s− α)2 ⇔ α =
1

2
(13)

Let P (n) be:

n∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
n∏

i=1

(
1 +

(1− s− αi)
2

β2
i

)di

⇔
(
1 + (s−α1)

2

β2
1

)d1
=

(
1 + (1−s−α1)

2

β2
1

)d1

· · ·(
1 + (s−αn)

2

β2
n

)dn
=

(
1 + (1−s−αn)

2

β2
n

)dn

⇔ (by Eq.(13)

αi =
1

2
, i = 1, 2, 3, · · · , n

(14)

Also by Eq.(13), P (1) is an obvious fact as the base case, i.e.,

1∏
i=1

(
1 +

(s− αi)
2

β2
i

)d1

=

1∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)d1

⇔(
1 +

(s− α1)
2

β2
1

)d1
=

(
1 +

(1− s− α1)
2

β2
1

)d1

⇔

α1 =
1

2

(15)
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6 A Complete Proof of the Riemann Hypothesis

For the inductive step, assume that P (n) holds, i.e., Eq.(14) holds, we need
to show that P (n+ 1) holds too. We have

n+1∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=

n+1∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

⇔
n∏

i=1

(
1 +

(s− αi)
2

β2
i

)di
(
1 +

(s− αn+1)
2

β2
n+1

)dn+1

=

n∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di
(
1 +

(1− s− αn+1)
2

β2
n+1

)dn+1

⇔ (by Lemma 4
∏n

i=1

(
1 + (s−αi)

2

β2
i

)di

=
∏n

i=1

(
1 + (1−s−αi)

2

β2
i

)di(
1 + (s−αn+1)

2

β2
n+1

)dn+1
=

(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

⇔ (by Eq.(14)

(
1 + (s−α1)

2

β2
1

)d1
=

(
1 + (1−s−α1)

2

β2
1

)d1

· · ·(
1 + (s−αn)

2

β2
n

)dn
=

(
1 + (1−s−αn)

2

β2
n

)dn(
1 + (s−αn+1)

2

β2
n+1

)dn+1
=

(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

⇔ (by Eq.(13)

αi =
1

2
, i = 1, 2, 3, · · · , n, n+ 1

(16)

That is to say P (n+ 1) holds when P (n) is true.
Hence by Mathematical Induction, P (n) is true for all natural numbers n.
Further, from the above process, we see that

P (n+1) ⇔ P (n)∧P (1) ⇔ P (n−1)∧P (1)∧P (1) ⇔ · · · ⇔ P (1) ∧ · · · ∧ P (1)︸ ︷︷ ︸
(n+1) times

⇔ P (1)

Then we also have

P (∞) ⇔ P (1) ∧ · · ·︸ ︷︷ ︸
infinity times

⇔ P (1)

Recalling Eq.(13), we know that P (1) holds without regard to αi, i ∈ N from
1 to ∞. Hence we conclude that P (∞) holds.
That completes the proof of Lemma 3.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2022                   doi:10.20944/preprints202108.0146.v17

https://doi.org/10.20944/preprints202108.0146.v17


A Complete Proof of the Riemann Hypothesis 7

Lemma 4: We have the following fact that

n+1∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
n+1∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

⇔
∏n

i=1

(
1 + (s−αi)

2

β2
i

)di

=
∏n

i=1

(
1 + (1−s−αi)

2

β2
i

)di(
1 + (s−αn+1)

2

β2
n+1

)dn+1
=

(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

where s is a complex variable, αi ̸= 0, βi ̸= 0 are real numbers, i, n ≥ 1, di ≥ 1
are natural numbers, βi are in order of increasing |βi|, i.e., |β1| ≤ |β2| ≤ |β3| ≤
, · · · .

Proof: Let’s consider

n+1∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=
n+1∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

(17)

i.e.,

n∏
i=1

(
1 +

(s− αi)
2

β2
i

)di
(
1 +

(s− αn+1)
2

β2
n+1

)dn+1

=
n∏

i=1

(
1 +

(1− s− αi)
2

β2
i

)di
(
1 +

(1− s− αn+1)
2

β2
n+1

)dn+1

(18)

Leaving out the trivial cases(
1 +

(s− αi)
2

β2
i

)di

=
(
1 +

(1− s− αi)
2

β2
i

)di

= 0

⇔
(s− αi)

2 = (1− s− αi)
2 = −β2

i , i = 1, 2, 3, · · · , n, n+ 1

(19)

which directly imply Lemma 4 is true, Eq.(18) is then equivalent to the fol-
lowing Eq.(20).

∏n
i=1

(
1 + (s−αi)

2

β2
i

)di

∏n
i=1

(
1 + (1−s−αi)2

β2
i

)di
=

(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

(
1 + (s−αn+1)2

β2
n+1

)dn+1
(20)

Another possibility

∏n
i=1

(
1+

(s−αi)
2

β2
i

)di(
1+

(1−s−αn+1)2

β2
n+1

)dn+1
=

∏n
i=1

(
1+

(1−s−αi)
2

β2
i

)di(
1+

(s−αn+1)2

β2
n+1

)dn+1
is excluded

due to that means βn+1 = βn, αn+1 = 1− αn, 1− αn+1 = αn, dn+1 = dn, i.e.,
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8 A Complete Proof of the Riemann Hypothesis

the (n+ 1)th zeros has already been considered in previous zeros.
Without loss of generality, we set∏n

i=1

(
1 + (s−αi)

2

β2
i

)di

∏n
i=1

(
1 + (1−s−αi)2

β2
i

)di
=

(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

(
1 + (s−αn+1)2

β2
n+1

)dn+1
= k ̸= 0 (21)

where k is a constant to be determined.
Therefore Eq.(20) is equivalent to the following Eq.(22)

∏n
i=1

(
1 + (s−αi)

2

β2
i

)di

= k
∏n

i=1

(
1 + (1−s−αi)

2

β2
i

)di(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

= k
(
1 + (s−αn+1)

2

β2
n+1

)dn+1
(22)

By comparing the like terms of polynomials in both sides of Eq.(22), we know
that Eq.(22) holds if and only if k = 1, that means Eq.(20) is equivalent to
the following Eq.(23)

∏n
i=1

(
1 + (s−αi)

2

β2
i

)di

=
∏n

i=1

(
1 + (1−s−αi)

2

β2
i

)di(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

=
(
1 + (s−αn+1)

2

β2
n+1

)dn+1
(23)

Recalling that Eq.(17) ⇔ Eq.(18) ⇔ Eq.(20), then we have

n+1∏
i=1

(
1 +

(s− αi)
2

β2
i

)di

=

n+1∏
i=1

(
1 +

(1− s− αi)
2

β2
i

)di

⇔
∏n

i=1

(
1 + (s−αi)

2

β2
i

)di

=
∏n

i=1

(
1 + (1−s−αi)

2

β2
i

)di(
1 + (1−s−αn+1)

2

β2
n+1

)dn+1

=
(
1 + (s−αn+1)

2

β2
n+1

)dn+1

(24)

That completes the proof of Lemma 4.

Proof of the RH: The details are delivered in three steps as follows.

Step 1: Based on the Hadamard product in Eq.(10), we have

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
)

= ξ(0)
∞∏
i=1

(1− s

ρi
)(1− s

ρ̄i
)

= ξ(0)
∞∏
i=1

(1− s

αi + jβi
)(1− s

αi − jβi
)

= ξ(0)
∞∏
i=1

(
β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)

(25)
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The convergence of the infinite product in Eq.(25) in the form

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
)(1− s

ρ̄
) = ξ(0)

∏
ρ

(
1− s(2α− s)

|ρ|2
)
, 0 < α = ℜ(ρ) < 1

can be obtained by the similar way that was used in Chapter 2.5 of Reference
[22] to prove the convergence of

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
)(1− s

1− ρ
) = ξ(0)

∏
ρ

(
1− s(1− s)

ρ(1− ρ)

)
In fact, the convergence of these two infinite products depends on the con-
vergence of infinite series:

∑
ρ

1
|ρ|2 , and

∑
ρ

1
|ρ(1−ρ)| , respectively. The proof

details of the convergence of these two infinite series can be found on pages
42-43 in Ref. [22], as well as on page 156 in Ref. [9].

Further, taking into account the possibility of multiple zeros, we have

ξ(s) = ξ(0)
∞∏
i=1

( β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di
(26)

where di ≥ 1 are natural numbers.
Step 2: Replacing s with 1 − s in Eq.(26), we obtain the infinite product
expression of ξ(1− s)

ξ(1− s) = ξ(0)

∞∏
i=1

(
β2
i

α2
i + β2

i

+
(1− s− αi)

2

α2
i + β2

i

)di (27)

Step 3: We have by ξ(s) = ξ(1− s) that

∞∏
i=1

(
β2
i

α2
i + β2

i

+
(s− αi)

2

α2
i + β2

i

)di =
∞∏
i=1

(
β2
i

α2
i + β2

i

+
(1− s− αi)

2

α2
i + β2

i

)di (28)

which is equivalent to

∞∏
i=1

(1 +
(s− αi)

2

β2
i

)di =

∞∏
i=1

(1 +
(1− s− αi)

2

β2
i

)di (29)

And that βi can be certainly arranged in order of increasing |βi| , i.e., |β1| ≤
|β2| ≤ |β3| ≤, · · · .
Then according to Lemma 3, Eq.(29) is equivalent to αi =

1
2 , i ∈ N from 1 to

infinity.
Thus we conclude that all the zeros of the completed zeta function ξ(s) have
real part equal to 1

2 , i.e., Statement 2 of the RH is true; According to Lemma
2, the Statement 1 of the RH is also true, i.e., All the non-trivial zeros of the
Riemann zeta function ζ(s) have real part equal to 1

2 .
That completes the proof of the RH.
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3 Conclusion

The Riemann Hypothesis is proved based on a new expression of the completed
zeta function ξ(s), i.e., the infinite product of quadratic factors determined by
complex conjugate roots of ξ(s) = 0, i.e., ρi = αi+ jβi, ρ̄i = αi− jβi, 0 < αi <
1, βi ̸= 0, i ∈ N, from 1 to infinity.
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