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Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemi-

cal transformations. The interactions of microbial communities in these environments are highly 

complex and still poorly understood. This work aimed to assess publicly available metagenomes 

from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher 

metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301,2 Gb of met-

agenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to 

non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 MAGs of high and medium 

quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles 

of these MAGs were related to the physicochemical parameters and recovery management applied. 

The analysis of the potential functional core in the reservoirs showed that the microbiota was spe-

cialized for each site, with 31.7% of the total KEGG orthologies annotated as functions (1,690 genes) 

common to all oil fields, while 18% of the functions were site-specific, i.e., present only in one of the 

oil fields. The oil reservoirs with lower level of intervention were the most similar to the potential 

functional core, while the oil fields with longer history of water injection had greater variation in 

functional profile. These results show how key microorganisms and their functions respond to the 

distinct physicochemical parameters and interventions of the oil field operations such as water in-

jection and expand the knowledge of biogeochemical transformations in these ecosystems. 
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1. Introduction 

Oil reservoirs are unique subsurface environments often located deep in the earth, 

characterized by a complex matrix of hydrocarbons, low oxygen levels, and a long history 

of separation from the surface [1]. Currently, while a plethora of bacteria and archaea have 

been detected in petroleum reservoirs, some patterns in microbial taxonomic composition 

have been identified that correlate to specific environmental factors such as temperature 

and depth, with little role for the geographic distance between petroleum reservoirs 

worldwide [2,3]. Shallow and low-temperature reservoirs show an abundance of Epsi-

lonbacteria and Deltaproteobacteria members, while deeper high-temperature reservoirs 

are enriched in Clostridiales and Thermotogales. Despite these specific taxa that distin-

guish oil reservoirs according to their attributes, a core microbiome composition across 

the world has been identified, showing that the bacterial classes Gammaproteobacteria, 
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Clostridia and Bacteroidia and the archaeal class Methanomicrobia are ubiquitous in pe-

troleum reservoirs [4].  

There have been several studies using metagenomics aiming to provide insights into 

the functional potential of microorganisms in oil field environments [5-7]. Pioneering 

studies comparing metagenomes from oil reservoirs with metagenomes from hydrocar-

bon-rich or non-hydrocarbon-rich environments reported higher abundances of genes re-

lated to anaerobic hydrocarbon metabolism and methanogenesis in samples from oil res-

ervoirs [5,8]. However, the metabolic capability of individual organisms and intra-com-

munity interactions remains largely unresolved due to a lack of enough genome infor-

mation of biochemical transformations in oil reservoirs. Emerging approaches to recover 

metagenome-assembled genomes (MAGs) from metagenomic data [8-10] allow the recov-

ery of microbial genomes and access the functional potential of keystone taxa, including 

the uncultivated ones, and their interactions. 

At present, several metagenomic datasets derived from oil reservoirs located in 

China [2,11,12], Denmark [13], Alaska [6] and Brazil [3] have been added to public repos-

itories. Most of these metagenomic sequence data were analyzed as isolated niche studies, 

however no analysis has been carried out so far on the universal patterns or core functions 

of microorganisms in such deep environments. The understanding of the functional role 

and specificity of microorganisms inhabiting the subsurface biosphere requires the inte-

gration of the metagenomic data using novel tools.  

Here, we aimed to integrate the publicly available metagenomic data from oil reser-

voirs in order to deeply characterize community composition and metabolic profiles in 

petroleum reservoirs worldwide. The questions that guided our work were: i) Is there a 

potential functional core shared by microorganisms in oil reservoirs worldwide? ii) Are there met-

abolic processes that are specific to particular petroleum reservoirs? iii) Are pathways for hydro-

carbon degradation in oil reservoirs different from the ones in other environments? The answers 

to these questions are important for the comprehension of metabolic capabilities, biogeo-

chemical cycles and geological resources in deep subsurface environments. 

2. Materials and Methods 

2.1. Data Acquisition  

Seventeen datasets derived from publicly available shotgun metagenomes associated 

to oil fields were downloaded and used in this study. These data correspond to 17 samples 

distributed in six studies [1-3,6,11,12]. Metagenome data from oil reservoirs with different 

recovery management and temperatures located in different regions were included in or-

der to investigate the influence of geographic location, temperature and anthropogenic 

interventions on functional and taxonomic profiles of the indigenous microbial commu-

nities through the recovery of petroleum-associated Metagenome Assembled Genomes 

(MAGs). All sequence data were obtained from the National Center for Biotechnology 

Information (NCBI). The sample accession number, location, type of sample and related 

references is listed in the Supplementary Table S1. 

 

2.1.1. Description of datasets 

The geographic distribution of the metagenomes analyzed and the amount of data in 

Gigabytes from each site were plot in Figure 1. Five oil fields from China comprising 10 

metagenomes and almost 69 Gb of information were analyzed [1,2,11,12]. Three for-

mations in Alaska with 6 metagenomes and 216 Gb [6] were analyzed. Finally, one meta-

genome with 16 Gb of data from a Brazilian oil field was also included in the meta-analysis 

[3].  
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Figure 1. Geographic distribution of metagenomes. The number of metagenomes and amount of 

information in gigabytes from each site is in parenthesis. 

 

All downloaded metagenome datasets were submitted to the binning pipeline ap-

proach established in this work (Figure 2) in order to recover MAGs. The study performed 

by Liu and colleagues [11] described the metabolic potential and activity of the microbial 

communities obtained from the Jiangsu Oil Reservoir (China). They sampled produced 

water from three different wells, named W2-71, W9-18 and W15-5 and sequenced in Illu-

mina MiSeq platform (2 x 75 bp). Hu and collaborators (2016) used metagenomic shotgun 

sequencing of six samples from two North Slope oil fields in Alaska to compare the mi-

crobial community across the range of physical and chemical conditions and to predict 

metabolic roles. The produced water samples were obtained from different depths and 

temperatures, with or without hydrogen sulfide production (souring), and with or with-

out impact by sea water injection. Samples SB1 and SB2 were from Schrader Bluff for-

mation, with temperature range 24 – 27°C and depths from 1,200 to 1,400 m. Samples K2 

and K3 were from the Kuparuk formation, with temperature range between 47 and 70°C 

and depths between 1,785 and 2,150 m. And finally, samples I1 and I2 were collected from 

the Ivishak Formation, the hottest and deepest reservoir of the study, with temperature 

range between 80 and 83°C and depths of 2,750 to 3,100 m. In the study of Wang et al. 

(2019), the community structure and metabolic potential of oil-water mixture samples col-

lected from the water-flooded Shen84 oil reservoir (Liaohe oil field, in China) was inves-

tigated. Wells 6111_O and 6111_W showed medium permeability, medium oil saturation 

and active edge water, well AJ-5 showed high permeability, high soil saturation and in-

tensive anthropogenic perturbation, and well 71551 showed extremely low permeability 

and low oil saturation. Song and colleagues (2019) studied a water-flooded petroleum 

reservoir at the Shengli oil field, located in China. They sampled produced fluids from the 

well head of the production well to assess the taxonomic and functional information of 

the subsurface microbial community. In the study performed by Nie et al. (2016), crude 

oil metagenomes from two oil reservoirs in Daqing and Qinghai oil fields in China were 

analyzed. The oil samples were collected from the well head of the high temperature 

Qinghai (QH) oil field and from the well head of the mesophilic Daqing oil field (DQ), in 

order to compare the microbiome taxonomic and functional profiles. Finally, Sierra-Gar-

cia and collaborators (2020) sequenced the metagenome from a crude oil sample collected 

from a non-water flooded and high-temperature Brazilian oil reservoir located at Miranga 

oil field in Brazil (BA-1) in order to assess the functional genetic potential of the microbial 

community. Due to the differences on the stage of recovery management and tempera-

tures among the wells, five groups of samples were defined: i) without water injection 
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and high temperature; ii) with water injection and high temperature; iii) sea water injec-

tion and high temperature; iv) water injection and mesophilic temperatures; and v) recy-

cled water injection. 

 

Figure 2. Computational pipeline for obtaining MAGs. 

2.2. Computational analysis 

2.2.1. Quality control and filtering 

In this study, we used metagenomic sequencing datasets previously obtained from 

oil reservoirs worldwide to recover metagenome-assembled genomes (MAGs). Sequence 

datasets were downloaded from databases and processed according to Figure 2. Briefly, 

quality control of sequencing reads was performed using FASTQ v.0.11.5 [14]. Adapter 

presence was detected using BBMap v38.90 [15]. Trimmomatic v. 0.36 [16] was used to 

remove the adapters and to trim reads with quality lower than 30 (Phred score) and length 

smaller than 100 bp. For some metagenomes with low quality and reads lengths of 100 bp, 

Phred score 20 and 75 bp minimum length were used as the thresholds.  

 

2.2.2. Metagenome Assembly and binning 

Mash software was used to calculate the pairwise distances between the datasets by 

employing the MinHash technique [17] (Figure 2), in order to know which samples could 

be co-assembled. Metagenome datasets with distance values below 0.1 were co-assem-

bled. Both the trimmed read pairs and the reads left unpaired after quality filtering were 

used for metagenomic assembly. Assembly and co-assembly modes were performed us-

ing Megahit v.1.1.2 [18] with the following parameters: `--k-min 27 –k-max 147 –k-step 10 

–min-contig-len 500`. Quality of the generated assemblies was assessed using 

MetaQUAST v5.0.2 [19]. The coverage profile of the contigs were obtained by using Bow-

tie2 v2.3.5.1 [20] read alignment program to map the reads of each sample to each assem-

bly. SAM files generated were translated to BAM files, then sorted and indexed using 

SAMtools v1.9 [21]. 
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Oil reservoir-associated MAGs were generated per assembly using five different bin-

ning tools (Figure 2) with default options: MetaBAT2 v2.15 [22], MaxBin v2.2.7 [23], CON-

COCT v1.1.0 [24], BinSanity v.0.5.3 [25] and Vamb v.3.0.2 [26], which use a combination 

of sequence composition and coverage information from the coverage profile. DAS Tool 

v1.1.2 [27] with option `--score_threshold 0.0` was used to combine MAGs produced by the 

five tools from each assembly to generate a non-redundant MAGs set. Resulting bins were 

analyzed for quality, contamination and completeness using CheckM v1.1.3 [28], which 

also uses HMMER v.3.2.1 [29] as a third-party software to compare the obtained bin 

against the single-copy gene profile of the genome of the affiliated taxon and to quantify 

how many genes are in the bin (completeness) and how many are in single-copy (contam-

ination). Magpurify2 (https://github.com/apcamargo/MAGpurify) was used to the refine-

ment of the obtained MAGs in order to remove putative contaminant contigs within each 

MAG (Figure 2).  

MAGs quality was defined according to the MIMAG standard [Completeness – 

(5*Contamination)] [30]. MAGs with quality score > 50 were used in downstream anal-

yses.  High-quality MAGs are defined as completeness >90% and contamination <5% and 

medium-quality MAGs are defined as completeness >50% and contamination <10. The 

mapping rate was estimated using Bowtie2 v1.3.0 [20] to map the reads of each meta-

genome to the MAGs originated from it; the proportion of reads that mapped with at least 

95% identity was obtained with CoverM v0.6.1 (https://github.com/wwood/CoverM) in 

genome mode. 

 

2.3. Taxonomic assignment and phylogeny 

Taxonomic affiliation of MAGs was carried out using Genome Taxonomy Database 

and the associated GTDB-Tk toolkit v1.1.0 [31-33] and the refseq Release 89. GTDB-tk, 

which also uses pplacer as a third-party software [34], uses average nucleotide identity 

(ANI) and genome topology to find the closest genomic relative in its database of > 140,000 

public prokaryote genomes. A phylogenetic approach was used to place the obtained 

MAGs in the tree of Bacteria and Archaea. PhylophlAn v3.0 [35] was used to place the 

genomes in a high-resolution phylogeny, and iTOL [36] was used for the visualization 

using the newick file as input.  

 

2.4. Functional Assignment 

Genes encoded in MAGs were predicted using Prodigal v.2.6.3 [37] and annotated 

using sequence aligner Diamond v0.9.30 [38] based on KEGG database (Kyoto Encyclope-

dia of Genes and Genomes [39]. After annotation, genes found were filtered based on a 

list of specific genes related with hydrocarbon metabolism (Supplementary Table S2). The 

completeness of each pathway was calculated based on the fraction of genes present in 

KEGG Modules.  

 

2.5. Environment-specific orthogroups 

Proteins annotated in the oil reservoir MAGs were compared to related organisms in 

order to assess functional novelty related to oil reservoir environments. First, MAGs with 

taxonomic affiliation at least to family level were identified and grouped. Then, protein 

sequences from species of the same families of the oil reservoir MAG set were recovered 

from GTDB (release 89). Only families with at least four genomes were used for this anal-

ysis (including the MAGs generated in this study). All-versus-all pairwise comparisons 

between proteins in each family were performed using Orthofinder v2.5.2 [40], clustering 

the proteins into orthogroups (orthologous gene cluster), and generating count matrices 

with the number of genes within each orthogroup per genome. To identify orthogroups 

that are exclusive to the oil reservoir MAGs (environment-specific orthogroups), tspex 
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v0.6.2 [41] was used to calculate the specificity measure (SPM) of each orthogroup from 

the matrices. Only orthogroups with at least three genes were used. If any orthogroup was 

classified as exclusive to the oil reservoir MAGs, the percentage of enrichment in all or-

thogroups in each family was calculated comparing with the representative genome from 

the GTDB. The orthogroups with at least 60% of enrichment were selected and function-

ally annotated using Diamond v. [38] against KEGG [42] and EggNogg [43] databases. 

Orthogroups with ambiguous functions (different annotations within the orthogroup) 

were ignored. 

 

2.6. Functional core analysis 

Annotation of a functional core shared among all oil reservoir datasets analyzed was 

performed based on KEGG databases. Gene annotations from each oil field were pooled 

and compared in order to assess both exclusive and common KEGG categories among 

sites. The percentage of orthologies in each group was calculated. The relative abundance 

of the functional core among all sites and of the exclusive functions based on Level 2 cat-

egories from KEGG orthologies were assessed. 

3. Results & Discussion 

3.1. Co-assembling statistics 

After filtering low-quality reads, metagenomic datasets were processed by grouping 

metagenomes by read-level similarity (Minhash distances), in order to determine which 

of the metagenome sets could be co-assembled. The resultant distance matrix was plot in 

a clustering heatmap (Supplementary Figure S1). Datasets with distances below 0.1 were 

co-assembled. Four co-assemblies and six individual assemblies were performed. In all 

cases the co-assemblies corresponded to samples of the same study. Supplementary Table 

S3 summarizes the statistics of the assemblies. 

3.2. Binning 

The individual assemblies and co-assemblies were binned to MAGs. Merging of bins 

obtained using the pipeline described herein (Figure 2) yielded 176 MAGs. Quality eval-

uation results indicated that 74 of MAGs had estimated completeness higher than 50% 

and contamination less than 10% and were classified as medium quality, while 74 MAGs 

had completeness higher than 90% and contamination less than 5% and were classified as 

high-quality MAG, according to the MiMAG standard [30] (Supplementary Figure S2). 

MAGs with low-quality were not used for the further analyses. 

 

3.3. Taxonomic affiliation and phylogeny 

For the taxonomic assignment of MAGs, a phylogenetic tree was reconstructed using 

the 148 MAGs obtained in this study (Figure 3). One hundred and ten MAGs belonged to 

the Bacteria domain while 38 belonged to Archaea. The MAGs were grouped in 25 bacte-

rial phyla and four archaeal phyla. The tree showed three large clusters representing the 

phyla Firmicutes (21 MAGs), Proteobacteria (19 MAGs), and Halobacterota (24 MAGs) 

(Figure 3). Smaller clades represented the Campylobacterota, Deferribacterota, Nitrospira, 

Desulfobacterota, Thermotoga, Euryarchaeota, among others. The most representative 

family was Methanotrichaceae with nine MAGs, followed by Pseudomonadaceae with 

seven MAGs, Thermovirgaceae with six MAGs and Archaeoglobaceae with four MAGs. 

At genus level, MAGs were assigned to 94 different genera. The most represented ones 

were the methanogenic archaeum Methanothrix, with five MAGs, and the proteobacte-

rium Pseudomonas, also with five MAGs, followed by Thermodesulfobacterium (4) and 

Thermodesulfovibrio (3). The taxonomic assignment of all MAGs is detailed in the Sup-

plementary Table S4. 
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Figure 3. Phylogenetic tree of the 148 MAGs recovered from the oil reservoirs. The tree is deco-

rated with colored backgrounds corresponding to domains, the most represented phyla are la-

belled in color in the outermost ring. The star shapes in the tips of the branches indicate the loca-

tion of origin of the MAGs (see legend). 

 

 

The first group of samples (without water injection plus high temperature) was com-

posed only by BA-1 sample from Miranga Oil Field, the solely well that had not been 

water-flooded among the samples studied here. This well may reflect, to some degree, the 

indigenous thermophilic microbial communities in oil reservoirs before flooding opera-

tions. Sixteen MAGs were recovered from this sample, of which 11 MAGs were distrib-

uted in three archaeal phyla and five MAGs in four bacterial phyla (Figure 3).  The Ar-

chaeal phylum Halobacterota was represented by 50% of the MAGs. The bacterial MAGs 

were assigned to the phyla Synergistota, Firmicutes, Patescibacteria and Caldatribacteri-

ota. At the genus level, 13 out of 16 MAGs could not be assigned to any taxa, suggesting 

that the reservoir harbours several unknown taxa. Two MAGs, including one affiliated to 

the Microgenomatia class and other affiliated to the Tissierellaceae family, were found 

exclusively in this reservoir. The class Microgenomatia belongs to the Patescibacteria, re-

cently proposed as phylum [33]. The majority of taxa from this phylum have been pro-

posed through Metagenome-Assembled Genome approach of difficult access-environ-

ments, such as groundwater, deep sea sediments and deep subsurface [44-49]. In addition, 

three of the Microgenomatia genomes were found in activated sludge from a petrochem-

ical plant [50], and one MAG belonging to Patescibacteria was found in crude oil meta-

genome from an oil field in Wietze, Germany [51]. Microbes from this phylum are char-

acterized by small cell and genome sizes [52], containing only essential genes and lacking 

many metabolic functions like amino acid or nucleotide biosynthesis [44]. Due to these 

special characteristics, a parasitic lifestyle has been suggested [8,53]. Two MAGs from the 

Synergistales order were found in BA-1 sample from Miranga Oil Field. One of them was 

affiliated to the Thermovirgaceae family. Members of this family were found in a hydro-

carbon reservoir that was submitted to CO2 enhanced oil recovery flood 40 years ago [54]. 

In terms of the archaeal community, this oil reservoir metagenome was characterized by 

the predominant presence of members of Halobacterota (8) phylum, followed by Thermo-

plasmota (2) and Euryarchaeota (1). MAGs from Thermoplasmota phylum could not be 

affiliated to higher taxonomic ranks. MAG2 was affiliated to the Methanobacteriaceae 

family. Members of this family are known to reduce H2 and CO2 to produce methane [55].  

In a study across 22 oil reservoirs, Methanobacteria were found in all of them [56]. Zhao 

and collaborators analyzed eight oil reservoirs from northern China and found that the 
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core microbiota was composed by three bacterial and eight archaeal genera, including the 

genus Methanobacterium from the Methanobacteriaceae family [57]. In this study, one 

MAG from family Methanoregulaceae was recovered and affiliated to the species Meth-

anolinea tarda. Members of Methanolinea are hydrogenotrophic archaea [58] and are also 

found as part of the core in some studies [56,57,59]. Four MAGs were affiliated to the 

Methanotrichaceae family, two of them belonging to Methanothrix genus. Finally, three 

MAGs were assigned to Halobacterota phylum, without any classification at higher ranks. 

However, they were placed into the Methanotrichales order clade (Figure. 3 and Supple-

mentary table S4). The family Methanotrichaceae was proposed as a new family to replace 

Methanosaetaceae. Methanothrix is the only genus in this family, with three species, M. 

harundinacea, M. thermoacetophila and M. soehgenii [60]. This genus produces methane 

mainly from acetate, but it is also able to reduce CO2 via direct interspecies electron trans-

fer (DIET) with Geobacter spp. [61,62]. Members of Methanothrix are more frequently 

dominant in reservoirs from medium to high temperature reservoirs [56].  

In the second group of samples (water injection plus high temperature), only the da-

taset from Qinghai oil field (QH) was included. This oil field has been submitted to water-

flooding for 15 years. Binning using this metagenome yielded four archaeal MAGs (Sup-

plementary Table S4), which were assigned to Halobacterota (Methermicoccus shen-

gliensis), Euryarchaeota (Methanothermococcus thermolithotrophicus and Methanobac-

teriaceae member) and to Nanoarchaeota (member of Woesearchaeales order). The last 

one is an ultra-small hyperthermophilic obligate ectosymbiont with a reduced genome 

that lives on the surface of several archaeal hosts of the Crenarchaeota phylum [63]. Mem-

bers of Nanoarchaeota phylum have already been found in hot springs in Yellowstone 

National Park (United States) under high temperature (~90oC) [64]. They are also associ-

ated to volcanoes rich in hydrocarbons [64], deep-sea hydrothermal vents and deep lakes 

[63-73]. Methermicoccus shengliensis is a methylotrophic methanogen. It has been iso-

lated from production water samples from a high temperature oil reservoir in Japan [74] 

and from Shengli Oil Field, where the in-situ temperatures range from 75 to 80oC [75]. 

Methanothermococcus genus is an hydrogenotrophic and methylotrophic methanogen 

[56]. Gao and colleagues investigated the spatial distribution of microbial communities 

and their drivers in 20 water-flooded oil reservoirs and two that had not been flooded, in 

China, and observed that Methanothermococcus was found more frequently in reservoirs 

with high salinity [56]. A study in the Xinjiang Luliang long-term water-flooded oil reser-

voir detected Methanothermococcus. thermolithotrophicus by mcrA sequencing [76]. 

With regards to the Bacteria domain, 12 MAGs were recovered from QH dataset, which 

belonged to eight phyla, as follows: Campylobacterota (1), Cloacimonadota (1), Deferri-

bacterota (2), Desulfuromonadota (1), Firmicutes (3), Patescibacteria (1), Proteobacteria (2) 

and Synergistota (1). Two genomes of Flexistipes (Deferribacterota phylum) were found. 

There is evidence that species from this genus, as F. sinusarabici (MAG94), have genes 

that encode for electrically conductive pili (e-pili), similar to Geobacter species, that is re-

sponsible for the DIET process [77]. Geoalkalibacter (MAG146), belonging to Proteobac-

teria, is a strictly anaerobic bacterium, able to reduce Fe(III). A strain of this genus was 

isolated from a produced water in the Redwash oil field in Utah, USA, with 52°C of in situ 

temperature [78]. This genus was also found in a reservoir that had not been water-

flooded [56]. Species of the genera Pseudomonas, Marinobacter, Sulfurospirillum, among 

others, are universally detected in reservoirs with a wide range of temperature, and most 

of them are hydrocarbon-degraders, surfactant producers, and nitrate or sulphate reduc-

ers [56]. Many of these microorganisms are aerobic. Due to the low redox potential in the 

oil reservoirs, anaerobic and facultative microorganisms are abundant. However, a lot of 

aerobic microbes are also detected in this environment, and water injection water may be 

closely related to that phenomenon [76]. 

In the third group of samples (sea water injection plus high temperature) were clus-

tered Kuparuk (K2 and K3) and Ivishak formations (I1 and I2). The binning process of 

these four metagenomes allowed the recovery of 24 MAGs. Some different physico-chem-

ical characteristics were found among these samples; first the temperatures in the Ivishak 
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formation were between 80-83°C and in the Kuparuk were from 47 to 70°C, further the 

well I2 has the longest history of sea water injection among all samples, and that is re-

flected by the presence of the Desulfonauticus spp. (Desulfobacterota phylum), sulfate-

reducing bacteria present in the deep-sea [79,80]. On the other hand, I1 well has only re-

cently been injected with sea water. Only two MAGs were recovered from I1 sample. One 

of them was assigned to the thermophilic fermenting anaerobe Thermoanaerobacter pseu-

dethanolicus (Firmicutes phylum), that has been isolated from oil reservoirs. This species 

is able to respire thiosulfate contributing to souring [81] and, depending on the ecological 

conditions, may act in syntrophy with acetoclastic methanogens [82]. The second MAG 

was assigned to Halomonas, Gammaproteobacteria class, a known hydrocarbon degrader 

[83]. MAGs found in the Kuparuk wells were different probably because the temperatures 

were lower, and the use of sea water injection is more recent than in the other site. These 

were classified as Methermicoccus shengliensis and the hyperthermophilic sulfide pro-

ducing Archaeoglobus fulgidus [59,79], belonging to the Halobacterota phylum, and as 

the CO2/H2-reducing methanogen Methanothermobacter thermautotrophicus and the 

sulfide-producing Thermococcus sibiricus, members of the Euryarchaeota phylum. The 

last two are frequently found in oil thermophilic oil reservoirs [54,56,57,76,79]. Seven ge-

nomes belonging to Firmicutes phylum were recovered: Thermoanaerobacter pseu-

dethanolicus (2), Caldanaerobacter subterraneus (1), Thermoacetogeniales (1), Ammoni-

fexales (1) and Moorellia (2), which are known to be syntrophic and fermentative bacteria 

[75,84-86]. The family Thermotogaceae was represented with three genomes, belonging to 

two different thermophilic genera, Thermotoga and Pseudothermotoga. These microbes 

are indigenous to petroleum reservoirs and more commonly abundant in non-water 

flooded oil fields [87]. They are fermentative bacteria and have been detected in several 

high temperature oil reservoirs [75,81,88,89]. Lastly, one MAG affiliated to Thermodesul-

fobacterium commune, Desulfobacterota phylum, was found. This bacterium is able to 

incompletely oxidize fatty acids to produce acetate [90]. 

In the fourth group of samples (water injection plus mesophilic temperatures) were 

clustered Liaohe, Jiangsu, Shengli and Daqing Oil Field datasets. In this cluster, 52 MAGs 

were recovered, of which only 10 belonged to Archaea domain. As expected, this group 

of wells was characterized by the presence of many Proteobacteria members, especially 

the well-known hydrocarbon-degraders and surfactant producers like the facultative an-

aerobe organotrophs Pseudomonas (P. stutzeri, P. aureginosa, P. balearica), Acinetobac-

ter, Marinobacterium and Tepidimonas, and the fermenters and nitrate reducers Azovib-

rio and Thauera. In many investigations, these bacteria have been detected in most of the 

oil reservoirs studied [56] and some authors have proposed these genera as part of the 

core microbiota of oil reservoirs [57,91,92]. However, they can be more abundant in water-

flooded reservoirs [86].  Two MAGs belonging to Firmicutes phylum were recovered, 

Lactobacillus ozensis and Anoxybacillus gonensis. Species of the fermentative genus Lac-

tobacillus have already been detected in oil samples, although its role in oil reservoirs still 

remains unknown [93]. A member of the Anoxybacillus genus was isolated from produc-

tion water of a high temperature oil reservoir and showed ability to reduce nitrate and to 

control sulfate reducers [94]. One MAG assigned to the thermophilic sulfate reducing ge-

nus Thermodesulfovibrio (Nitrospira phylum) was reconstructed. Members of this genus 

were previously detected in oil field environments [95]. Archaeal MAGs were mainly as-

signed to Methanotrichaceae and Archaeogloboceae families and one MAG was assigned 

to the genus Methanolobus, a methylotrophic methanogen belonging to the Methano-

sarcinaceae family [96,97]. This methanogen was predominant in low and medium tem-

perature oil reservoirs [56]. 

Finally, in the fifth group of samples (recycled water injection), SB1 and SB2 from the 

Schrader formation were included. Assembly enabled the recovery of 40 MAGs, of which 

seven were assigned to the Archaea domain, represented by 5 families, Methanobacteri-

aceae, Methanocorpusculaceae, Methanocullaceae, Methanomethylophilaceae and Meth-

anotrichaceae. The hydrogenotrophic and mesopholic Methanocalculus archaeal genus 

was found in reservoirs without anthropogenic perturbation and was dominant in 
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medium to high temperature reservoirs [56]. Methanoculleus is a methanogen able to re-

duce CO2 in syntrophy with bacteria such as Syntrophus and Marinobacter [79]. This ge-

nus was proposed as part of the core microbiota across several oil reservoirs in China [57] 

and was found as dominant in low to medium temperature reservoirs [56]. A study per-

formed by Liang and collaborators proposed a cooperation between Methanoculleus and 

Anaerolineaceae members for the n-alkanes degradation [98]. Three MAGs affiliated to 

Anaerolinaceae family were found in these samples, and other three MAGs belonging to 

the Kosmotogaceae family and one to the Petrotogaceae family, both from the Thermoto-

gota phylum, were recovered. Members from these two last families have been found in 

oil field environments [98,99]. Lastly, three MAGs classified as sulphate-reducing bacteria 

from the Desulfotomaculales order were found. Desulfotomaculum has already been pro-

posed as hydrocarbon degrading bacteria because of high similarity with gene sequences 

coding for benzyl succinate synthase (bssA), responsible for the activation of alkyl-substi-

tuted aromatic hydrocarbons [59]. 

3.4. Metabolic potential  

Similarly to the taxonomic analysis, annotation of the potential metabolism of MAGs 

revealed the presence of a microbial functional core across all oil fields and the occurrence 

of exclusive (or site-specific) functions, depending on the recovery management and in 

situ temperatures (Figure 4, Supplementary Table S2). Without any anthropogenic inter-

vention, the indigenous microbial communities in oil reservoirs are initially dominated 

by slow growing anaerobes such as methanogens and some Clostridia members that are 

adapted to living on high concentration of hydrocarbons and high temperatures, among 

other extreme conditions [13]. This was observed in the first group, represented by the 

sample from Miranga oil field, that was mainly governed by methanogenic archaea, and 

as consequence, the potential metabolism prevailing was mainly methanogenesis-related 

(Figure 4, taxa names in purple / modules 12 - 16). In the second group, originated from 

high-temperature water flooded oil reservoir (Figure 4, taxa names in dark green), it was 

possible to observe diversification in both taxonomic and metabolic levels. In addition to 

the methanogenesis metabolism (modules 12 - 16), alkane-degradation (module 4) and 

dissimilatory nitrate reduction (module 17) were also present. Depending on the water 

source, the injection can deliver oxidants and different electron acceptors, thus promoting 

fast growing microbes as members from Deferribacterota, Proteobacteria and Bacteroi-

dota phyla, with thermodynamically more favorable metabolism as nitrate or sulfate re-

duction [13]. In the third cluster, comprising Kuparuk and Ivishak oil fields, sea water was 

mainly used for the secondary recovery. The use of sea water can introduce sulfate to the 

reservoirs, promoting sulfate reduction in the community and the consequent production 

of H2S [100]. Desulfonauticus sp. was probably introduced in the oil reservoir by sea wa-

ter, and the functional analysis of this MAG showed the capability to reduce sulfate with 

the respective module almost complete (Figure 4, taxa names green / module 18). In this 

comparative study, the fourth group can be considered as the “greatest level of interven-

tion” amongst all. These were mesophilic water-flooded oil fields. Here, a great shift in 

the functional profile of the microbial community was observed (Figure 4, taxa names red, 

light green and brown). Modules of hydrocarbon aerobic degradation (Figure 4, 3 - 8) are 

found in several MAGs. This was expected since samples were dominated by the fast-

growing facultative anaerobes and opportunistic members of Marinobacter, Marinobac-

terium, and other well-known hydrocarbon degraders as Pseudomonas and Tepidimonas 

[3,13,56]. Specially in the Liaohe and Jiangsu oil fields, many genomes with metabolic po-

tential to reduce nitrate and sulfate were recovered. This is in accordance with the fact 

that recycled treated water was used for secondary recovery in the Schrader oil field. From 

all MAGs obtained in this study, only a few from this group showed metabolic potential 

to degrade aromatic hydrocarbons anaerobically. These MAGs were associated to Desul-

fotomaculales and Syntrophorhabdaceae. As it was discussed above, members of Desul-

fotomaculum had already been associated with fumarate activation mechanism in alkyl-

substituted aromatic hydrocarbons as toluene and ethylbenzene [59]. The family 
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Syntrophorhabdaceae embraces a single mesophilic genus Syntrophorhabdus which is ca-

pable of oxidizing phenol p-cresol, 4-hydroxybenzoate, isophthalate and benzoate in as-

sociation with an H(2)-scavenging partner (e.g., Methanospirillum hungatei or Desul-

fovibrio sp.) [101,102]. Here, MAGs belonging to Syntrophorhabdaceae and Desul-

fotomaculales showed several genes from the module of anaerobic Benzoyl-CoA degra-

dation (module 11), a universal intermediate formed during degradation of aromatic com-

pounds [103]  

The metabolic analysis carried out in this study also provided evidence that anaero-

bic hydrocarbon degradation via fumarate addition (module 10) is a rare metabolism de-

tected in oil reservoirs. The latter results are expected once mechanisms alternative to the 

archetypical fumarate addition reactions (e.g., anaerobic hydrocarbon carboxylation or 

hydroxylation) are present in oil reservoirs [3,104], which are not described in any KEEG 

category or module yet and therefore could not be detected in this work. However, genes 

for further activated hydrocarbon transformations were frequently detected, such as mod-

ule 9, phenol anaerobic degradation, which was found in 61 MAGs out of 148, suggesting 

that the organisms represented by these MAGs mediate the downstream degradation of 

aromatic compounds via anaerobic benzoate degradation. On the other hand, the poten-

tial for aerobic hydrocarbon degradation was showed to occur in oil wells submitted to 

water flooded and in oil reservoirs with mesophilic temperatures. Last but not least, cate-

chol meta-cleavage and all methanogenesis modules were found across all oil fields, sug-

gesting that these metabolisms can be ubiquitous in oil reservoirs. 
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Figure 4. Heat map showing KEGG Module completeness in each MAG. Numbers below the bars: 

1 - Ring Cleavage via Baeyer-Villiger oxidation; 2 - Naphthalene degradation; 3 - Biphenyl degra-

dation; 4 - Alkane-degradation; 5 - Benzoate degradation; 6 - Catechol meta-cleavage; 7 - Catechol 

ortho-cleavage; 8 - Benzene degradation, aerobic; 9 - phenol degradation, anaerobic; 10 - Toluene 

degradation, anaerobic; 11 - Benzoyl-CoA degradation, anaerobic; 12 - Methanogenesis, CO2; 13 - 

Methanogenesis, acetate; 14 - Methanogenesis, methylamines; 15 - Methanogenesis, methanol; 16 - 

Coenzyme M biosynthesis; 17 - Dissimilatory nitrate reduction; 18 - Dissimilatory sulfate reduc-

tion. Left bar plots represent the completeness (blue bars) and contamination (pink bars). The 

highest taxonomic affiliation was used. Color taxa names represent the oil field (see key color fig-

ure 3). 
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The module of catechol meta-cleavage degradation was found in 52% of the MAGs 

(78 MAGs). Even with a module completeness around 10%, it was a relevant result as this 

metabolic pathway is aerobic and was found in all MAGs belonging to Archaea. A bar 

plot with the frequency of each gene from catechol meta-cleavage and its phylum affilia-

tion was constructed (Figure 5). The gene praC, that encodes the 4-oxalocrotonate tau-

tomerase (4-OT), showed a higher frequency and was present in MAGs affiliated to 14 

phyla, mainly in Proteobacteria, Halobacterota and Euryarchaeota (Figure 5). This gene 

was found in 15 archaeal MAGs, which were submitted to PATRIC platform [105] in order 

to search for evidence if it is part of an operon. As it can observed in the MAG comparison, 

this gene was not found in an operon region (Supplementary Figure S3). In three MAGs, 

this gene was annotated as 4-oxalocrotonate tautomerase-like (4-OT) enzyme (MAG17, 

MAG103 and MAG106). In MAG103 (Figure S3 a) and MAG17 (Figure S3 b), assigned to 

Archaeoglobus genus, the upstream genes found encode unknown proteins, while the 

downstream genes encode chorismate synthase and Acyl-CoA dehydrogenase. In 

MAG106 (Figure S3 c), assigned to Methanoculleus marisnigri, a gene that encodes an 

haloacid dehalogenase-like hydrolase was found upstream of praC gene. 4-OT enzyme is 

part of a group known as promiscuous enzymes, since they have multiple low-level cat-

alytic activities in addition to their primary physiological function [106,107]. It is already 

known that many organisms through Bacteria and Archaea domains harbor 4-OT enzyme 

homologues which have unidentified physiological functions. Many of these organisms 

are not aromatic hydrocarbon degraders, suggesting that these homologues might have 

other functions [106].  

 

Figure 5. Frequencies of the genes from the Catechol meta-cleavage module across the phyla de-

tected in oils reservoirs under study. Colors represent the phylum annotation. 

 

Several recent studies of the methyl-coenzyme M reductase complex (Mcr) in MAGs 

have shown that divergent mcr-like genes are involved in methane/alkane metabolism. 

Here, we recovered the mcrA genes from MAGs assigned to archaea for further phyloge-

netic analysis. A phylogenetic tree was constructed using mcrA sequences recovered from 

11 MAGs and approximately 280 curated mcrA sequences recovered from PhyMet2 [108]. 

Interestingly, two MAGs (MAG 47 and MAG 59) each contained two different mcrA se-

quences, and two archaeoglobaceae-assigned MAGs contained mcrA sequences. In addi-

tion to the mcrA sequences found, four mcr-like sequences belonging to NM1 (Candidatus 
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Methanoliparia) and NM3 new lineages were included [109]. According to the phylogenetic 

analysis (Figure 6), MAG 16 assigned to Methanothrix clustered with NM3, Methanopyra-

les and Methanomassiliicoccales. NM3 is suggested to perform methyl-dependent hy-

drogenotrophic methanogenesis with the potential of using methanol and methanethiol 

[109]. The two MAGs assigned to Archaeoglobacea were related with NM1 lineage. NM1 

belongs to Ca. Methanoliparia which has been reported to be capable of both methane and 

short chain alkane metabolisms [109,110]. These results indicate that archaeal MAGs iden-

tified in this work could also be involved with hydrocarbon degradation. 

 

 

Figure 6. Phylogenetic tree of mcrA gene sequences recovered from the archaeal MAGs. Sequences 

of mcrA extracted from MAGs are shown in blue and Ca. Methanoliparia (NM1) and NM3 lineages 

are shown in red. The initial tags for mcrA sequences refer to accession numbers. 

 

3.4. Functional core analysis 

In order to investigate if there is a potential functional core shared by all oil reservoirs 

under analysis, KEGG annotations of the MAGs from each oil field were pooled and the 

KEGG orthologies common to all were assessed. At the same time the exclusive functions 

of each oil field were also evaluated. A total of 25,563 ORFs were annotated, distributed 

in 5,332 different KEGG orthologies. Functions that were present in at least 8 out of 9 oil 

fields were called as potential functional core (1,690 genes), which represented 31.7% of 

total functional annotation (Figure 7A). Site-specific genes (orthologies that were found in 

one oil field) accounted for 18.8% (1,007 KEGG functions) of total annotated KEGG orthol-

ogies (Figure 7A). The percentage of specific functions of each site was calculated (Figure 

7A). Liaohe oil field showed the most distinct metabolic potential compared to the “func-

tional core”, comprising 41.9% of exclusive functions, followed by Daqing oil field with 

17.37%, and Kuparuk and Jiangsu with 10.62% and 8.64% of exclusive genes, respectively. 

Shengli and Miranga oil fields had the lowest percentage of exclusive functional potential, 

and thus showed the most similar potential metabolism compared to the “core”, with 

1.39%% and 1.09% of the exclusive KEGG orthologies, respectively. These results suggest 

a possible correlation between the anthropogenic intervention level and the percentage of 

exclusive functions. For example, Miranga was the oil field without any intervention, and 

it had the lower percentage of exclusive functions, while Lioahe with the highest level of 

perturbations (water injection and mesophilic temperatures) had the highest percentage 

of exclusive genes (more different from the core). 

The main metabolisms encompassed by the potential functional core were assessed 

(Figure 7B). The functional core comprised almost all metabolic categories. The most 

abundant core metabolisms were carbohydrate and energy metabolisms, the latter 
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including methane, nitrogen and sulfur metabolisms. All methanogenesis pathways were 

found in the functional core, with hydrogenotrophic methanogenesis as the most repre-

sented one. In addition, assimilatory sulfate reduction and nitrogen fixation were also part 

of the functional core. Xenobiotics biodegradation and metabolism was less represented 

in the functional core, with five different functions, four from benzoate degradation (genes 

praC, pcaC, mhpE and bsdB) and one from nitrotoluene degradation (gene hyaBC). Genes 

mhpE and praC belong to catechol meta-cleavage pathway, and as it was discussed above, 

gene praC encodes to a 4-OT, a promiscuous enzyme. Genes pcaC and bsdB are also part 

of an aerobic metabolism.  These results suggest that the aerobic hydrocarbon degrada-

tion metabolism is likely an important potential energy strategy for the microbial commu-

nity in oil fields. However, methanogenesis seems to be the most relevant metabolism in 

this extreme environment, being omnipresent independently of the well management 

practice employed.   

Within the exclusive orthologies of each oil field, Ivishak, Schrader and Shengli oil 

fields showed functional specialization in xenobiotics biodegradation (Figure 7C). For ex-

ample, in Shengli oil field more than 50% of specific genes were from xenobiotics degra-

dation category, and these genes were different from the ones occurring in the other oil 

fields. These results suggest that in each site microorganisms are specialized in different 

biodegradation pathways.  

On the other hand, genes for sulfur oxidizing (sox genes) were exclusive in Liaohe 

oil field. This is consistent with the use of nitrate injection in this reservoir, a promising 

oil souring control strategy that promotes sulfur oxidation [13,111]. Despite the beneficial 

role, intermediates from the sulfide oxidation are potentially corrosive [112-114]. 

 
 

(a) (b) 
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     (c) 

Figure 7. (a) Pie chart with percentages of specific KEGG orthologies from each oil field.(b) Main core metabolisms. (c) Exclusive 

orthologies at level 2 KEGG categories. 

 

3.4.1. Environment-specific orthogroups 

To explore the functional novelty in the microbiomes of oil reservoirs, a taxonomy 

informed approach was used by comparing 67 out of 148 MAGs obtained to related ge-

nomes at the family level and identifying orthogroups (cluster of orthologous genes) that 

are exclusive to the oil reservoir genomes at the family level. Among the 46 families that 

were analyzed, no unique orthogroups (out of 58,769) were found in the oil field datasets. 

Due to this result, tspex specificity measure (SPM) output was used to identify enriched 

orthogroups in the MAGs obtained in this study compared to the representative genomes 

from GTDB. No orthogroups with at least 60% of enrichment were found (Supplementary 

Table S5). With the thresholds and conditions of this analysis, no evidence of environ-

ment-specific or gene enrichment at family level was found amongst the microbiomes of 

oil fields under study, possibly due to the fact that the families of these environments are 

already highly adapted to these environments. Maybe at higher taxonomic levels it would 

be possible to find exclusive orthogroups related to oil fields. 

 

4. Conclusions 

Oil reservoirs are very complex niches that can be disturbed by intervention practices 

for oil recovery (water injection, use of biocides, etc). Understanding the indigenous and 

“disturbed” microbial community profiles and their functional potential is essential for 

evaluation of the efficiency and consequences of each treatment applied to the oil reser-

voir. Herein, information about the microorganisms and their functions in onshore oil 

reservoirs under different management practices and in situ temperatures across distinct 

geographic regions has been provided. The potential functional core shared by all oil res-

ervoirs studied comprised mainly basic cellular functions, related to energy and replica-

tion. All methanogenesis pathway metabolisms and some genes related to aerobic 
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hydrocarbon degradation were part of the core. On the other hand, anaerobic degradation 

was not relevant, since it was not shared by microbial communities of all sites. In contrast, 

analysis of site-specific functions (orthologies that were found only in one oil field) re-

vealed functional specialization in xenobiotics biodegradation in each oil field. Such met-

abolic specialization is likely driven by the selective pressure imposed by the distinct an-

thropogenic intervention practices and in situ temperatures. In order to improve oil re-

covery, water-flooding is effective, but in the long term it may have undesirable conse-

quences as souring, corrosion and increased hydrocarbon degradation. Knowledge on the 

taxonomic and metabolic shifts in the oil field microbiome related to anthropogenic inter-

vention is important to design future rationale and efficient oil recovery and toxic pollu-

tant mitigation measures.  

 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Pairwise distances between the metagenomic datasets. Figure S2: Quality characteristics across low 

(N = 28), medium (N = 74) and high quality (N = 74) MAGs. (a) Distribution across completeness, 

(b) Distribution across contamination, (c) Quality dispersion, yellow dot line indicates the cut-off 

for medium-quality MAGs; green dot line indicates the cut-off for high-quality MAGs. Colors of the 

dot represent the oil reservoir and respective geographic location where the MAGs come from. 

MAGs at right and above the yellow and green dot lines were used for the downstream analyses. 

Figure S3: Schematic representation of the sequence annotation of the 10 Kb around the praC gene 

in three MAGs obtained in this study in comparison with closely related public genomes. a) MAG17, 

b) MAG103, c) MAG106. Red arrows represent the praC gene. Table S1: Metagenome datasets in-

formation. Table S2: List of specific genes according to KEGG database. Table S3: Assemblies statis-

tics. Table S4: Complete list of MAGs obtained. Table S5: Edited Tspex comparison matrix. It was 

calculated the differences between SPM from oil fields' MAGs and from famlies of GTDB. Negatives 

values means no enrichment. Positive values mean enrichment of the orthogroups in each family 

from oil field MAGs compared with families genomes from the GTDB. Value 1 completely enrich-

ment orthogroup. 
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