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Abstract In this research article we solve the problem of synchronization and anti-synchronization 

of chaotic systems described by discrete and time-delayed variable fractional order differential 

equations. To guarantee the synchronization and anti-synchronization of these systems, we use the 

well-known PID control theory and the Lyapunov-Krasovskii stability theory for discrete systems 

of variable fractional order. 

We illustrate the results obtained through simulation with examples, in which it can be seen that 

our results are satisfactory, thus achieving synchronization and anti-synchronization of chaotic sys-

tems of variable fractional order with discrete time delay. 

Keywords Variable-order fractional-discrete time systems; Synchronization and Anti-Synchroniza-

tion; Lyapunov-Krasovskii Stability; Fractional Order Caputo Derivative; Time-Delay Fractional-

Discrete Systems; Fractional Order Discrete Time PID Control 

 

1. Introduction 

We present in this research article, the solution to the problem of synchronization [1] 

and anti-synchronization [2] of discrete chaotic systems described by systems of differen-

tial equations of variable fractional order [3] and with time delay [4], where this analysis 

is carried out for non-linear systems in the sense of the derivative of Caputo for systems 

of variable fractional order [3].  

The dynamics of systems is a branch of mathematics, which studies the performance of 

physical phenomena in time, which are mathematically modeled by means of differential 

equations or finite differences, depending on whether the system is in continuous or dis-

crete time, respectively. 
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In 1963 E. Lorentz, studying the behavior of the climate, proposed a mathematical 

model which bears his name, the Lorentz chaotic attractor, which is sensitive to initial con-

ditions and variations in its parameters. This system drastically changed its behavior, so 

predicting the climate with this mathematical model was impossible, currently there are a 

great variety of chaotic systems such as the attractor of Chua, Chen, Rossler, Duffing, Lu 

and Bhalekar-Gejji, etc. These chaotic systems have been extensively studied. 

For example, in the pioneering works of Pecora and Carroll, they synchronized two 

identical chaotic attractors with different initial conditions, this was the first time this study 

was carried out. At present, chaotic systems have attracted a large number of researchers 

and the results obtained have a wide range of applications, for example, in encryption, 

synchronization, anti-synchronization, secure information transfer by electronic means, 

etc. Lately, the study of these chaotic systems described by first-order differential equa-

tions has become generalized to systems of differential equations of variable fractional or-

der, discrete with time delay, which is our case study, and the systems are not the same, 

where one system is Chen's chaotic system, which we will refer to as the master system, a 

term widely used in synchronization, and the other chaotic system, is the Rossler system, 

which we refer to as the slave system.  

We refer, in this paper, as the master-slave system, even though the results obtained 

are for these two systems, the methodology can be used for other non-linear discrete time 

systems of fractional order variable with time delay in the Caputo sense.  

In this investigation, the Rossler system is forced to follow (synchronize) and anti-

synchronize with the chaotic Chen system, both systems described, as mentioned above 

by means of discrete and variable fractional order differential equations with time delay, 

synchronization and Anti-synchronization are obtained by discrete fractional PID control 

laws [5] and using the stability theory by Lyapunov Krasovskii [6], as can be seen in the 

illustrations, the results are satisfactory and the analytical results agree with the results 

obtained by means of simulation Via Simulink-MatLab. 

In this article, we do not discretize the systems, we work with the non-linear system, 

under the conditions indicated on variable-order fractional [7] discrete-time non-linear 

systems [8]. 

This article is organized as follows: 

In section 2, the problem of synchronization of the aforementioned systems is 

raised. 

In section 3, the problem of anti-synchronization of the systems, also mentioned 

above, is raised. 

In section 4, the synchronization of the aforementioned chaotic systems is analyzed 

and a control law is obtained by Lyapunov-Krasovskii stability analysis and a fractional 

order discrete PID control law. 

In section 5, the anti-synchronization of the aforementioned chaotic systems is ana-

lyzed and a control law is obtained by means of the Lyapunov-Krasovskii stability analy-

sis and a fractional order discrete PID control law. 
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In section 6, examples of synchronization of the chaotic systems of Chen (Master) 

are presented, see (10) and the chaotic system of Rossler (Slave) see (11), where the simu-

lations were carried out in Simulink-MatLab. 

In section 7, examples of anti-synchronization of the Chen chaotic systems (Master) 

are presented, see (10) and the Rossler chaotic system (Slave) see (11), where the simula-

tions were carried out in Simulink-MatLab.  

2. Statement of the problem for time-delay synchronization of variable-order 
fractional discrete-time chaotic system  

In this section we present the problem of synchronization between two different 

chaotic systems and the part (4) we solve the problem of synchronization, the system of 

Chen, which we will refer to as the master system, which is described by: 

∇𝛼𝑖 𝑥(𝑘 + 1) = [𝑃𝑥𝑚 + 𝑓(𝑥𝑚)]Δ , where 𝑃 = (
−35 35 0
−7 28 0
0 0 −3

) ; 𝑋𝑚 = (𝑥1, 𝑥2, 𝑥3)𝑇 

and 𝑓(𝑥𝑚) = (0, −𝑥1𝑥3, 𝑥1𝑥2)𝑇,  

and Rossler's system as the slave system, his equations are in the form of a time-

delayed discrete variable fractional order.   

∇𝛼𝑖 𝑦(𝑘 + 1) = [𝑄𝑦𝑠(𝑡 − 𝜏) + 𝑔(𝑦𝑠(𝑡 − 𝜏)) + 𝑈]Δ , where 𝑄 = (
0 −1 −1
1 0.2 0
0 0 −5.7

) ; 

𝑌𝑠(𝑡 − 𝜏) = (𝑦1(𝑡 − 𝜏) , 𝑦2 (𝑡 − 𝜏), 𝑦3(𝑡 − 𝜏))𝑇 and 𝑔(𝑌𝑠) = (0, 0, 0.2 + 𝑦1𝑦2)𝑇, and 𝜏 > 0.  

 

Consider the following, that the variable-order fractional derivatives are variable 
with constant values [9], and [10],  a chaotic system as a drive system having state vector 
𝑋𝑚 ∈ ℝ𝑛 and 𝑃 ∈ ℝ𝑛𝑥𝑛, with 𝑛 = 3, is the master system matrix, given by:     

 
∇𝛼𝑖  𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) − 𝑥(𝑘) 

  
              𝑋𝑚(𝑘 + 1) − 𝑋𝑚(𝑘) = [𝑃(𝑋𝑚) + 𝑓(𝑋𝑚)]Δ                              (1) 

 
Consider another chaotic system as a slave system having state vector 𝑌𝑠 ∈ ℝ𝑛, and 𝑄 ∈ ℝ𝑛𝑥𝑛, 
𝑛 = 3, is the slave system matrix given as: 

 
∇𝛼𝑖 𝑦(𝑘 + 1) = 𝑔(𝑦(𝑘)) − 𝑦(𝑘) 

 
                        𝑌𝑠(𝑘 + 1) − 𝑌𝑠(𝑘) = [𝑄(𝑌𝑠(𝑡 − 𝜏)) + 𝑔(𝑌𝑠(𝑡 − 𝜏)) + 𝑈]Δ                          (2)  
 

Where 𝑔 is nonlinear part of the slave system as in (11), and 𝑈 is nonlinear active controller 
added in (2) for synchronization action. Synchronization error 𝑒 ∈ ℝ𝑛 between 𝑋𝑚 and 𝑌𝑠 is 
defined as: 

                                           𝑒 = 𝑌𝑠 − 𝑋𝑚                                           (3) 
 
     Substituting (1) and (2) in the dynamics of the synchronization error (3) we obtain: 
 

: 
 

∇𝛼𝑖 𝑒(𝑘 + 1) = 𝑓(𝑒(𝑘)) − 𝑒(𝑘) 
 

         ∇𝛼𝑖𝑒 = ∇𝛼𝑖 𝑌𝑠 − ∇𝛼𝑖𝑋𝑚 
 
                                  [𝑌𝑠(𝑘 + 1) − 𝑌𝑠(𝑘)]−[𝑋𝑚(𝑘 + 1) − 𝑋𝑚(𝑘)] =                            (4) 
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       {[𝑄(𝑌𝑠(𝑡 − 𝜏)) + 𝑔(𝑌𝑠(𝑡 − 𝜏)) + 𝑈] − [ 𝑃(𝑋𝑚) + 𝑓(𝑋𝑚)]}Δ 
 
          Therefore, the synchronization problem is to determine the nonlinear controller 𝑈, so that: 
 
                                              lim

𝑡→∞
‖𝑒(𝑡)‖ = 0                                         (5) 

 

         To demonstrate the above, we consider a positive definite Lyapunov function as: 

 

                                              𝑉(𝑒) =
1

2
∑ 𝑒𝑘

2n
k=1                                        (6) 

Where 𝑒𝑘 is the (𝑘 − 𝑡ℎ) error of the state, and our objective is to determine a control 

action U such that the Lyapunov-Krasovskii derivative ∆(𝑉(𝑒)) < 0, is negative definite, with 

which it is guaranteed that the synchronization error tends to zero when 𝑡 tends to infinity 

and therefore the systems are globally asymptotically synchronized.  

We use the derivative function, given in definition 2.1.3, page 104, of Louis Leithold's sev-

enth edition, are given as:  

   �̇� = 𝒇′(𝑥) = 𝐥𝐢𝐦
∆𝒙→𝟎

𝒇(𝒙+∆𝒙)−𝒇(𝒙)

∆𝒙
, if this limit exists.   

Assuming that, the first partial time derivative of 𝑒𝑘 exist, then 

 

∆(𝑉(𝑒𝑘)) = ∑
1

2
lim
∆→0

(ek + ∆)2 − ek
2

∆

n

k=1

= 

 

∑ [
1

2
lim
∆→0

ek
2 + 2ek(∆) + (∆)2 − ek

2

∆
]

𝑛

𝑘=1
= 

 

∑ [
1

2
lim
∆→0

2ek(∆) + (∆)2

∆
]

𝑛

𝑘=1
 

  

Adding and subtracting 𝑒𝑘 we have  

 

∆(V(ek)) = 

 

∑ [
1

2
lim
∆→0

2ek[(ek + (∆) − ek] + (∆)2

∆
]

n

k=1
 

 

∆(V(ek)) = 

 

                  ∑ [
2ek

2
lim
∆→0

[(ek+(∆))−ek]

∆
]𝑛

𝑘=1 +            

         

        ∑ [lim
∆→0

[∆2]

∆
] =n

k=1 ∑ ekėk n
k=1   
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For our purpose, we can use, in this paper the next inequality widely used in fractional 

order control systems: 

         
1

2
𝐷𝑡0

𝐶
𝑡
𝛼𝑒k

2(𝑡) ≤ 𝑒(𝑡)𝑡0
𝐶 𝐷𝑡

𝛼𝑒(𝑡),                              (7) 

                             ∀ 𝛼 ∈ (0,1), you can see the references [8], [11], [12].                   

We will find 𝑈  such that ∆(V(ek)) < 0 , is negative definite and since 𝑉(𝑒, 𝑡) → ∞  as 

𝑒(𝑡) → ∞, then the error is globally asymptotically stable. The states drive and response system, 

are globally asymptotically synchronized. 

 In the next section, the anti-synchronization problem is discussed for the chaotic system.  

3. Problem statement for time-delay anti-synchronization of variable-order fractional 
discrete-time chaotic system 

 

In this section, we will denote the anti-synchronization error of the of the aforemen-

tioned systems by 𝑒𝑎𝑠 ∈ ℝ𝑛, in our case, 𝑛 = 3, and in the section 5 we solve the problem of 

anti-synchronization, between their states 𝑋𝑚 and 𝑌𝑠, this error is defined for the states sys-

tem (1) and response system (2) by:  

 
                              𝑒𝑎𝑠 = 𝑌𝑠(𝑡 − 𝜏) + 𝑋𝑚                               (8) 
    Substituting (1) and (2) in the dynamics of the anti-synchronization error (8) we obtain:  

∇𝛼𝑖  𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) − 𝑥(𝑘) 
 

 𝑋𝑚(𝑘 + 1) − 𝑋𝑚(𝑘) = [𝑃(𝑋𝑚) + 𝑓(𝑋𝑚)]Δ     
  

                                            ∇𝛼𝑖  𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘)) − 𝑦(𝑘)  
 
                                    𝑌𝑠(𝑘 + 1) − 𝑌𝑠(𝑘) = [𝑄(𝑌𝑠(𝑡 − 𝜏)) + 𝑔(𝑌𝑠(𝑡 − 𝜏)) + 𝑈]Δ   
 

From (8) we get the fractional variable order derivative: 
 

           ∇𝛼𝑖𝑒𝑎𝑠 = ∇𝛼𝑖 𝑌𝑠(𝑡 − 𝜏) + ∇𝛼𝑖𝑋𝑚  
 

 [𝑌𝑠(𝑘 + 1) − 𝑌𝑠(𝑘)]+[𝑋𝑚(𝑘 + 1) − 𝑋𝑚(𝑘)] =               (9)  
 

 {[𝑄(𝑌𝑠(𝑡 − 𝜏)) + 𝑔(𝑌(𝑡 − 𝜏)𝑠) + 𝑈] + [ 𝑃(𝑋𝑚) + 𝑓(𝑋𝑚)]}Δ 
 

The anti-synchronization problem is to determine the nonlinear control 𝑈, satisfies  
 lim

𝑡→∞
‖𝑒(𝑡)‖ = 0, ∀ 𝑒𝑎𝑠(𝑡) ∈ ℝ3. 

To achieve the goal that the anti-synchronization error tends to zero, we define the 

following positive definite Lyapunov-Krasovskii function:  

𝑉(eas) =
1

2
∑ 𝑒𝑎𝑠𝑘

2

n

k=1

 

With the assumption that the parameters of drive and response systems are known and 

the states are measurable. The problem is to find 𝑈 such that the derivative of 𝑉(eas) exist and 

will be negative definite, and using the inequality (7) we have: 

 

∆(𝑉(eas)) = [∑ eask
ėask

n

k=1

] < 0 
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We will find 𝑈 such that ∆(V(eas)) < 0, is negative definite and since 𝑉(eas, 𝑡) → ∞ as 

eas(𝑡) → ∞, then the error is globally asymptotically stable. The states drive and response sys-

tem, are globally asymptotically anti-synchronized. 

In the next section we will determine the control law𝑈, which is obtained by means of the 

Lyapunov-Krasovskii function, previously defined. 

 

4. Time-Delay Variable-Order Fractional Discrete-Time chaotic systems for 

Synchronization of Chen and Rossler 

 

In this section we solve the problem of synchronization of the discrete-time Chen system and 

discrete-time Rossler systems are considered as master and slave respectively. The discrete-time 

Chen system dynamics is given as: 

 

∇𝛼𝑖 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) − 𝑥(𝑘),  
𝛼𝑖 = 1, 2,3 

𝛼1 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

𝑥1(𝑘 + 1) − 𝑥1(𝑘) = [35(𝑥2 − x1)]Δ 

   𝑥2(𝑘 + 1) − 𝑥2(𝑘) = (−7𝑥1 − x1x3 + 28𝑥2)Δ       (10)     

𝑥3(𝑘 + 1) − 𝑥3(𝑘) = (−3𝑥3 + x1x2)Δ 

Where 𝑥1, 𝑥2, 𝑥3 are the states (10). The phase portrait for the chaotic Chen system is  

given in the Fig. 1.   

 

Figure 1. Phase portrait for the discrete-time of Chen  chaotic system. 

 

The discrete-time slave system is chosen as a Time-Delay discrete-time Rossler chaotic  

system. The dynamics of the discrete-time Rossler chaotic system is given as: 

 

∇𝛼𝑖 𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘)) − 𝑦(𝑘),  
𝛼𝑖 = 1, 2,3 

𝛼1 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

 

𝑦1(𝑘 + 1) − 𝑦1(𝑘) = 

                                      [(−𝑦2(t − τ) − 𝑦3(t − τ) + 𝑃1𝐼1𝐷1 +u1)]Δ 
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𝑦2(𝑘 + 1) − 𝑦2(𝑘) = 

 [(𝑦1(t − τ) + 0.2y2(t − τ)) + 𝑃2𝐼2𝐷2  + u2]Δ        (11)     

𝑦3(𝑘 + 1) − 𝑦3(𝑘) = 

[0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3  + u3]Δ 

 

Where 𝑦1, 𝑦2 , 𝑦3 are the states of (11). The phase portait for system (11) with 𝑢𝑖 = 0, and 

𝑃𝑖𝐼𝑖𝐷𝑖 = 0, ∀ 𝑖 is given in Fig. 2.  

 

Figure 2. The phase portrait for the discrete-time chaotic Rossler system. 

The synchronization error 𝑒 ∈ ℝ3 is defined as: 

                      𝑒𝑖 = 𝑦𝑖(t − τ) − 𝑥𝑖 , 𝑖 = 1,2,3                   (12) 

The error dynamics equations are obtained as follows:  

 

∇𝛼𝑖  𝑒(𝑘 + 1) = 𝑓(𝑒(𝑘)) − 𝑒(𝑘),  
𝛼1 = 1, 2,3 

𝛼𝑖 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

In this paper we use the Discrete-Time Fractional-Order PID Controller [13]. 

Where 𝑃𝑖𝐼𝑖𝐷𝑖 , 𝑖 = 1,2,3, for each control 𝑢𝑖 , 𝑖 = 1,2,3 

𝑢1, 𝑢2, 𝑢3 

                            𝑃𝐼𝐷 = 𝐾𝑝 + 𝐾𝑑 ∑ 𝑓𝑘(𝜇)𝑧−𝑘𝑀
𝑘=0 + 𝐾𝑖

1+𝑧−1

1+𝑧−1
∑ 𝑓𝑘(1 − 𝜆)𝑧−𝑘𝑀

𝑘=0  

And 𝐾𝑝 = 𝑘𝑝, 𝐾𝑑 = 𝑘𝑑𝛼𝜇, 𝐾𝑖 = 𝑘𝑖𝛼
−𝜆 

𝑒1(𝑘 + 1) − 𝑒1(𝑘) = 

    𝑦1(𝑘) + [(−𝑦2(t − τ) − 𝑦3(t − τ) + u1 + 𝑃1𝐼1𝐷1)]Δ − {x1(𝑘) + [35(𝑥2 − x1)]Δ}=  

               [−(𝑦1(t − τ) − 𝑥1) + (𝑦1(t − τ) − 𝑥1) − 𝑦2(t − τ) − 𝑦3(t − τ) − 35𝑥2 + 35𝑥1 + 𝑢1 + 𝑃1𝐼1𝐷1]Δ +   

𝑦1(𝑘) − 𝑥1(𝑘) = 

           [−𝑒1 + (𝑦1(t − τ) − 𝑥1) − 𝑦2(t − τ) − 𝑦3(t − τ) − 35𝑥2 + 35𝑥1 + 𝑢1 + 𝑃1𝐼1𝐷1 ]Δ + 𝑦1(𝑘) − 𝑥1(𝑘)       (13)                       

                                                                               

𝑒2(𝑘 + 1) − 𝑒2(𝑘) = 

    𝑦2(𝑘) + [𝑦1(t − τ) + 0.2y2(t − τ) + 𝑃2𝐼2𝐷2 + u2]Δ − {𝑥2(𝑘) + [−7𝑥1 − x1x3 + 28𝑥2]Δ} =    

          {−(𝑦2(t − τ) − 𝑥2) + (𝑦2(t − τ) − 𝑥2) + [𝑦1(t − τ) + 0.2y2(t − τ) + 𝑃2𝐼2𝐷2 + 𝑢2 + 7𝑥1 + x1x3 − 28𝑥2]}Δ +    

         𝑦2(𝑘) − 𝑥2(𝑘) =  

          [−𝑒2 + 𝑦2(t − τ) − 𝑥2 + 𝑦1(t − τ) + 0.2y2(t − τ) + +𝑃2𝐼2𝐷2  + 𝑢2 + 7𝑥1 + x1x3 − 28𝑥2]Δ + 𝑦2(𝑘) − 𝑥2(𝑘)  
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𝑒3(𝑘 + 1) − 𝑒3(𝑘) = 

   𝑦3(𝑘) + [0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3]Δ − [x3(k) + (−3𝑥3 + x1x2)Δ] =   

{−(𝑦3(t − τ) − 𝑥3) + (𝑦3(t − τ) − 𝑥3) + 

    0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3 + 3𝑥3 − x1x2}Δ + 𝑦3(𝑘) − 𝑥3(𝑘) =  

[−𝑒3 + (𝑦3(t − τ) − 𝑥3) + 

0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3 + 3𝑥3 − x1x2}Δ + 𝑦3(𝑘) − 𝑥3(𝑘) 

 

We need to find the nonlinear active control law for 𝑢𝑖, ∀ 𝑖 in such a manner that the 

error dynamics of (13) is globally asymptotically stable. Let 

𝑢1 = (−𝑦1(t − τ) + 𝑥1) + 𝑦2(t − τ) + 𝑦3(t − τ) + 35𝑥2 − 35𝑥1 − 𝑃1𝐼1𝐷1 

                   𝑢2 = −𝑦2(t − τ) + 𝑥2 − 𝑦1(t − τ) − 0.2y2(t − τ) − 𝑃2𝐼2𝐷2 − 7𝑥1 − x1x3 + 28𝑥2               (14) 

   𝑢3 = (−𝑦3(t − τ) + 𝑥3) − 0.2 + 5.7𝑦3(t − τ) − y1(t − τ)y3(t − τ) − 𝑃3𝐼3𝐷3 − 3𝑥3 + x1x2     

           Substituting the controller dynamics (14) in error 

dynamics (13), we have error dynamics as:  

 

𝑒1(𝑘 + 1) − 𝑒1(𝑘) = [−𝑒1]∆ + 𝑦1(𝑘) − 𝑥1(𝑘) 

𝑒2(𝑘 + 1) − 𝑒2(𝑘) = [−𝑒2]∆ + 𝑦2(𝑘) − 𝑥2(𝑘) 

𝑒3(𝑘 + 1) − 𝑒3(𝑘) = [−𝑒3]∆ + 𝑦3(𝑘) − 𝑥3(𝑘) 

 

𝑒1(𝑘 + 1) − 𝑒1(𝑘) = [−𝑒1]∆ + 𝑒1 

                      𝑒2(𝑘 + 1) − 𝑒2(𝑘) = [−𝑒2]∆ + 𝑒2            (15) 

𝑒3(𝑘 + 1) − 𝑒3(𝑘) = [−𝑒3]∆ + 𝑒3 

 

The synchronization problem is to determine the nonlinear controller 𝑈, so that: 
 

                               lim
𝑡→∞

‖𝑒(𝑡)‖ = 0      

To show that the previous limit is satisfied, we make use of the following positive 

definite Lyapunov-Krasovskii function as [14], [15] and [16]: 

                           𝑉(𝑒) =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2) + ∫ 𝑔(𝑥(𝜁))𝑑𝜁
𝑡

𝑡−𝜏
                    (16) 

This Lyapunov-Krasovskii function is defined for systems that are continuous in 

time, and for discrete systems, which is our case study, the integral in (16) is replaced by 

the following summation, the function thus obtained is called the function of Lyapunov-

Krasovskii for discrete systems in time.  

𝑉1(𝑒𝑡) = ∑ 𝑒𝑇

𝑡−1

𝑖=𝑡−ℎ

(𝑖)𝑄𝑒(𝑖) 

Here we use the following known inequality in fractional order systems 

                                             
1

2
𝐷𝑡

𝛼
𝑡0
𝐶 𝑒k

2(𝑡) ≤ 𝑒(𝑡)𝑡0
𝐶 𝐷𝑡

𝛼𝑒(𝑡), ∀ 𝛼 ∈ (0,1),  

Assuming first order partial derivatives of (16) exists, we obtained, using the procedure in 

(7) we have 

                    ∆(𝑉(𝑒)) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 + 𝑒𝑇(𝑡)𝑄𝑒(𝑡) − 𝑒𝑇(𝑡 − ℎ)𝑄𝑒(𝑡 − ℎ)           (17)                                      
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Substituting (15) in (17), we obtain 

 

    ∆(𝑉(𝑒)) = −𝑒1
2Δ + e1

2 − 𝑒2
2Δ + e2

2 − 𝑒3
2Δ + e3

2    + 𝑒𝑇(𝑡)𝑄𝑒(𝑡) − 𝑒𝑇(𝑡 − ℎ)𝑄𝑒(𝑡 − ℎ)     

 

 ∆(𝑉(𝑒)) = −𝑒1
2Δ + ‖e1‖ − 𝑒2

2Δ + ‖e2‖ − 𝑒3
2Δ + ‖e3‖ +         (18) 

‖𝑒(𝑡 − ℎ)‖ 

 

               ∆(𝑉(𝑒)) = −𝑒1
2Δ − 𝑒2

2Δ − 𝑒3
2Δ < 0          

            

Since ∆(𝑉(𝑒))  is negative definite. For the Lyapunov stability theory, the  error 

dynamics (15) is globally asymptotically stable and the error dynamics will converge to zero as 

𝑡 → ∞ with the control law in (14). The chaotic systems Chen (10) and Rossler (11) are globally 

asymptotically synchronized for any initial condition.   

 

The analytical results obtained through examples developed via simulation are illustrated 

below for sinchronization:  

Chen and Rossler systems are simulated in simulink matlab using the control law 𝑼  (14) for 

synchronization, The initial conditions for these systems are 𝒙(𝟎) = [−𝟏𝟎, 𝟎, 𝟑𝟕]𝑻  and 𝒚(𝟎) =
[𝟎. 𝟏, 𝟎, 𝟎]𝑻, Respectively for simulation: 

Time evolution of the states of the Chen and Rossler systems for synchronization with time delayed:  

  

a b 
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c 

Figure 3. Time response of synchronized states of master and slave. 

 

Figure 4. Phase space of the synchronization of the original master slave systems. 

 

Figure 5. Phase space of the synchronization of the master-slave system whit fractional order 

given by  c = 0.9, c1 = 0.8, c2 = 0.7. 

For these simulations we use a ∆= 0.001,  and 𝜏 = 20 𝑠𝑒𝑐.  

Synchronization errors of states are shown in the figure 6.  
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Figure 6. Synchronization errors with time-delay between the states of master and slave 

systems of variable fractional order derivadtve. 

 

 

5. Variable-Order Fractional Discrete-time chaotic system for Anti- synchronization 

of Chen and Rossler 

 

In this section we solve the problem of anti-synchronization of the discrete-time Chen 

system and discrete-time Rossler systems are considered as master and slave respectively. The 

discrete-time Chen system dynamics is given as: 

 The discrete-time anti-synchronization error 𝑒𝑎𝑠 ∈ ℝ3 is defined as:  

 

                 𝑒𝑎𝑠𝑖
= 𝑌𝑠 + 𝑋𝑚,      𝑖 = 1, 2, 3                    (19) 

 
From (1), (2) and (19), the dynamics of the error is: 
 

 �̇�𝑎𝑠   = �̇�𝑠 + �̇�𝑚= 
   [𝑌𝑠(𝑘 + 1) − 𝑌𝑠(𝑘)]+[𝑋𝑚(𝑘 + 1) − 𝑋𝑚(𝑘)] =      

{[𝑄(𝑌𝑠) + 𝑔(𝑌𝑠) + 𝑈] + [ 𝑃(𝑋𝑚) + 𝑓(𝑋𝑚)]}Δ 
 

The anti-synchronization problem is to determine the non.linear control 𝑈 , satisfies 
lim
𝑡→∞

‖𝑒(𝑡)‖ = 0, ∀ 𝑒𝑎𝑠𝑖
(𝑡) ∈ ℝ𝑛.  

Consider a positive definite Lyapunov function,  

           𝑉(easi
) =

1

2
∑ 𝑒𝑎𝑠𝑘

2n
k=1  

and using the procedure in (7) we have:  

 

           ∆(𝑉(eas)) = [∑ eask
ėask

n
k=1 ] 

       
1

2
𝐷𝑡

𝛼
𝑡0
𝐶 eask

2(𝑡) ≤ 𝑒(𝑡)𝑡0
𝐶 𝐷𝑡

𝛼eask

2(𝑡), ∀ 𝛼 ∈ (0,1),   

With 𝑉(eas) → ∞ as ‖eas(t)‖ → ∞, then 𝑒𝑎𝑠 is globally asymptotically stable, the states and

 response systems are globally asymptotically synchronized.  
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The discrete-time Chen system and discrete-time Rossler systems are considered as master 

and slave respectively. The discrete-time Chen system dynamics is given as: 

 

∇𝛼𝑖 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) − 𝑥(𝑘),  
𝛼𝑖 = 1, 2,3 

𝛼1 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

 

𝑥1(𝑘 + 1) − 𝑥1(𝑘) = [35(𝑥2 − x1)]Δ 

          𝑥2(𝑘 + 1) − 𝑥2(𝑘) = (−7𝑥1 − x1x3 + 28𝑥2)Δ      

𝑥3(𝑘 + 1) − 𝑥3(𝑘) = (−3𝑥3 + x1x2)Δ 

Where 𝑥1, 𝑥2, 𝑥3 are the states (10).  

The discrete-time slave system is chosen as a discrete-time Rossler chaotic system. The    

dynamics of the discrete-time  Rossler chaotic system is given as: 

 

∇𝛼𝑖 𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘)) − 𝑦(𝑘),  
𝛼𝑖 = 1, 2,3 

𝛼1 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

 

𝑦1(𝑘 + 1) − 𝑦1(𝑘) = [(−𝑦2(t − τ) − 𝑦3(t − τ) + 𝑃1𝐼1𝐷1 +u1)]Δ  

𝑦2(𝑘 + 1) − 𝑦2(𝑘) = [(𝑦1(t − τ) + 0.2y2(t − τ)) + 𝑃2𝐼2𝐷2  + u2]Δ          

𝑦3(𝑘 + 1) − 𝑦3(𝑘) = [0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3  + u3]Δ 

 

Where 𝑦1, 𝑦2 , 𝑦3 are the states of the system (11). The phase plane for system (11) with 

𝑢𝑖 = 0, and 𝑃𝑖𝐼𝑖𝐷𝑖 = 0 ∀ 𝑖, where 𝑢1, 𝑢2, 𝑢3 are the active nonlinear controllers to be designed. 

The anti-synchronization error 𝑒 ∈ ℝ3 is defined as: 

                   𝑒𝑎𝑠𝑖
= 𝑦𝑖(t − τ) + ui + 𝑥𝑖 , 𝑖 = 1,2,3                

The error dynamics equations are obtained as follows:  

 

∇𝛼𝑖  𝑒𝑎𝑠𝑖
(𝑘 + 1) = 𝑓 (𝑒𝑎𝑠𝑖

(𝑘)) − 𝑒𝑎𝑠𝑖
(𝑘),  

𝛼𝑖 = 1, 2,3 

𝛼1 = 0.9, 𝛼2 = 0.8, 𝛼3 = 0.7 

     

𝑒𝑎𝑠1
(𝑘 + 1) − 𝑒𝑎𝑠1

(𝑘) = 𝑦1(𝑘) + [(−𝑦2(t − τ) − 𝑦3(t − τ) + u1 + 𝑃1𝐼1𝐷1)]Δ 

+{x1(𝑘) + [35(𝑥2 − x1)]Δ}=  

[−(𝑦1(t − τ) + 𝑥1) + (𝑦1(t − τ) + 𝑥1) − 𝑦2(t − τ) − 𝑦3(t − τ) + 35𝑥2 − 35𝑥1 + 𝑢1 + 𝑃1𝐼1𝐷1]Δ + 

𝑦1(𝑘) + 𝑥1(𝑘) =  

 [−𝑒1 + (𝑦1(t − τ) + 𝑥1) − 𝑦2(t − τ) − 𝑦3(t − τ) + 35𝑥2 − 35𝑥1 + 𝑢1 + 𝑃1𝐼1𝐷1 ]Δ + 

      𝑦1(𝑘) + 𝑥1(𝑘)             (20) 

  

                        𝑒𝑎𝑠2
(𝑘 + 1) − 𝑒𝑎𝑠2

(𝑘) = 𝑦2(𝑘) + [𝑦1(t − τ) + 0.2y2(t − τ) + 𝑃2𝐼2𝐷2 + u2]Δ 

                      +{𝑥2(𝑘) + [−7𝑥1 − x1x3 + 28𝑥2]Δ} =    

         {−(𝑦2(t − τ) + 𝑥2) + (𝑦2(t − τ) + 𝑥2) + [𝑦1(t − τ) + 0.2y2(t − τ) + 𝑃2𝐼2𝐷2 + 𝑢2 − 7𝑥1 − x1x3 + 28𝑥2]}Δ +    

𝑦2(𝑘) + 𝑥2(𝑘) =  

[−𝑒2 + 𝑦2(t − τ) + 𝑥2 + 𝑦1(t − τ) + 0.2y2(t − τ) + +𝑃2𝐼2𝐷2  + 𝑢2 − 7𝑥1 − x1x3 + 28𝑥2]Δ +  

𝑦2(𝑘) + 𝑥2(𝑘)  
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𝑒𝑎𝑠3
(𝑘 + 1) − 𝑒𝑎𝑠3

(𝑘) = 

                 𝑦3(𝑘) + [0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3]Δ + [x3(k) + (−3𝑥3 + x1x2)Δ] =   

{−(𝑦3(t − τ) + 𝑥3) + (𝑦3(t − τ) + 𝑥3) + 

      0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3 − 3𝑥3 + x1x2}Δ + 𝑦3(𝑘) + 𝑥3(𝑘) =  

[−𝑒3 + (𝑦3(t − τ) + 𝑥3) + 

      0.2 − 5.7𝑦3(t − τ) + y1(t − τ)y3(t − τ) + 𝑃3𝐼3𝐷3 + u3 − 3𝑥3 + x1x2}Δ + 

                                                   𝑦3(𝑘) + 𝑥3(𝑘) 

 

We need to find the nonlinear active control law for 𝑢𝑖, ∀ 𝑖 in such a manner that the error 

dynamics of (13) is globally asymptotically stable. Let 

 

𝑢1 = (−𝑦1(t − τ) − 𝑥1) + 𝑦2(t − τ) + 𝑦3(t − τ) − 35𝑥2 + 35𝑥1 + 𝑢1 − 𝑃1𝐼1𝐷1 

      𝑢2 = −𝑦2(t − τ) − 𝑥2 − 𝑦1(t − τ) − .2y2(t − τ) − 𝑃2𝐼2𝐷2 + 7𝑥1 + x1x3 − 28𝑥2             (21) 

𝑢3 = (−𝑦3(t − τ) − 𝑥3) − 0.2 + 5.7𝑦3(t − τ) − y1(t − τ)y3(t − τ) − 𝑃3𝐼3𝐷3 + 3𝑥3 − x1x2} 

 

           Substituting the controller dynamics (21) in error 

dynamics (20), we have error dynamics as:  

 

𝑒𝑎𝑠1
(𝑘 + 1) − 𝑒𝑎𝑠1

(𝑘) = [−𝑒𝑎𝑠1
]∆ + 𝑦1(𝑘) + 𝑥1(𝑘) 

𝑒𝑎𝑠2
(𝑘 + 1) − 𝑒𝑎𝑠2

(𝑘) = [−𝑒𝑎𝑠2
]∆ + 𝑦2(𝑘) + 𝑥2(𝑘) 

𝑒𝑎𝑠3
(𝑘 + 1) − 𝑒𝑎𝑠3

(𝑘) = [−𝑒𝑎𝑠3
]∆ + 𝑦3(𝑘) + 𝑥3(𝑘) 

 

𝑒𝑎𝑠1
(𝑘 + 1) − 𝑒𝑎𝑠1

(𝑘) = [−𝑒𝑎𝑠1
]∆ + 𝑒𝑎𝑠1

 

           𝑒𝑎𝑠2
(𝑘 + 1) − 𝑒𝑎𝑠2

(𝑘) = [−𝑒𝑎𝑠2
]∆ + 𝑒𝑎𝑠2

          (22)  

𝑒𝑎𝑠3
(𝑘 + 1) − 𝑒𝑎𝑠3

(𝑘) = [−𝑒𝑎𝑠3
]∆ + 𝑒𝑎𝑠3

 

 

The synchronization problem is to determine the nonlinear controller 𝑈, so that: 
 
                                lim

𝑡→∞
‖𝑒(𝑡)‖ = 0                          

 

Considering a positive definite Lyapunov function as [14], [15 ] and [16]: 

                                𝑉(𝑒𝑎𝑠) =
1

2
(𝑒𝑎𝑠1

2 + 𝑒𝑎𝑠2
2 + 𝑒𝑎𝑠3

2 ) + ∫ 𝑔(𝑥(𝜁))𝑑𝜁
𝑡

𝑡−𝜏
   

This Lyapunov-Krasovskii function is defined for systems that are continuous in 

time, and for discrete systems, which is our case study, the integral is replaced by the fol-

lowing summation, the function thus obtained is called the function of Lyapunov-Krasov-

skii for discrete systems in time.   

𝑉1(𝑒𝑡) = ∑ 𝑒𝑇

𝑡−1

𝑖=𝑡−ℎ

(𝑖)𝑄𝑒(𝑖) 

                                𝑉(𝑒𝑎𝑠) =
1

2
(𝑒𝑎𝑠1

2 + 𝑒𝑎𝑠2
2 + 𝑒𝑎𝑠3

2 ) + ∑ 𝑒𝑇𝑡−1
𝑖=𝑡−ℎ (𝑖)𝑄𝑒(𝑖)                         (23) 
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Assuming first order partial derivatives of (23) exists, we obtained, using the procedure in 

(7)             

                         ∆ (𝑉(𝑒𝑎𝑠1
)) = 𝑒𝑎𝑠1

�̇�𝑎𝑠1
+ 𝑒𝑎𝑠2

�̇�𝑎𝑠2
+ 𝑒𝑎𝑠3

�̇�𝑎𝑠3
+ 𝑒𝑇(𝑡)𝑄𝑒(𝑡) − 𝑒𝑇(𝑡 − ℎ)𝑄𝑒(𝑡 − ℎ)        (24)              

Substituting (22) in (24), we obtain 

 

            ∆(𝑉(𝑒𝑎𝑠)) = −𝑒𝑎𝑠1
2 Δ + eas1

2 − 𝑒𝑎𝑠2
2 Δ + eas2

2 − 𝑒𝑎𝑠3
2 Δ + eas3

2 + 𝑒𝑇(𝑡)𝑄𝑒(𝑡) − 𝑒𝑇(𝑡 − ℎ)𝑄𝑒(𝑡 − ℎ)   

 

       ∆(𝑉(𝑒𝑎𝑠)) = −𝑒𝑎𝑠1
2 Δ + ‖eas2

‖ − 𝑒𝑎𝑠3
2 Δ + ‖eas3

‖ − 𝑒𝑎𝑠3
2 Δ + ‖eas3

‖ + ‖eas3
‖ + (25) 

 

‖𝑒(𝑡 − ℎ)‖ 

 

                  ∆(𝑉(𝑒𝑎𝑠)) = −𝑒𝑎𝑠1
2 Δ − 𝑒𝑎𝑠2

2 Δ − 𝑒𝑎𝑠3
2 Δ         

            

Since, ∆(𝑉(𝑒))  is negative definite. For the Lyapunov stability theory, the  error 

dynamics (22) is globally asymptotically stable and the error dynamics will converge to zero as 

𝑡 → ∞ with the control law in (21). The chaotic systems Chen (10) and Rossler (11) are globally 

asymptotically anti-synchronized for any initial condition, and with this analysis, we have the 

next theorem:   

The analytical results obtained through examples developed via simulation are illustrated 

below for anti-sinchronization: 

Chen and Rossler systems are simulated in simulink matlab using the control law 𝑈 (21) 

for anti-synchronization: 

The initial conditions for these systems are 𝑥(0) = [−10, 0, 37]𝑇 and 𝑦(0) = [0.1, 0, 0]𝑇 

Respectively for simulation: 

 

Evolution over time of the states of the Chen and Rossler systems for anti-sinchronization: 

 

  

a b 
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c 

Figure 7. Time response of synchronized states of master and slave. 

 

Figure 8. Phase space of the anti-synchronization of the original master slave systems. 

 

Figure 9. Phase space of the anti-synchronization of the master-slave system whit fractional order 

given by  c = 0.9, c1 = 0.8, c2 = 0.7. 

For these simulations we use a ∆= 0.001,  and 𝜏 = 20 𝑠𝑒𝑐.  

Anti-synchronization errors of states are shown in the figure 10.  
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Figure 10. Anti-synchronization errors with time-delay between the states of master and slave 

systems of variable fractional order derivadtve. 

Theorem: The synchronization and anti-sinchronization problem of discrete fractional 

order chaotic systems in time is solved by means of control laws (14) and (21) which are obtained 

using the stability analysis by Lyapunov-Krasovskii and PID control laws for fractional order 

systems , so we ensure that:  ∆(V(e)) < 0  ∀e ≠ 0  and then lim
k→∞

e(k) = 0 ,  ∆(V(𝑒𝑎𝑠)) < 0 

∀ 𝑒𝑎𝑠 ≠ 0  and then lim
k→∞

 𝑒𝑎𝑠(k) = 0 , therefore the synchronization and anti-sinchronization 

problem is solved. 

 

6. Conclusions 

  

In this research work, a solution is given to the problem of synchronization and anti-

synchronization of chaotic systems described by differential equations of variable order 

derivative and discrete time with time delay tau, said problem is solved by means of a 

control law which is deduced by the well-known discrete Lyapunov-Krasovskii stability 

analysis and discrete PID control laws, as can be seen in the simulations of sections 4. and 

5.  the analytical results obtained are illustrated by simulations in these sections, as can be 

seen, the results are satisfactory, these simulations were carried out in the Simulink-

MatLab environment. 

Remarks: 

Although the study that was carried out was for the chaotic systems of Chen and 

Rossler, of variable fractional order with time delay, the methodology used can be used 

for other chaotic, hyperchaotic or other systems.  
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