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Abstract: Aim: To determine whether an AI model and single sensor measuring acceleration and 

ECG could model cognitive and physical fatigue for a self-paced trail run. Methods: A field-based 

protocol of continuous fatigue repeated hourly induced physical (~45 minutes) and cognitive (~10 

minutes) fatigue on one healthy participant. Physical load was a 3.8 km, 200 m vertical gain, trail 

run with acceleration and electrocardiogram (ECG) data collected using a single sensor. Cognitive 

load was a Multi Attribute Test Battery (MATB) and separate assessment battery including the Fin-

ger Tap Test (FTT), Stroop, Trail Making A and B, Spatial Memory, Paced Visual Serial Addition 

Test (PVSAT), and a vertical jump. A fatigue prediction model was implemented using a Convolu-

tional Neural Network (CNN). Results: When the fatigue test battery results were compared for 

sensitivity to the protocol load, FTT right hand (R2 0.71) and Jump Height (R2 0.78) were the most 

sensitive while the other tests were less sensitive (R2 values Stroop 0.49, Trail Making A 0.29, Trail 

Making B 0.05, PVSAT 0.03, spatial memory 0.003). Best prediction results were achieved with a 

rolling average of 200 predictions (102.4 s), during set activity types, mean absolute error for ‘walk 

up’ (MAE200 12.5%) and range of absolute error for ‘run down‘ (RAE200 16.7%). Conclusion: We 

were able to measure cognitive and physical fatigue using a single wearable sensor during a practi-

cal field protocol including contextual factors in conjunction with a neural network model. This 

research has practical application to fatigue research in the field. 

Keywords: Fatigue, cognitive, physical, executive decision making, psychophysiology, artificial in-

telligence, deep learning, multi-day missions. 

 

1. Introduction 

Why we need to measure physical and cognitive fatigue in the field 

Measures of physical and cognitive fatigue are needed in the field to improve 

performance and help improve safe participation in outdoor environments.  

Physiological and cognitive fatigue in field environments directly effects performance 

as a person modulates decisions based on contextual input to maintain resources [1]. 

Various fields where operational safety is relationed to fatigue have been investigated 

including pilots [2,3] motor vehicle drivers [4–9] firefighters [10,11] and shift workers 

[12]. Physical fatigue relates to reduced; force, endurance, level of effort, strength, 

speed and coordination [13]. Levels of performance may be modulated by physical 

load, sleep, nutrition and psychological factors based on mission duration, pain, levels 

of perceived exertion [14–17], intensity and time on task [18]. Hill[19] won the Noble 

prize for his work on skeletal muscle and maximum oxygen uptake.  

 

The interaction of central fatigue and motivating factors have been modelled in 

various forms: Borg’s [20] Rating of Perceived Exertion (RPE); Millet’s [21] Flush model 
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for pacing strategies in ultra-marathons; Noakes [17] central fatigue model; and 

Venhorst’s [22] bio-psycho-social model.  

 

Cognitive fatigue can be viewed as a combination of goal, adaption and reward 

trade-offs including the energetic requirements to achieve a goal [23,24]. Performance 

psychology [25,26] describes performance as recalling ones knowledge, skills and 

abilities during an event. Cognitive and physical fatigue have a complex interaction of 

over lapping redundant systems [27].  

 

How we can measure physical and cognitive fatigue in the lab and the field 

Mental and physical fatigue have been researched in the lab using different sensing 

modalities including computer interaction [28], accelerometery, electroencephalogram 

(EEG), electrooculography (EOG) [29], electromyography (EMG) and electrocardiograph 

(ECG) [16,30–32], however, these techniques are not always practical in a field setting.  

 

Assessment of performance and fatigue have been studied [3] with multiple sensors 

and neural networks. However, they have not been validated in the field, with noise 

sources such as terrain, slope and obstacles. Enoka [33] noted that lab based experiments 

such as maximum voluntary contractions (MVC) result in task dependency that do not 

translate into field performance. The reduction of separate effects do not equate to overall 

performance. The only way to determine performance reductions from fatigue is to 

measure the response to loads in the field. 

 

Field applications require the number of sensors to be minimized while performing 

challenging multiday events and not distract the operator from their mission tasks or add 

to logistical loads when deploying technology into an operational environment. Where 

multiple sensors would aid accuracy and redundancy, they may lead to lack of 

deployment of the entire system, hence a minimum viable solution to maximise use by 

operators is desirable. A review of sensors used for measuring occupational fatigue [34] 

showed the most effective sensors were heart rate and accelerometry. Smartphones with 

multi channel inertial sensors and deep learning models have been used for human activ-

ity recognition [35,36] in controlled environments for complex activity types. A review of 

physical and cognitive fatigue has shown a relationship of heart rate and accelerometry 

with muscle activity, proprioception and changes in gait [37–39]. Gait has been shown to 

change physical performance with increased mental fatigue, [9,16,40] goals [41] and re-

duced executive function [42]. Terrain has been shown to influence gait and accelerome-

try readings [43].  

 

Traditional machine learning with feature extraction has been used in applications 

such human activity recognition [43,44], however this approach assumes the features of 

interest are known and calculatable. Deep learning uses models which automatically 

determine feature morphology and significance in the data which may not be observable 

with traditional statistics and data analysis. Deep learning has been used for areas such 

as wakefulness detection with accelerometry and ECG [45] and fatigue estimation by 

Gordienko et al [46] showed positive results with a repetitive exercises in the gym. Re-

current neural network (RNN) and long short-term memory (LSTM) are often cited as 

the preferred models for time series data [47]. Convolutional neural networks (CNN) 

have also been used for time series data [43,48] and do not suffer from the stability is-

sues of RNNs while enabling parallel processing which is not possible with RNN type 

models. CNN models have shown good performance on physiological time series data 

for emotion classification, [49] and mental fatigue [50] using EOG which is not generally 

practical in field operations with high levels of activity. Accelerometry has been shown 

to be affected by cognitive fatigue [51]. 
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The aim of this study was to  

- determine whether cognitive and physical fatigue could be accurately predicted 

by an AI model using data from a single sensor capable of being worn in an en-

durance activity for multiple days, measuring acceleration and ECG in an out-

door environment with voluntary activity.  

- Additionally propose a protocol for data collection in an unsupervised remote 

environment with no manual labelling by the participant 

- Determine if environmental parameters would affect accuracy including; ran-

dom activity, self-pacing, terrain surface (concrete, gravel, dirt, mud grass) and 

slope (flat, up and down slopes)  

 

2. Materials and Methods 

Ethics 

The researcher’s university ethics committee (AUTEC 18/412) approved all 

procedures in the study and the participant gave written informed consent prior to 

participating in the study. 

 

Protocol – physical and cognitive load and performance assessments 

A protocol was developed that included self-paced running in an unstructured 

mountain environment and standard performance assessments with no distractions in a 

laboratory for comparison.  

 

The protocol was developed using physical and cognitive loads in excess of a 

participants’ critical power [52] to induce fatigue. A one-hour period of fixed load was 

repeated until the participant voluntarily ceased the protocol. No restart was allowed. 

Physical load was provided by a trail run (3.8 km, 200 m vertical gain), cognitive load 

was provided by 10 minutes Multi Attribute Test Battery (MATB) [53] (Figure 1).  

 

 
Figure 1 Fatigue Protocol 

 

A goal was set as 100 km distance, 5200 m (17,000 feet ) total climb and 26 hours’ 

time in order to address motivation [14] and psychological perception of pain [54]. The 

course was prescribed to cover various slope angles and terrain types (concrete, gravel, 

dirt, grass, boulders) and obstacles (trees, river, gate, fence) and not require active 

navigation for safety under fatigue and reduced decision making capacity [55]. Speed 

was rewarded by earlier completion of the hourly protocol resulting in a larger rest 

period per hour.  

 

For clinical comparison a battery of performance assessments where completed on 

an iPad Pro (Apple, Cupertino, California, USA) using a custom application 

implementing tests built with Apple Research Kit [56]. The battery of assessments was 

chosen that have previously shown sensitivity to the protocol loads and fatigue related 

diseases. These included assessments used for fibro myalgia [57], Parkinson’s [58] and 

physical [59] [16] and cognitive fatigue [60]. Assessments used included Stroop, Finger 
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Tap Test, FTT, Trail Making A, Trail Making B, paced serial addition test, PVSAT, 

memory, jump height. 

 

Table 1 Assessment Battery 

Assessment Bio-psycho-central performance Reference 

Finger Tap Test Neuro muscular fatigue [59] 

Stroop Cognitive flexibility and selective attention [61] 

PVSAT processing speed, attention, working memory [62] 

Trail Making A and B Motor and executive impairment [63] 

Corsi Block test Spatial memory, Working memory [64,65] 

Vertical Jump Neuromuscular fatigue [66] 

Rating of Perceived Exertion Perceived level of exertion [16,20,67] 

 

Data Preparation 

The participant wore a chest mounted BioHarness (Medtronic, Minnesota, USA) 

[68,69] for acceleration data (100 Hz, vertical x-axis, sagittal z-axis, lateral y-axis) and 

electrocardiogram (ECG) (250 Hz) and a Garmin Forerunner GPS (Garmin, Kansas, USA) 

wrist watch (1 Hz, horizontal accuracy 6 m) to assist with labelling and location.  

 

The trail was divided into twenty three sections separated by waypoints defined by 

a change in terrain surface, slope or obstacle. Terrain descriptors where validated against 

video (GoPro Hero 4, Garmin, Kansas, USA). Slope was determined from a mean of GPS 

altitude measurements at each waypoint. Waypoint location was determined from 

Google maps to an accuracy of 10 cm. Time at a waypoint was determined when the 

subject was closest. Walk and Run activity labels where defined by cadence from vertical 

axis accelerometery zero crossings (100 < Walk < 150 < Run steps per minute) as decribed 

in Russel et al for human activity recogntion [43]. Identification of crossing obstacles was 

based on geographic location and manual observation of the acceleration waveforms 

Figure 2. Time resolution for labelling was one second.  

 

Figure 2 Time series example of the one-off activity “climb gate” verses repetitive data “run” and 

“walk”. 

Convolutional Neural Network 

Figure 2 shows the multi-channel 1-D Convolutional Neural Network (CNN) that 

was selected to allow learning on separate channels and cross correlation into a single 

regression output value. The training label was FTT up sampled to 250 Hz. Data were 

split by activity type and segmented by input window length. The initial model width for 

all hidden layers was set at 256 which was approximately one second of data. The model 

implemented the Adam optimiser and mean absolute error (MAE) as the error term 

during training. Randomized train test split ratio was 0.33.  
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Figure 3 Structure of CNN 

 

Hyper paramter tuning included window size for each activity type was performed 

(64, 128, 256, 512). The lowest MAE activity was selected for further model optimisation 

of hidden layer widths. Optimisation was performed separately for three datasets: 

acceleration; ECG; and combined acceleration and ECG. The final model for comparison 

was selected for lowest MAE. Performance was assessed using the mean absolute 

difference (MAE200), and range of absolute difference (RAE200), between the label values 

and the average of 200 predictions. RAE was of interest as it indicated the largest error 

possible when the trained model was used to predict a fatigue value in the future. 

 

Statistics 

Linear regression (Pearson correlation R2) was performed on each performance test 

to assess sensitivity of the protocol. The performance test results where normalised 

across the protocol and linearly interpolated to give a long-term linear fit (LTLF). The 

same tests with highest R2 were up-sampled to 250 Hz using inter-test interpolation (ITI) 

as ITI includes short term fatigue and recovery. LTLF more representative of long-term 

fatigue but is only possible with a research protocol designed with constant a load over 

time. ITI is needed for random field predictions where no assumptions can be made 

about overall loads.  

 

Time series data were normalised using feature scaling via Equation 1 in 

preparation for training the CNN. ECG data were base line corrected. All accelerometer 

axis (x,y,z) and ECG data were transformed into an array (D,W,F) with D rows, W 

window width, and F number of features. 

 

 
 

Equation 1 
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3. Results 

The participant voluntarily ceased the protocol at 11 hours (2,200 m vertical climb, 

41.8 km) due to perceived exhaustion.  

 

 

(a) (b) 

Figure 4 Acceleration for activity “Run Down” over protocol time (0,3,8 and 10 

hours) for surfaces (a) tarseal and (b) dirt and (c) feature of interest over fatigue. 

 

Figure 3 shows the representative input to the CNN of the gait waveforms of vertical 

acceleration on tarseal and dirt at different fatigue levels. Each plot is 50 steps triggered at 

zero g and plotted with the median waveform in a thick black line. Inter-step variation in 

acceleration and morphology can be observed between surfaces (a) tarseal and (b) dirt. The 

changes in waveform shape between surfaces was likely due to surface hardness and 

variations in surface texture uniformity. Across the protocol variation was likely due to 

fatigue reducing peak forces and subsequent gait adaption as seen on the plots at point (c). 

  

(a) 

 

(b) 

  

(c) 

 

(d) 

  

Figure 5  Performance Tests (a) FTT (b) Jump Test (c) Stroop (d) PVSAT 

 

A subset of performance tests (FTT, Jump test, Stroop, PVSAT) completed in the 

protocol are shown inFigure 5 Jump height and FTT-right-hand were most sensitive to the 

(c) 
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fatigue protocol. Figure 4 (a) shows FTT-right-hand and the slower non dominant left hand 

with separate linear regression lines. Inter-test variation was observed between physical 

and cognitive tests with an overall trend having a negative slope showing performance 

was decreasing over time. Correlation results for all tests are shown in Table 2. Jump height 

shown in Figure 4 (b) was performed after each physical load period and showed high 

correlation (R2 0.78) with the protocol. Stroop shown in Figure 4 (c) had two outliers and 

showed moderate correlation (R2 0.5) with the outliers removed. PVSAT shown in Figure 

4 (d) was not correlated with the protocol load. Trail making A (R2 0.29) and spatial 

memory (R2 0.28) where somewhat correlated to post cognitive load. Trail making B (R2 

0.22) was somewhat correlated to post physical load.  

 

Table 2 Performance test sensitivity, R2, to the protocol load 

Test All Tests  Post Physical Load Post Cognitive Load 

Jump 0.78 - - 

Finger Tap Test    

  Dominant Hand 0.72 0.76 0.67 

  Non Dominant Hand 0.54 0.51 0.60 

Stroop (with outliers) 0.04 0.003 0.36 

Stroop (no outliers) 0.49 0.37 0.36 

PVSAT 0.03 0.11 0.02 

Trail Making A 0.19 0.04 0.29 

Trail Making B 0.001 0.22 0.05 

Spatial Memory 0.00 0.00 0.30 

 

A training result is shown for a single activity ‘run down’ in Figure 6 for data window 

128, epoch 100, individual predictions (light grey) and rolling average of 200 predictions 

(black). The label for FTT (red) inter-test linear interpolation with discontinuities between 

time periods due to concatenation.  

 

              

Figure 6 Training Results (BLACK) for CNN with activity ‘run down’ with training 

label (RED) and individual predictions (GREY)  

 

A total of 108 machine learning experiments where performed to test which input 

data width and activity type gave the best MAE. Initially a fixed CNN topology was used 

(Epoch 50, Batch 256, layer 1 filter 256, layer 2 filter 256, dense layer 128, overlap = 0). Three 

data group results were compared for; acceleration, ECG and combined acceleration with 

ECG. These three conditions were tested for each activity type (‘run’, ’walk’, etc) over four 

data window widths (64,128,256 and 512). The results for these experiments are shown in 

Figure 6 by activity where circle diameter is data window width. Minimum MAE was 

at ’walk up’ (window width 256, MAE 0.105,samples 1534500, windows 5994) and ‘sit’ 

(window width 256, MAE 0.116, samples 2662750, windows 10401). However, sit was not 

included as it took place in the lab for cognitive testing. Samples where more numerous 

for ‘run down’ (window width 256, MAE 0.181, samples 1843749, windows 7202) and still 
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gave a larger minimum MAE. This indicates total sample count is not the main influence 

on MAE however the activity with considerably lower samples did show larger MAE 

values, ‘walk down’ (stride 512, MAE 0.309, samples 20000, windows 78). 

 

Further experiments where performed for acceleration and ECG with ‘walk up’ to 

optimise the CNN model hyperparameters, various widths of the first two convolutional 

layers and the dense layer. The lowest MAE was found to be the following model; Conv1D 

128, Conv1D 128, max_pooling, flatten, dense 128, dense 1. 

 

Table 3 shows the total samples per activity and results for MAE and RAE with the 

training labels using two methods, linear fit and inter-test interpolation, window width 

128, epoch 100, batch size 256, rolling window average of 200 predictions. There was no 

result for activity of ‘walk-down’ as the total samples divided by the window width of 128 

was 156 which was less than the rolling average of 200 predictions. Activity ‘Walk Up’ 

gave the lowest MAE for both linear interpolation and inter-test interpolation of label data. 

Activity ‘Run Down’ gave the lowest Range of errors, indicating it may be a better activity 

for field prediction. 

 

Table 3 Results for linear fit and inter-test interpolated labels. 

Activity Data 

(250 Hz) 

Linear Fit 

MAE200 

Linear Fit 

RAE200 

Inter-test 

Interpolation 

MAE200 

Inter-test 

Interpolation 

RAE200 

Run Up 1,019,002 0.145 0.225 0.134 0.240 

Run 732,501 0.151 0.238 0.156 0.232 

Run Down 1,843,749 0.130 0.289 0.133 0.167 

Walk Up 1,534,500 0.136 0.303 0.125 0.411 

Walk 299,997 0.238 0.683 0.235 0.726 

Walk Down 20,000 0.219 - 0.239 - 

Open Gate 56,750 0.195 0.338 0.199 0.316 

Climb Gate 65,249 0.327 0.422 0.313 0.389 

 

4. Discussion 

A protocol for cognitive and physical fatigue was performed in the field with voluntary 

activity selection and voluntary pacing over various terrain slopes and surfaces. Jump 

hieght and FTT-dominant-hand were most sensitive to the protocol. FTT-non-dominant-

hand and Stroop were moderately sensitive. FTT was most sensitive and biomechanically 

non-specific as the legs were exposed to physical load and the arms-hand-fingers were 

tested for neuromuscular performance. It is likely Stroop would be more sensitive if the 

protocol included sleep deprivation. Spatial Memory was mildly correlated to the 

cognitive load.  

 

The experiment showed that a field protocol of cognitive and physical load in excess of 

a critical power will cause failure and modulate standard objective measures of cognitive 

and physical performance. Mental and physical fatigue led to earlier than anticipated 

termination of the protocol which aligned with previous studies [16,40]. 

 

The use of a machine learning model was required due to the complex gait waveform 

morphology variations through out the protocol. The results for acceleration, ECG and 

combined acceleration and ECG are shown in Figure 7 across various stride lengths from 

64 to 512 samples. While the activity ‘sit’ had low MAE showing how a controlled 
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environment could give good results, our work aimed to determine if it was possible in an 

uncontrolled field based environment. Activity ‘walk up’ had low MAE for both inter-test 

interpolation and long-term linear fit. ‘Run down’ had the lowest RAE. It is recommended 

that RAE is used as this represents the results you would get when using the model in the 

future for inference. 

 

   
(a) (b) (c) 

 

Figure 7 Training Loss, MAE, for (a) Accelerometer, (b) ECG and (c) combined ECG and 

accelerometer, epoch = 100, circle radius set by data window width (64, 128, 256, 512) 

 

 

This experiment showed a single sensor could be used in conjunction with a CNN 

model to give accurate results of cognitive and physical fatigue equivalent to gold 

standard objective tests; that is FTT and Vertical Jump Test. Best results were obtained 

when model training was specific to activities such as ‘run down’ and ‘walk up’. MAE and 

RAE performed well for a rolling window of 200 continuous predictions of 102 s. This 

intuitively makes sense that any one step in a persons’ gait may be influenced by objects, 

surface and other distractions and it is best to use multiple steps of a persons’ gait to 

determine a fatigue result. Winter [70] showed the cadence in steps per minute on a 

uniform surface varied from 84.7 ±10.4 for slow to 121.6 ±5.3 for fast.   

 

The input window size of the CNN model has an optimum size: Too small does not 

allow a full gait or ECG waveform to be analysed; Too large significantly reduces the 

number of training samples.  

 

Tests that had highest sensitivity to the protocol, and indicated a central fatigue 

component, were the jump test (high physical load on the legs), and the FTT (utilised hand 

digits which were not significantly utilised during running). Cognitive tests where less 

sensitive to the protocol indicating there may have been a mismatch between cognitive 

and physical loads.  

 

The effectiveness of the protocol was encouraging as it provided proof of concept for 

translational research to be undertaken in outdoor environments. Future work could 

examine how team workload and tactical decision making can be adjusted for cognitive 

and physical fatigue in real time with no additional data entry for soldiers on multiday 

missions. Recovery during training missions could be assessed without researchers being 

present. Adventure sports people could gain insight into their cognitive and physical 

fatigue enabling informed training plans. Work rest cycles could be adjusted and critical 

tactical and navigation decisions chosen based on periods of highest cognitive 

performance. 

 

This feasibility study researched approaches of protocol design, error sources, 

calibration techniques, data collection, validation, labelling and data processing. Given the 

lessons learnt, data gathering and processing needs to be more automated to reduce the 
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high processing load that occurred for the one participant in this study. Further work is 

needed to test inter-subject variability to the protocol, test-retest accuracy of the prediction 

model, longer duration and additional fatigue modulators including sleep, pain, 

discomfort and nutrition. 

 

Limitations 

Limitations in validating the experimental objective include a linear protocol and the 

limited amount of comparison tests, however, this is a natural limitation in the field of 

cognitive assessments in the field. A long-term linear fit was appropriate for this protocol 

as the repetitive load could be assumed constant over the longer term time frame. A 

random field assessment with no defined load protocol would require training using inter-

test interpolation to allow for stochastic loads and recovery cycles. A constant long-term 

load was required to fit a machine learning model. Future work could compare the results 

in a long-term non periodic protocol.  

 

Limitations of this test were the duration and the use of a single participant to initially 

prove the feasibility of the protocol and approach. Further research is required into 

increasing the duration of the protocol, possibly by reducing the hourly physical load. 

Additional studies over longer periods are required to generate cognitive fatigue that 

includes sleep deprivation. The test battery should include assessments immediately after 

large vertical assents to gather insight into short-term recovery. The addition of cognitive 

loads and assessment significantly affected the rate of perceived exertion. Future protocols 

should half the physical load to lengthen the time to failure. Additionally, this method 

requires more participants to compare inter-person sensitivity and variability.  

 

5. Conclusion 

This paper showed that a single wearable sensor could be used in conjunction with a 

neural network model to determine cognitive and physical fatigue without performance 

tests being required during an operation in an outside unstructured environment. This 

research has potential to increase safety and operational performance in high risk 

environments by indicating the possibility of replacing traditional performance tests with 

a single wearable device. This work is novel to the authors knowledge in developing a 

field based protocol for human performance with no direct supervision and modulation 

from ground surface, slope, fatigue and task motivation. Future research is required for 

more participants and will require further automation of data labelling to process of field 

data with self pacing activities. 
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