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Abstract: Rapid search and localization for nuclear sources can be an important aspect in pre-
venting human harm from illicit material in dirty bombs or from contamination. In the case
of a single mobile radiation detector, there are numerous challenges to overcome such as weak
source intensity, multiple sources, background radiation, and the presence of obstructions, i.e., a
non-convex environment. In this work, we investigate the sequential decision making capability
of deep reinforcement learning in the nuclear source search context. A novel neural network
architecture (RAD-A2C) based on the actor critic (A2C) framework and a particle filter gated
recurrent unit for localization is proposed. Performance is studied in a randomized 20 x 20 m
convex and non-convex environment across a range of signal-to-noise ratio (SNR)s for a single
detector and single source. RAD-A2C performance is compared to both an information-driven
controller that uses a bootstrap particle filter and to a gradient search (GS) algorithm. We find
that the RAD-A2C has comparable performance to the information-driven controller across SNR
in a convex environment and at lower computational complexity per action. The RAD-A2C far
outperforms the GS algorithm in the non-convex environment with greater than 95% median
completion rate for up to seven obstructions.

Keywords: deep reinforcement learning; source search and localization; active search; gamma
radiation; source parameter estimation; sequential decision making; non-convex environment

1. Introduction

The advancement of nuclear technology has brought the benefits of energy produc-
tion and medical applications, but also the risks associated with exposure to radiation
[1]. Radioactive materials can be used for dirty bombs, or might be diverted from its
intended use. Effective detection when these types of materials are present in the envi-
ronment is of the utmost importance and measures need to be in place to rapidly locate
a source of radiation in an exposure event to limit human harm [2].

Detection, localization, and identification are based upon the measured gamma-ray
spectrum from a radiation detector. Radioactive sources decay at a certain rate which,
with the amount of material, gives an activity, often measured in disintegrations per
second or Becquerels [bq]. Most decays leave the resulting nucleus in an excited state,
which may lose energy by emitting specific gamma rays. Localization methods in the
current work rely upon the intensity [cps] of the gamma photon radiation measured
by scintillation detectors composed of materials such as sodium iodide (Nal) [3]. The
number of counts per second recorded by a detector is related to the total photons emitted
per second through a scaling factor determined by detector characteristics. It is common
to approximate each detector measurement as being drawn from a Poisson distribution
because the success probability of each count is small and constant [3]. The inverse
square relationship, rll’ is a useful approximation to describe the measured intensity of
the radiation as a function of the distance between the detector and and source, r. The
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size of the detector also affects count rates, with a larger detector having a larger solid
angle. This nonlinear relationship paired with the probabilistic nature of gamma-ray
emission and background radiation from the environment leads to ambiguity in the
estimation of a source’s location.
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Figure 1. An autonomous mobile robot operating in a non-convex environment. The unshielded
gamma source emits gamma radiation isotropically. Obstructions (blue cubes) attenuate the
gamma radiation signal and block the robot’s path.

In the case of a single mobile detector, there are numerous challenges to overcome.
Detectors deployed to smaller autonomous systems such as drones or robots have
a smaller surface area and volume resulting in poorer counting statistics per dwell
time. Common terrestrial materials such as soil and granite contain naturally occurring
radioactive materials (NORM) that can contribute to a spatially varying background rate
[3]. Far distances, shielding with materials such as lead, and the presence of obstructions,
i.e., a non-convex environment, can significantly attenuate or block the signal from a
radioactive source. Further challenges arise with multiple or weak sources. Given the
high variation in these variables, the development of a generalizable algorithm with
minimal priors becomes quite difficult. Additionally, algorithms for localization and
search need to be computationally efficient due to energy and time constraints. Figure 1
shows an example illustration of a mobile robot performing active nuclear source search
in a non-convex environment.

1.1. Machine Learning (ML)

ML is broadly concerned with the paradigm of computers learning how to complete
tasks from data. Reinforcement learning (RL) is a subset of ML focused on developing a
control policy that maximizes cumulative reward in an environment. Deep learning (DL)
is another subset of ML with an emphasis on learning a function of interest using data.
A key difference between RL and other subsets of ML is that learning is dependent on
the data that is gathered by the policy thereby directly impacting future learning. The
intersection of RL and DL has resulted in a framework called Deep reinforcement learning
(DRL). DRL uses deep neural networks to learn a control policy and approximate state
values through trial and error in an environment. While training of these networks is
computationally intensive, once the weights are learned, inference (the application of
a trained ML model) can be performed at lower computational cost. In this paper, we
investigate a branch of DRL known as stochastic, model-free, on-policy gradients and
assess its performance in the task of control in the radiation source search domain.

DRL has far surpassed human expertise in a myriad of other tasks, for example,
the board game Go, which has a state space of 10174 [4]. Since these algorithms learn
strictly through environmental interaction, they can discover and develop heuristics and
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action trajectories that humans might never have considered in their algorithm design.
Radiation source search is a well studied problem, however, data-driven approaches
have received less attention, in part because of the high variability mentioned above.
This paper demonstrates that DRL can learn an effective policy that generalizes across a
range of scenarios where background rate, source strength and location, and the number
of obstructions are varied.

1.2. Related Work

Many solutions have been proposed for nuclear source search and localization
across a broad range of scenarios and radiation sensor modalities. These methods are
generally limited to the assumptions made about the problem such as the background
rate, mobility of the source, shielding presence, and knowledge of obstruction layout
and composition. Morelande et al. present a maximum likelihood estimation approach
and a Bayesian approach to multi-source localization using multiple fixed detectors in
an unobstructed environment [5]. Hite et al. also use a Bayesian approach with Markov
chain Monte Carlo to localize a single point source in a cluttered urban environment
by modeling the radiation attenuation properties of different materials [6]. Hellfeld et
al. focused on a single detector in 3D space moving along a pre-defined path for single
and multiple weak sources [7]. They utilized an optimization framework with sparsity
regularization to estimate the source activity and coordinates.

There is great interest in autonomous search capabilities for source search to limit
human exposure to harmful radiation. Cortez et al. proposed and experimentally tested
a robot that used variable velocity uniform search in a single source scenario [8]. Ristic
et al. proposed three different formulations of information-driven search with Bayesian
estimation. An information-driven search algorithm selects actions that maximize the
available information for its estimates of user-specified quantities at each timestep. The
first method utilized the Fisher information matrix and a particle filter for a single source
and single detector in an open area with constant background [9]. The second and third
method both used the Renyi information divergence metric and particle filter to control
a detector/ detectors in open/cluttered environments with multiple sources, respectively
[10],[11]. In the cluttered environment, the layout was considered to be known before
the start of the search. Anderson et al. considered a single mobile detector used for
locating multiple sources in a cluttered environment through an optimization based on
the Fisher information and travel costs [12]. The obstruction attenuation and nuclear
decay models were specified by hand.

RL and DRL have also been applied to the control of single robots. Landgren used a
multi-armed bandit approach to control nuclear source search in an indoor environment
[13]. This was implemented on a Turtlebot3 and used to find multiple radioactive sources
in a lab through radiation field sampling. Liu et al. used double Q-learning to control
a single detector search for a single radioactive source with a varying sized wall in
simulation [14]. The model performed well when the test environment matched its
training set but did not generalize when new geometries were introduced and had to be
retrained. This approach is the most similar to the one used in this research.

In contrast to the majority of the methods mentioned above, our algorithm does
not directly rely on any hard-coded modeling assumptions for decision making. This
gives greater flexibility to our approach and allows the opportunity for generalization
to a greater variety of situations. For example, our approach was only trained on up
to five obstructions in an environment at any one time but can easily operate when
greater than five obstructions are present. Additionally, it would be relatively simple to
retrain the agent to account for a moving source or novel obstruction types and layouts,
among other things. This comes with the caveat that there is a heavy reliance upon the
assumptions made in modeling an environment that are likely to fail in capturing the
intricacies of reality (reality gap). This is an area of intense interest in the DRL research
space [15].
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1.3. Contributions

The main contributions of this paper are an on-policy, model-free DRL approach
to radiation source search, a novel neural network architecture, the RAD-A2C, and
an open-source radiation simulation for convex and non-convex environments. Our
approach will be evaluated in the context of single detector search for a single radiation
source in a simulated 2D environment with variable background radiation, variable
source intensity and location, variable detector starting position, and variable number of
obstructions. The RAD-A2C will be compared against a modified information-driven
search algorithm previously proposed in the nuclear source search literature and a
gradient search algorithm in a convex environment across signal-to-noise ratio (SNR)s. We
will examine the effect of obstructions on the RAD-A2C performance in a non-convex
environment with comparison to a gradient search algorithm across SNRs.

2. Materials and Methods
2.1. Radiation Source Search Environment

The radiation source search environment was fundamental to the training of the
policy. The development of the environment required many careful design decisions
in an attempt to provide a useful proof of concept for the efficacy of DRL in practical
radiation source search contexts. In the remainder of the paper, we assume that a gamma
radiation source has already been detected through some other means and the objective
is to now locate it. We also assume an isotropic detector and a constant background rate
per search. An episode is defined to be a finite sequence of observations, actions, and
rewards in an environment.

2.1.1. Gamma Radiation Model

Gamma radiation measured by a detector typically comes in two configurations, the
total gamma-ray counts or the gamma-ray counts in specific peaks. The full spectrum is
more information rich as radiation sources have identifiable photo-peaks but is more
complex and computationally expensive to simulate. Thus, our localization and search
approach uses the gross counts across the energy bins. Cesium-137 was selected as
the source of interest since it is commonly used in industry applications and is fairly
monoenergetic [16]. We denote the parameter vector of interest as x = [Zs, x5, ys|, where
Xs, s are the source coordinates in [m] and Zs is the source intensity in counts per second
[cps] at a source-detector distance of 1 m. These quantities are assumed to be fixed
for the duration of an episode. An observation at each timestep, #, is denoted as oy,
and consists of the measured counts, z,, detector position denoted [x;, y,] [m], and 8
obstruction range sensor measurements.

The background radiation rate is a constant A [cps]. The following model is used
to approximate the mean rate of radiation counts measurements in an unobstructed
environment (convex),

Tse ANt
4r[(xs — xu)% + (Ys — yn)?]

where A, €, and At, are the detector surface area [m?], the detector intrinsic efficiency,
and the dwell time [s], respectively. The detector intrinsic efficiency is assumed to be one
and we consider a unit dwell time. The detector is assumed to be a cylinder with surface
area equal to 47t and isotropic for ease of computation. This results in the following
binary attenuation model when the detector does and does not have line-of-sight (LOS):

An(x) = + b, @

I,
An(x) = Gty T LOS, o
Ab NLOS.

Thus, the measurement likelihood function when the detector has LOS is defined as
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We define the signal-to-noise ratio (SNR) as,
I,/D?, + A
SNR — 2/ Dt 2 e 0, @)
b

where Dj,;; is the initial Euclidean distance between the source and detector posi-
tions. Equation (4) was also used for the non-convex environments to maintain consis-
tency even though it is not strictly true. Figure 2 shows a randomly generated episode
for convex (2a) and non-convex (2b) environments. The environment was implemented
using the open-source Gym interface developed by OpenAI [17].
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Figure 2. A sample of the starting conditions for (a) convex and (b) non-convex environment. In both environment types,
the red star is the source position, the black circle is the detector position, and the green triangle is the agent’s prediction of
source position. In the non-convex environment, the blue rectangles are obstructions that block line of sight between the
source and detector. The initial source prediction is in the obstruction as the agent does not have any prior information
about the environment.

2.1.2. Partial Observability

In the context of the radiation search scenario where measurements are noisy and
uncertain, it is more useful to describe the partially observable Markov decision process
(POMDP). The finite POMDP is defined by the 6-tuple (S, A, T, R, ), O) at each time
step, n. S, A, R, O are the states, actions, rewards, and observation, respectively. The
probability distributions for observation, (), and transition, 7, are considered fixed
and unknown. An observation is a function of the true state but is not necessarily
representative of the true state due to the stochastic nature of the environment.

A history is a sequence of observations up to timestep n is defined as H, =
(00,01, .-.,04,—1,01). A successful policy needs to consider H, to inform its decisions
since a single observation does not necessarily uniquely identify the current state. This
can be implemented directly by concatenation of all previous observations with the
current observation input or through the use of the hidden state, /1, of recurrent neural
networks. The function M(H,) provides a sufficient statistic of the past history and
serves as the basis for the agent’s decision making [18]. This allows the policy to be
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reformulated as 77(a,1|hn) = p(an+1, M(Hy); 0) where 6 is some parameterization and
4,1 is the next action.

2.1.3. Reward Function

The reward function defines the objective of the DRL algorithm and completely
determines what will be learned from the environment. Reward is only utilized for the
update of the weights during the optimization phase and does not directly factor into
the DRL agent’s decision making during an episode. The reward function for the convex
and non-convex environment is as follows,

©)

—0.5% Pl otherwise.

0.1 if 11 < minyy,
'nyl =
Dsearch

Here, the source-detector shortest path distance is defined as ¢, and Dge,rcr, defines
the largest Euclidean distance between vertices of the search area. The shortest path
distance is essential for the non-convex environment and becomes the Euclidean distance
when there is LOS. The normalization factor, Dgearen, in the negative reward provides an
implicit boundary to the search area. This reward scheme incentivizes the DRL agent to
find the source in the fewest actions possible as the negative reward is weighted more
heavily. The reward magnitudes were selected so that standardization was not necessary
during the training process as mean shifting of the reward can adversely affect training
[19].

The reward function was designed to provide greater feedback for the quality of an
action selected by the DRL agent in contrast to only constant rewards. For example, in
the negative reward case, if the DRL agent initially takes actions that increase D above
the previous closest distance for several timesteps and then starts taking actions that
reduce D, the negative reward will be reduced as it has started taking more productive
actions. This distance-based reward function gives the DRL agent a more informative
reward signal per episode during the learning process. Figure 3 shows an episode of the
DRL agent operating within the environment, the radiation measurements it observes,
and the reward signal it receives.
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Figure 3. Key data streams used by the DRL agent in training and inference. (a) shows the detector position at each timestep
as it moves closer to the source. (b) shows the radiation counts measurements at each timestep corresponding with the
detector position. (c) shows the cumulative reward signal that the DRL agent uses during training. The reward signal is
only used for weight updates after all episodes in an epoch have been completed.

2.1.4. Configuration

Detector step size was fixed at 1 m/sample and the movement direction in radians
was limited to the set, i = {i* J : i € [0,7]}. The DRL implementation can easily be
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Parameter Value
Area Dimensions 20 x 20 m
Src., det. initial positions [-20,20] m
Src. rate [1x10%1 x 10%] cps
Background rate [10, 50] cps
State space 11
Action space 8
Max. search time 120 samples
Velocity 1 m/sample
Termination dist. 1.1m
Min. src.-det. initial dist. 10 m
Number of obstructions [1,5]
Obstruction dim. [25] m

Table 1. Radiation source simulation for convex and non-convex environment parameters. The
brackets indicate an interval that was uniformly sampled on a per episode basis. Src. and det. are
abbreviations for source and detector, respectively.

adapted to handle more discrete directions and variable step sizes or even continuous
versions of these quantities. These two constraints were made to limit the computa-
tional requirements for the comparison algorithm. Maximum episode length was set
at 120 samples to ensure ample opportunity for the policy to explore the environment,
especially in the non-convex case. Episodes were considered completed if the detector
came within 1.1 m of the source or a failure if the number of samples reached the maxi-
mum episode length. The termination distance was selected to cover a range of closest
approaches as the detector movement directions and step size are fixed.

The state space has eleven dimensions that include eight detector-obstruction range
measurements for each movement direction. This modeled some range sensing modality
such as an ultrasonic or optical sensor. The maximum range was selected to be 1.1
m to allow the controller to sense obstructions within its movement step size. The
range measurements were normalized to the interval [0, 1], where 0 corresponds to no
obstruction within range of the detector. If the policy selected an action that moved
the detector within the boundaries of an obstruction, then the detector location was
unchanged for that sample.

2.2. Proximal Policy Optimization (PPO)

On policy, model-free DRL methods require that the agent learns a policy from
its episodic experiences throughout training, whereas model-based methods focus on
using a learned or given model to plan action selection. On policy methods are worse in
terms of sample efficiency than Q-learning because learning takes place in an episodic
fashion, i.e., the policy is updated on a per-episode basis. The benefit being that the
agent directly optimizes policy parameters through the maximization of the reward
signal. The decision to use model-free policy gradients was motivated by the stability
and ease of hyperparameter tuning during training. Specifically, we used a variant of
the actor-critic (A2C) framework called PPO. The actor, 7y, and critic, Vj, are the two
main components of the A2C where 6, ¢ denote neural network parameterizations. This
will be covered in more detail in Section 2.3.

Schulman et al. propose the following generalized advantage estimator (GAE) with
parameters -y, A to control the bias-variance tradeoff,

N-1
ASAE(’%)‘) = Z (/\’)/)n Ontnts ©

n'=0
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where ¢ is the temporal difference error as defined in [20].This is an exponentially-
weighted average of the temporal differences error where < determines the scaling of the
value function that adds bias when o < 1 and A that adds bias when A < 1 if the value
function is inaccurate [21]. This leaves the final A2C gradient used in our algorithm as,

N-1
AGAE(7,A
Vo (m6) = Enl Y, Valog mo(aysa|h) Ay *) )
n=0
The value function parameters are updated with stochastic gradient descent on
the mean square error (MSE) loss between the value function estimate and the empirical
returns,

P = arg(;nin Ehn,fzn [(Vep(hn) — Rn)z]- 8)

A common issue in policy gradient methods is the divergence or collapse of policy
performance after a parameter update step. This can prevent the policy from ever
converging to the desired behavior or result in high sample inefficiency as the policy
rectifies the performance decrease. Schulman et al. proposed the PPO algorithm as a
principled optimization procedure to ensure that each parameter update stays within
a trust-region of the previous parameter iterate [22]. We chose to use the PPO-Clip
implementation of the trust-region because of the strong performance across a variety of
tasks, stability, and ease of hyperparameter tuning as shown in [22] and [23].

The PPO-Clip objective is formulated as,

L (041, 6k) = EyyEn[min(ry (611, 0¢) A, clip(rn (6541, 6k), 1 — €, 1+ €)An)]l. 9)

7011 (ap41lhn)
7Tg;. (an41lhn)
policy iterate to the proposed policy iterate and € is the clipping parameter that enforces
a hard bound on how much the latest policy iterate can change in probability space
reducing the chance of a detrimental policy update. A further regularization trick is
early-stopping based on the approximate Kullback-Leibler divergence (AKLD). The AKLD is
a measure of the difference between two probability distributions and the approximation
is the inverse of 7, (0.1, 6¢) in log space. If the AKLD between the current and previous
iterate over a batch of histories exceeds a user-defined threshold, then the parameter

updates over that batch of histories are skipped.

Here, r,,(0k11,60k) = , denotes the probability ratio of the previous

2.3. RAD-A2C
2.3.1. Gated Recurrent Unit (GRU)

The GRU architecture proposed by Cho et al. is a subset of the recurrent neural
network (RNN)s family that use gates to address the vanishing and exploding gradients
encountered when using backpropagation-through-time and increase the network’s
ability to establish dependencies across long temporal gaps [24]. The following set of
equations describe the GRU operations,

Znt1 = C(Whxys1 + Wi + by),
Pt = C(WE X1 + WEhhy +by),
Iy g1 = tanh (W, x, 11 + Wiy (ra1 © ) + by),

hn+1 = (1 - ZnJrl) © hn + Zn+1i:ln+l/

(10)

where o (+) is the sigmoid activation function and tanh(-) is the hyperbolic tangent
activation function. The GRU has more parameters than the standard RNN but the huge
gain is in training stability and the increased range for sequence relationships.


https://doi.org/10.20944/preprints202108.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2021 d0i:10.20944/preprints202108.0018.v1

Figure 4 shows the design of a single GRU cell taken from Olah [25]. Each box
represents a weight matrix and activation function and the circles represent mathemat-
ical operations. The conjoining lines represent the concatenation of the quantity and
diverging lines represent the copying. The crux of the reset (r,;) and update (z,) gates
are to modify the candidate hidden state (/2,,), which then becomes the output hidden
state (h,). The reset gate determines how much of the previous hidden state to factor
into the new hidden state and the update gate determines the convex combination of the
previous hidden state and the candidate hidden state. This cell is a drop-in replacement
for the hidden state &, found in Figure 4a.

D, D
r’l
Who Who Who (XD‘\ 2y
—p Cre — -
Wxi Wxi Wxi ~
() xn
(a) RNN sequential inputs. (b) GRU architecture.

Figure 4. (a) shows the input flow for an RNN where each x;, is fed to the network sequentially. The learned weight matrices
Who, Wyi, Wy, are the same across all sequence steps so the only changes are the input, output and hidden state. The 5,

represents the hidden state which is passed between sequence steps and is combined with the input to carry information

across time. The output, y,, is mapped from the hidden state. (b) shows the GRU architecture, a variation on the h; in

(a). Each box represents a weight matrix and activation function and the circles represent mathematical operations. The

conjoining lines represent concatenation of the quantity and diverging lines represent the copying. The crux of the reset (r;)
and update (z,,) gates are to modify the candidate hidden state (1) which then becomes the output hidden state (1) [25].

2.3.2. Architecture

The RAD-A2C is composed of a particle filter gated recurrent unit (PFGRU) proposed
by Ma et. al [26] (Appendix A.1), one GRU module to encode the inputs over time for
action selection, and three linear layers. At each timestep, the observation is propagated
to both the PFGRU and the A2C modules. The PFGRU uses a linear layer to regress its
mean “particles” onto a source location, which is concatenated with the observation and
fed into the A2C. The Actor layer regresses the GRU hidden state onto a multinomial
distribution over actions using a softmax function. The Critic layer regresses the hidden
state onto a value prediction. This value prediction is only necessary for the training
phase and has no direct impact during inference. Figure 5 shows the RAD-A2C archi-
tecture and the flow of information through the system. The dotted lines indicate the
path of the error gradients for backpropagation during training. Appendix A.2 covers
implementation and training details and Table 1 shows the selected hyperparameters.
The code is available at https://github.com/peproctor/radiation_ppo.
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Figure 5. RAD-A2C source search architecture where quantities in the parenthesis denote the dimensions. The PEFGRU
provides a location prediction, denoted (%5, s), at each timestep, which is concatenated with the observation and fed into
the A2C. The GRU module encodes the inputs over time in its hidden state and the Actor layer selects an action from this
hidden state. The Critic layer predicts the expected return from the hidden state and is only needed during training. The
dotted lines indicate the gradient flow during backpropagation.

The RAD-A2C is easily extendible to other source search scenarios such as a 3D
environment, moving sources, using more advanced radiation transport simulators, and
selection of detector step size and dwell time. These variations would only require a
change in the dimensions of the input and output of the model, a potential increase in
the hidden state size, and an appropriate update of the simulation environment/reward
function. This is a major advantage of DRL as compared to human-specified algorithms.
The downside of DRL is the long and computationally intense training costs and sensitiv-
ity to hyperparameters. A weakness of our RAD-A2C implementation is that the source
intensity is not predicted by the PFGRU as this would require prior knowledge about the
upper limit of the intensity. We opted for scenario generalization by performing search
without a source intensity estimate. While source intensity is of interest in radiation
source localization scenarios, an additional estimator such as least squares fitting could
be used in conjunction with our model for this end.

2.4. Evaluation

Appendix B details the information-driven control method (RID-FIM) and the
gradient search (GS) algorithms used as comparison against our method. All search
methods were evaluated across a range of SNRs in the convex environment. Only
the RAD-A2C and GS were compared in the non-convex environment as the bootstrap
particle filter (BPF) measurement and process model do not account for obstructions.
The SNRs were broadly grouped into “low” (1.0 — 1.2), “medium” (1.2 — 1.6), and
“high” (1.6 — 2.0) intervals. For each SNR, 1,000 different environments were uniformly
randomly sampled to create a fixed test. Monte Carlo simulations were performed for
all experiments to determine the average performance of the algorithms. Each algorithm
was run for 100 episodes per environment.

2.4.1. Metrics

Weighted median completed episode length and median percent of completed
episodes served as the main performance metrics. The weighted median was used for
the completed episode length with a weighting factor between 1 — 100, determined
by the number of Monte Carlo simulations that were completed by the agent per en-
vironment. The completed episode length corresponds to the number of radiation
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measurements required to come within the episode termination distance of the source
before the maximum episode length is reached. This quantifies the agent’s effectiveness
in incorporating the measurements to inform exploration of the search area. Percent
of episodes completed is the more important metric as the priority in radiation source
search is mission completion and this works in tandem with the completed episode
length to characterize the agent’s performance. An ideal agent would have a low median
episode length and a high median percent of episodes completed.

2.4.2. Experiments

Three sets of experiments were run in the radiation source search environment to
assess the performance characteristics of our proposed RAD-A2C architecture. The first
experiment focused on the comparison of all of the search algorithms. The second exper-
iment assessed the RID-FIM and A2C action selection quality with BPF performance as
a proxy. The final experiment looked at the performance of the GS and RAD-A2C in a
non-convex environment where the number of obstructions was varied.

3. Results
3.1. Convex Environment
3.1.1. Detector Path Examples

Two detector paths for the RAD-A2C and the RID-FIM in two different SNR config-
urations of the convex environment are shown in Figures 6a, 6b. The source prediction
marker was omitted to reduce clutter. Both algorithms must explore the area as they
search for radiation signal above the noise floor. In the high SNR configuration, both
algorithms make sub-optimal decisions that move the detector away from the source,
a result of the probabilistic nature of the measurement process. However, they both
quickly adjust and successfully find the radiation source. The detector starts much
further from the source in the low SNR configuration and the controllers select many
more actions before picking up any signal. In both scenarios, the RID-FIM makes more
diagonal movements relative to the RAD-A2C.
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(a) High SNR configuration. (b) Low SNR configuration.

Figure 6. Two detector paths for the RAD-A2C and the RID-FIM in high and low SNR configurations of the convex
environment overlayed on a single plot. The black square denotes the detector starting position and the red star represents
the radiation source. (a) shows a low SNR configuration and (b) shows a high SNR configuration. In both cases, the
stochastic nature of gamma radiation measurement results in the control algorithms taking sub-optimal actions before the
source could be located.
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3.2. Performance

Box plots for the completed episode percentage and completed episode length for
all methods in the convex environment are found in Figures 7a and 7b, respectively. The
median is denoted in red, the boxes range from the first to the third quartile and the
whiskers extend to the 2.5™ and 97.5% percentiles. GS achieved the shortest episode
completion length for all experiments at high SNR but performance decreased swiftly
at the lower SNR levels. The RID-FIM had a consistent performance with tight boxes
for both metrics at all SNRs. The RAD-A2C was the only algorithm to maintain 100%
completion for all SNRs with the tradeoff being the longest median episode length for
all but one of the SNRs. Figure 8 shows the relationship between median episode length
to median episode completion. Top-performing search algorithms are located on the far
right of the plot and ideally near the bottom.
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Figure 7. Box plots for the completed episode percentage and completed episode length against SNR in the convex
environment. The median is denoted in red, the boxes range from the first to the third quartile and the whiskers extend
to the 2.5t and 97.5™ percentiles. Figure 7b shows the RID-FIM consistently found the source in a short amount of time
even as SNR decreased. Figure 7a shows the RAD-A2C was the only method that completed 100% of the episodes. GS
performance sharply declined for lower SNRs.
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Figure 8. Median completed episode length against median completion rate. The marker shapes denote the SNR level and
the color denotes the search method. An ideal search algorithm would be located in the bottom right of the plot for all the
SNRs. GS has the best performance at high SNR due to the strong radiation field but also uses seven more measurements
per action selection than the other methods.
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3.3. BPF Comparison

The RID-FIM and A2C controller are compared directly by replacing the PFGRU
in the RAD-A2C with the BPFE. This new system will be denoted as BPF-A2C in the
following plots. Swapping in the BPF for the PFGRU facilitates in-depth analysis of the
controllers through the lens of the BPF performance. The estimator performance depends
entirely on the quality of action selection throughout an episode as this determines
what information the estimates will be based on. Thus, we compare the RMSE for the
Euclidean distance between the actual and predicted source location at each timestep for
three different episode completion lengths across SNR.

Figures 9, 10, and 11, show the RMSE and posterior Cramér-Rao lower bound (PCRB)
for the RID-FIM and the BPF-A2C for three different completed episode lengths across
SNRs. The PCRB serves as a proxy for the sub-optimality of the controllers because of
the use of the same estimator (see Appendix B.5). Each plot is averaged over at least 200
different episodes and at least 700 total runs. An episode was only considered for this
analysis if the completed episode length was the same for both algorithms in the set of
the Monte Carlo runs for that episode. This ensured that RMSEs and PCRBs were only
averaged over the same set of episodes.

These specific completed episode lengths were chosen to highlight a variation in
estimator performance that was observed across completed episode lengths ranging
from 10 — 60 samples and SNR levels. The RMSE for the RID-FIM is lower or equal to the
BPF-A2C at a completed episode length of 17 across SNR. This changes for a completed
episode length of 20 where the RID-FIM RMSE is only lower than the BPF-A2C at the
lowest SNR. For the completed episode length of 28, the BPF-A2C now has a lower
RMSE than the RID-FIM for all SNRs. In all of the plots, the PCRB for the BPF-A2C is
slightly lower or equal to the PCRB for the RID-FIM. The PCRB decreases at a faster rate
for the high SNR compared to the low SNR. Estimator RMSE consistently approaches
the PCRB by the end of an episode. The RMSE initially increased for the high SNR in
direct relation with the completed episode length in all the RMSE plots shown.
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Figure 9. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 17. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged
over at least 200 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a
lower RMSE than the BPF-A2C for the low and medium SNR but the RID-FIM’s action selection was solely dependent on
potentially spurious BPF state estimates, which caused the BPF-A2C to match the RID-FIM performance at the high SNR.
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Figure 10. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 20. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged over
at least 400 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a lower
RMSE than the BPF-A2C for the low SNR but the RID-FIM's action selection was solely dependent on potentially spurious
BPF state estimates, which caused the BPF-A2C to outperform the RID-FIM at medium and high.
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Figure 11. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 28. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged over
at least 650 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The BPF-A2C has a lower
RMSE than then RID-FIM when the completed episode length was longer due to the RID-FIM’s action selection dependence

on potentially spurious BPF state estimates.
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3.4. Non-convex Environment
3.4.1. Detector Path Examples

Two detector paths for the RAD-A2C and the GS in two non-convex environments
with three and seven obstructions are shown in Figures 12a and 12b, respectively. The
source prediction marker was omitted to reduce clutter. The GS takes many more
samples to find a radiation gradient in the three obstruction environment but eventually
finds the source. Gradient information is extremely sparse in the seven obstruction
environment and thus the GS only moves randomly. The RAD-A2C can avoid the
obstructions and find the source in both situations, even moving diagonally between
two obstructions in Figure 12b. As in the convex environment, the majority of the
RAD-A2C movements are in the cardinal directions.
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Figure 12. Two detector paths for the RAD-A2C and the GS overlayed on a single plot for the non-convex environment. (a)
shows the three obstruction environment and (b) shows the seven obstruction environment. The black square denotes the
detector starting position, the blue rectangles represent obstructions that block radiation propagation, and the red star is the
radiation source. Both algorithms must explore the area as they search for radiation signal above the noise floor.

3.5. Performance

Box plots for the episode completion percentage and completed episode length
against SNR for both methods in the non-convex environment are found in Figures 13
and 14, respectively. Figures 13a and 14a are results with one obstruction, Figures 13b
and 14b are results with three obstructions, Figures 13c and 14c are results with five
obstructions, and Figures 13d and 14d are results with seven obstructions. The median
is denoted in red, the boxes range from the first to the third quartile and the whiskers
extend to the 2.5™ and 97.5% percentiles.

Across obstruction number, the RAD-A2C maintains above 95% episode completion
even at low SNR. The distribution of the RAD-A2C episode completion gets larger as
the number of obstructions increases. GS has > 85% episode completion when there
are less than 7 obstructions at high SNR but sees a sharp decrease in performance as
the SNR level decreases. Even at high SNR, GS only completes 77% of episodes when
7 obstructions are present. GS also has significant spread in the first and third quartile
for most of the completed episode non-convex experiments. The RAD-A2C median
for completed episode length increases by approximately 10 samples from a single
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obstruction to seven obstructions. The first and third quartiles for completed episode
length also increase as the number of obstructions increase.
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Figure 13. Box plots for the completed episode percentage against SNR in the non-convex environment, where each plot

corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes range from

the first to the third quartile and the whiskers extend to the 2.5t and 97.5th percentiles. (a) was for a single obstruction,

(b) was for three obstructions, (c) was for five obstructions, and (d ) was for seven obstructions. GS episode completion

deteriorates with increasing number of obstructions while the RAD-A2C maintains greater than 95% median episode

completion.
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Figure 14. Box plots for the completed episode length against SNR in the non-convex environment, where each plot
corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes range from
the first to the third quartile and the whiskers extend to the 2.5t and 97.5th percentiles. (a) was for a single obstruction, (b)
was for three obstructions, (c) was for five obstructions, and (d) was for seven obstructions. The RAD-A2C maintains a low
completed episode length across the varying number of obstructions and SNR while GS performance deteriorates.

4. Discussion
4.1. Convex Environment

The results indicate close search performance between the RID-FIM and RAD-A2C
algorithms in the convex environment. GS had the shortest episode completion length
at high SNR but this required 7 more measurements per action selection. The RAD-A2C
showed the best reliability in completing all of the episodes with a minimal spread in
the distribution of results but had a greater spread in the completed episode length even
at the highest SNR. The longer completed episode length of the RAD-A2C could be due
to learned behavior that is advantageous in non-convex environments as the training
environment always had obstructions present. The RID-FIM had a tighter and lower
distribution of completed episode lengths across the SNRs.

Completion of episodes is the priority in practice as this will eliminate the threat
of human harm from nuclear materials. Both algorithms get the job done effectively,
however, the RID-FIM has a slightly greater chance of failing when SNR conditions
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are poor compared with the RAD-A2C. The RID-FIM utilized perfect knowledge of
the background rate, which is a reasonable assumption in this particular source search
context, however, its performance is likely to be degraded to some degree when it
must also estimate an unknown background rate. The RAD-A2C did not receive the
true episode background rate directly but did have prior exposure to the interval of
background rates through training. Additionally, the RAD-A2C input standardization
filters the radiation measurement inputs (see Appendix A.2).

4.2. BPF Comparison

The BPF serves as an interesting comparison point between the A2C and RID-FIM
controllers. When the completed episode length was short (< 16 samples), the RID-FIM
location prediction RMSE was lower than the BPF-A2C and closer to the PCRB at all
SNRs. This evidences the effectiveness of information-driven search schemes and the
near-optimal performance of the RID-FIM when the BPF does not make spurious esti-
mates. However, the occurrence of the intersection point of the RMSE curves highlights
the disadvantage of the RID-FIM’s reliance on the estimator for action selection. If
early state estimates are incorrect, this leads the RID-FIM to take more sub-optimal
actions until the estimate is corrected. This is evidenced by the longer completed episode
lengths (20, 28) that have a greater initial increase in the RMSE as seen in Figures 10c
and 11c. Interestingly, the higher SNR contributes a sharper increase, likely due to the
strong radiation measurements being interpreted by the BPF as evidence for the incorrect
estimate.

In contrast, the A2C module of the BPF-A2C selects its actions from the location
prediction and the measurement directly. Thus, when the SNR is high, the RMSE
intersection point occurs at an earlier completed episode length (17 samples) because the
A2C factors in measurement information at each timestep, rather than strictly following
the possibly incorrect location prediction as the RID-FIM must do. This also explains
why the BPF-A2C has lower RMSE at longer completed episode lengths as seen in Figure
11. The intersection point occurred at longer completed episode lengths for lower SNR
because it takes the A2C longer to come across informative measurements that can
correct the spurious BPF state estimates.

4.3. Non-convex Environment

The results showcase the strong performance of the RAD-A2C in the non-convex
environment. Surprisingly, the episode completion percentage did not decrease substan-
tially in the seven obstruction configuration and the median completed episode length
did not increase drastically. This demonstrates the algorithm’s ability to generalize as
it was only trained on up to five obstructions per environment. The RAD-A2C is not
simply a gradient search algorithm as the non-convex environment has many areas with
no gradient information as evidenced by the ineffectiveness of the GS. Overall, these
results support our hypothesis that the RAD-A2C is an effective search algorithm for
both convex and non-convex environments.

5. Conclusions and Future Work

This paper investigated the efficacy of PPO and our proposed DRL architecture, the
RAD-A2C, for a convex and non-convex radiation source search through comparison
against the RID-FIM and GS across SNR. The GS had strong performance when the SNR
was high but quickly lost efficacy with decreasing SNR. The RID-FIM typically required
fewer measurements to complete episodes but had a slightly greater chance of not
completing all of the episodes at lower SNRs. The RAD-A2C consistently completed all
episodes albeit at the cost of taking more measurements. Guaranteed episode completion
is arguably the most important criteria for radiation source search applications.

Estimator performance served as another lens to compare the controller perfor-
mance directly. The same BPF was used for both controllers (RID-FIM, A2C) so that
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the RMSE and PCRB for the location prediction could be compared. We found that on
average, the BPF RMSE was lower for the longer episode lengths when the A2C was the
controller as it was able to factor in measurements to its action selection, as opposed to
the RID-FIM which selected actions solely on the BPF location prediction. The RID-FIM's
action selection scheme is well-motivated but is susceptible to incorrect state estimates
from the estimator.

In the non-convex environment, the RAD-A2C completed greater than 95% of
episodes over a range of obstructions and SNRs. There was very little gradient informa-
tion available in the environments with more obstructions and thus the GS algorithm
completed a much lower percentage of episodes. The RAD-A2C demonstrated general-
izability as it was able to maintain a high completion percentage in a seven obstruction
environment that it had never been trained on.

As mentioned in Section 2.3, the RAD-A2C formulation has the potential to be
applied to other variations of the radiation source search. These include moving and/or
shielded nuclear sources, spatially varying background rates, utilizing an attenuation
model for different environment materials, locating an unknown number of multiple
sources, and a larger, more complex urban environment such as the one used by Hite et
al. [6]. A classification layer could also be added to the A2C module that is trained on
detecting whether a source is present or not and how many sources are present. Noise
could be added to the other dimensions of the observation vector such as the detector
coordinates and/or the obstruction range measurements. In theory, the majority of these
cases only require modification of the simulation environment, clever shaping of the
reward signal, and hyperparameter sweeps to determine the model parameters.

Our proposed algorithm could be trained in a more realistic environment and
gamma sensor simulation such as the one utilized for a single UAV source search by
Baca et al. [27]. The authors developed a realistic gamma radiation simulation plugin
for the Gazebo/ROS environment. Gazebo is a realistic open-source robotics simulator
[28]. This plugin could then be easily interfaced with our DRL algorithm using the
OpenAI_ROS Gym developed by Ezquerro et al. that seamlessly connects Gazebo and
OpenAl Gym interfaces [29].
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A2C Actor-critic

BPF Bootstrap particle filter

BPF-A2C  Bootstrap particle filter and actor-critic
CRB Cramér-Rao lower bound

DRL Deep reinforcement learning

DL Deep learning

FIM Fisher information matrix

GRU Gated recurrent unit

GS Gradient search

LOS Line-of-sight

NLOS No line-of-sight

ML Machine learning

PCRB Posterior Cramér-Rao lower bound
PFGRU Particle filter gated recurrent unit
PPO Proximal policy optimization
RAD-A2C  Our proposed actor-critic architecture
RNN Recurrent neural network

RID Rényi information divergence
RID-FIM  Hybrid information-driven controller that uses RID and FIM
RL Reinforcement learning

SNR Signal-to-noise ratio

Appendix A. RAD-A2C
Appendix A.1. Particle Filter Gated Recurrent Unit (PFGRU)

The PFGRU is an embedding of the BPF into a GRU architecture proposed by Ma
et al [26]. As in the BPF, there are a set of particles and weights used for filtering and
prediction of the posterior state distribution. In the case of the PFGRU, the particles

. i N,
are represented by the set of hidden or latent state vectors, {h},},*]. The latent states
are propagated and the weights updated at each timestep by a learned transition and
measurement function denoted as,

hf1+1 = ftr(hfquH)

i | (an
Y41 = fout(hn+1)/

where (i, ~ p(C! 1 i, 1) is a learned noise term akin to the process noise in the
BPFE. The weight update also relies on a learned likelihood function,

w£1+1 = 11 fobs (Yn+1, hf,H)w;, (A2)

where 7 is a normalization factor.

The PFGRU utilizes a soft resampling scheme to combat particle degeneracy while
maintaining model differentiability. This is achieved by sampling particle indices from
a multinomial distribution with probabilities determined by a convex combination of
a uniform distribution and the particle weight distribution. The new weights are then
determined by,

a

’ w
wn+1 = 7 ntl s (A3)

ocwfl’jll + (1 —a)(1/Ngp)

where & is the mixture coefficient parameter. The loss function consists of two
components to capture the important facets of state space tracking. The first component
is the mean squared loss between the mean particle and the predicted quantity. The
second component is the evidence lower bound (ELBO) loss that measures the difference in
distribution of the particle distribution relative to the observation likelihood, for more
details see [26]. The total loss is expressed as,
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L(0) = Lmse + B * LeLpO, (A4)
where B is a weighting parameter determined by the user. Figure 1 shows the
PFGRU architecture.
hi {vgp . 1
kit (O—() ST G WX
0NN 1
\ Zp h, _é.
[}
tanh 3
o o o
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Figure 1. PEGRU Architecture. The hidden state 1, and weights w!, are elements of a set of size Ngp. Bach box represents a
weight matrix and activation function and the circles represent mathematical operations. The conjoining lines represent
concatenation of the quantity and diverging lines represent the copying. The crux of the reset (r;) and update (z,) gates are
to modify the candidate hidden state (h1,) which then becomes the output hidden state (/). The hidden state and weights
are resampled using a soft-resampling scheme at each timestep to preserve differentiability. Recreated from [26].

A.2. Training

The estimate of the gradient iterate (Eq. 7) is improved by increasing the num-
ber of histories being averaged over. Schulman et al. improved training scalability
by instantiating copies of the DRL agent and environment on different CPU cores to
parallelize episode collection [22]. Each DRL agent computes its parameter gradients
after all episodes for an epoch have been collected. The gradients are then averaged
across all the cores and a weight update is performed per core. An important distinction
in the implementation used here is the environment variation across the CPU cores. All
of the sampled quantities were different per core and fixed per epoch resulting in a more
generalized policy. This is because the averaged gradient step will be in the direction
that improves performance across a diverse set of environments. Tobin et al. proposed a
similar idea called domain randomization that aimed to bridge the gap between DRL
simulators and reality by introducing extra variability into the simulator [15]. Table
1 shows the hyperparameters that resulted in the strongest performance for the DRL
agent from the parameter sweep. The total training time for a single DRL agent running
on 10 cores took approximately 26 hours.
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Parameter Value
Epochs 3,000
Episodes per epoch 4
Num. cores 10
Tot. weights & biases 7,443
GRU hidden size 24
PFGRU hidden size 24
PFGRU particles 40
Learning Rate A2C 3x10°%
Learning Rate PFEGRU 5x 1073
Optimizer Adam
(v,Am) (0.99,0.9,0.105)

Table 1. Hyperparameter values with the strongest performance for the DRL agent from our
parameter sweep. The parameters 7y and A are used in the generalized advantage estimator [21].
The parameter 7 is the maximum value for the approximate Kullback-Leibler divergence before
weight updates are terminated for the epoch.

The RAD-A2C was trained eight separate times with eight different random seeds to
assess model stability. In seven of the eight models, the RAD-A2C achieved performance
that was consistent with the model we used for the assessment in this paper. This is
evidenced by the training curves in Figure 2 that show the average number of completed
episodes and the average episode length over the 10 parallelized environments per epoch.
The dark blue line represents the smoothed mean and the shaded region represents the
smoothed 10" and 90" percentiles over the eight random seeds. The maximum possible
number of completed episodes per epoch was 40. The one model that did not converge
as well as the others showed oscillations in the performance curves indicating that a
parameter update resulted in an adverse policy change. Training for more than 3000
epochs did not significantly improve performance.

35 1201 —— Mean
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301
¢ 100
g 254 £
2 2 90
& 201 g
3 g 80 1
© 151 b
Q a 704
€ 10/ *
o 60
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0 10, 90t PCTL
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Epoch Epoch
(a) Average completed episodes. (b) Average episode length.

Figure 2. Performance curves during the training process for the RAD-A2C over eight random seeds. (a) shows the number
of completed episodes and (b) shows the episode length averaged over the 10 parallelized environments per epoch. The
dark blue line represents the smoothed mean and the shaded region represents the smoothed 10" and 90" percentiles over
the eight random seeds. Episode length decreases and number of completed episodes increases as the model converges to a
useful policy. Training for more than 3000 epochs did not significantly improve performance.
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A.2.1. Standardization

A common technique in DL is to standardize the input data to increase training
stability and speed. This is done by subtracting the mean and dividing by the standard
deviation per feature across a batch of input data. The DRL context does not have easy
access to the full data statistics since it is collected and processed online. We used a
technique proposed by Welford for estimating a running sample mean and variance as
follows [30],

0 —
Ut = Hn + ( n+1n ,un)
Sn41 = Sn+ (0n41 — ) (Ons1 — Png1) ®)
Sni1
Uﬁﬂ — ':f ,

where pg = 09, So = 0. The statistics were updated after each new observation and
then standardization was performed.

B. Information-driven Controller

Information-driven search is an information-theoretic framework for sequential
action selection. This framework endows the controller with the ability to update
its path plan as new observations become available as opposed to relying only on
whether the target has been detected or not [31]. Information is integrated across time by
tracking the posterior probability density of states of interest. This can quickly become
computationally prohibitive and so heuristic methods such as the bootstrap particle filter
(BPF) are employed.

B.1. Bootstrap Particle Filter (BPF)

The BPF is typically used to track a dynamic process over time. It has been proven
that an optimal estimate of the state can be recovered from the posterior state distribution,
however, it is often computationally intractable to track when the state dimension is high
[32]. Thus, methods such as the BPF attempt to approximate the posterior state through
a set of samples, {x;,w;}f\i’”l, often referred to as particles and weights, respectively.
This leads to the approximation,

Ny
P(xps1lyoms1) = Y w10 (Xns1 — Xpyq), (6)

i=1
where P(x,41|Yo.n11) is the marginal posterior, w! 41 is the il particle weight,
x; 41 is the i'" particle state, §(-) is the Dirac Delta function, and N is the number of
particles. At each timestep, the particles are propagated through the process model
and a measurement prediction is generated with the measurement model. The particle

weights are calculated recursively as,

. P(yn+1\x;+1)p(3€;+1|X§1) i

w4 . ‘ w;, ?)
" q(xlr1+1‘xlrlr]/n+1) "

where p(yy11]xi_ ) is the measurement likelihood, p(x!_|x}) is the transition
density, and g(x;,_, ;|x},, yu+1) is an importance density [32]. Particles are drawn from a
user-specified importance density gy. In our implementation, the importance density is
set equal to the prior distribution to reduce the weight update step to the measurement
likelihood and the previous weight:

Wi g < p(Yni |y )Wl 8)
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If a particle has a low probability for a given measurement, this effectively removes
the particle’s contribution to the estimated posterior which can adversely affect state esti-
mation over the trajectory and is known as the degeneracy problem. Particle degeneracy
can be tracked by the following metric to characterize the number of effective particles
at a given time step,

1
N, n = _N. . . 9)
P (i

Particle degeneracy can be alleviated by resampling the particles and reinitializing
the weights when the number of effective particles becomes too low. In our context,
the nuclear source intensity and coordinates are fixed throughout an episode. We
adapt the BPF for parameter estimation with a random walk process model that has
low variance Gaussian noise. The initial particles were sampled uniformly from fixed
intervals as specified in Table 2. Equation 2 and Equation 3 are the measurement model
and likelihood, respectively. The background rate, A;, was considered constant and
known.

Sequential importance resampling is a technique to combat particle degeneracy and
occurs when the number of effective particles drops below a given threshold. We selected
the Srinivasan sampling process (SSP) resampling proposed by Gerber et al. because of
asymptotic convergence of the error variance [33]. Additionally, SSP resampling requires
only O(N,) operations. See [33] and [34] for more details.

B.2. Fisher Information Matrix (FIM)

The FIM is a measure of the information content of a measurement relative to the
measurement model. It was first used in optimal observer motion for bearings-only
tracking by Hammel et al. [35]. In their implementation, the controller selects the action
at each timestep that maximizes the determinant of the FIM (system observability),
which is equivalent to minimizing the area of the uncertainty ellipsoids around the state
estimates. This arises from the connection between the FIM and the Cramér-Rao lower
bound (CRB).

The CRB provides a lower bound on the error covariance of an unbiased estimator
and is the inverse of the FIM [36]. The FIM is the Hessian of the log-likelihood and is
denoted as follows,

Jur1(x) = ~E[ViViln(p(zui1[x))], (10)

where T denotes the transpose. Morelande et al. derived the closed form FIM for
the radiation source localization problem as [5],

VA1) Vg A 41(x)
X) = , 11

]11+1( ) /\n-i-l (x) (11)

where A, (x) is defined in Eq. 2. This results in the following gradient for each
parameter,
oAn 1
6Ls  (xn—xs)*+ (yn — ys)*’
A 2(xy — x5)Z,
Oxs  [(xn —x5)% + (yn — ys)?]
A 2(yn —ys)Zs

Sys  [(on = x5)2+ (yn — ys)?1>
Ristic et al. used the BPF particles at each time step to calculate the FIM as follows,
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Jn+1(xn) ZIn+1 xn w]nr (13)
j=1

due to better performance when the posterior is multi-modal [9]. They applied this
formulation to action selection in the radiation source search in the following manner,

L
Apy1 = arg maxl Y tr(]l(ul))] , (14)
Upp1,L I=n+1

where L is the number of lookahead steps, tr() is the matrix trace, and u,, is the
control vector that determines the detector’s next position.

Helferty et al. proposed to use the trace of the CRB as it is a sum of squares of the
axes of the uncertainty ellipsoid [37]. This is also known as A-optimality in the optimal
experimental design literature [38]. Ristic et al. maximized the trace of the FIM that
corresponds to maximizing the information, however, it is beyond the scope of this
paper to show the relation between these two criteria. This control strategy will result in
the optimal trajectory for minimizing the uncertainty of the estimated quantities given
perfect source information (i.e., low or no measurement error). The source information
in the nuclear source search context is not perfect due to the stochastic nature of nuclear
decay and background radiation. Additionally, the FIM is not well defined for initial
search conditions where the background radiation dominates the signal from the source,
i.e., when the source-detector distance is large and/or the background rate is high.

B.3. Rényi Information Divergence (RID)

Ristic et al. proposed another information-driven search strategy to address the
shortcomings of the FIM-based approach. This approach is based upon the RID, also
known as a-divergence, a general information metric that quantifies the difference be-
tween two probability distributions. In Bayesian estimation, maximizing this difference
corresponds to reducing the uncertainty around the state estimates. The use of RID was
first proposed in the sensor management context by Kreucher et al. [39]. The RID is
defined as,

DulPIIQ) = in | [ ()@ (x)], 5

where « specifies the order. In the limit as & approaches one, the RID approaches
the Kullback-Leibler Divergence [39].

Ristic et al. adapted the RID for action selection in the nuclear source search context
with a BPF [10]. The general flow of the algorithm is to apply an action from the set of
actions to get the next potential detector position, calculate the expected posterior density
for that action over a measurement interval, and then select the action that resulted in the
greatest RID. The particle approximation of the RID is shown in the following equation,

Z 7| x¥n+1
BID (e 12), pxE] ~ o 1 plebom |2ERE

where x*m+1 denotes the potential detector position after taking action u,11, Zo, Z1
is a measurement interval, and z € N. The density p,(z|x“r+1) is approximated after
filtering the latest measurement and particle resampling as,

plx(z|xun+1 waqp | ]un+1) (17)

and p(z|x) results from the particle approximation of the marginal distribution of a
measurement. Like the FIM, the RID can also be computed for L-step planning.


https://doi.org/10.20944/preprints202108.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2021 d0i:10.20944/preprints202108.0018.v1

B.4. Hybrid RID-FIM Controller

We propose a hybrid controller that utilizes either the RID or FIM as metrics for
action selection. This was motivated in part by the empirical observation that the RID
controller would often get stuck oscillating between two positions that were just above
our termination criteria for source-detector distance resulting in incomplete episodes.
The FIM is a poor control metric when there is little information available as is often
the case at the start of a search. The RID is more computationally expensive than the
FIM but provides a principled control method even in low information contexts. Thus,
the RID was used for control at the beginning of each episode until the RID reached a
sufficient threshold, then the metric was switched over to the FIM for the remainder as
shown in Algorithm 1.

Algorithm 1 RID-FIM Controller

Input:{x{], w{) };\]:’71, set RID FLAG to 1, switch threshold #, effective particles threshold

B, measurement interval [Z, Z]
Receive init. measurement, z(, perform prediction and filtering of particles
while episode not terminated do
if RID FLAG then
Calculate RID according to 16 over [Zy, Z1]
else
Calculate FIM according to 13
end if
Select action that maximizes information metric
Receive z,, 11, perform prediction and filtering of particles
if No;r < B+ Np then
Resample and reweight particles
end if
end while

We decided on myopic (one-step lookahead) planning due to the exponential
increase in computational cost inherent to both metric calculations. Additionally, many
source search scenarios will have high uncertainty in the state estimates for many
timesteps so planning far in advance is not advantageous. Myopic search is often sub-
optimal but is a fair tradeoff when the problem dynamics are stable [39]. The parameter
values for the RID-FIM, as well as the BPF, are detailed in Table 2. All parameters were
selected by a parameter sweep over a set of 100 randomly sampled environments where
the selection criteria was shortest average episode length and most episodes completed.

Parameter Value
Np 6,000
Ny 6,000
Process noise XY 15 cps
Process noise Zg 0.01m
Prior XY [0,22] m
Prior Z [100,1,000] cps
Resampling threshold, 1.0
Lookahead, L 1
Order, « 0.6
Switch threshold, n 0.36
Meas. interval [Z, Z1] +75 cps

Table 2. Parameter values for the BPF and RID-FIM.
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B.5. Posterior Cramér-Rao Lower Bound (PCRB)

The BPF is a biased estimator as it only uses a finite number of particles. The
PCRB provides a lower bound on the root-mean-square error (RMSE) performance for a
biased estimator. Tichavsky proposed the PCRB for discrete-time nonlinear filtering [40],
however, we follow a similar formulation found in Bergman’s dissertation [41]. The
PCRB is determined recursively in the following manner,

Pyd ==7'A7! / Vido () VT Ao (x)dx,
X (18)

Pn—j”nH = Qu+Ryyq —ST (Pn_‘i +Vu)71S,,

where the terms are Sy, V;, and Qj, are all the same inverse process noise covariance
matrix, denoted as £~ 1. This arises from the fact that our process model is a random
walk with Gaussian noise for each state. The term R, is the FIM defined in Eq. 10. The
prior, Py, is a result of the uniform distribution of the particles where A is a diagonal
matrix of the uniform probabilities for each parameter. More details of the derivation of
the PCRB and prior can be found in Bergman’s dissertation in Theorem 4.5 and Section
7.3, respectively [41].

We average the RMSE and PCRB over the Monte Carlo evaluations resulting in the
following formulation,

2 K

1 .
2| 1 o tr(Ph), (19)

i=1 i=1

where K is the total number of episodes and 2 denotes that the inequality only holds
approximately for finite K [41]. The PCRB provides an indicator of the suboptimality of
an estimator and so we use it to directly compare the performance of the A2C with the
RID-FIM. This is accomplished by evaluating the A2C with the exact same BPF estimator
used with the RID-FIM for the source location state estimates. Not only can the estimator
RMSE be compared against the PCRB, but the PCRBs resulting from both controllers
can be compared as well. This will serve as a proxy for the quality of the control path
generated by each controller.

C. Gradient Search

We use the simple GS algorithm implemented by Liu et al. [14]. GS relies on
sampling the gradient of the radiation field for each search direction at each timestep.
This is not an efficient algorithm as the detector must make D moves per action selection
but serves as a useful baseline for performance comparison. The action selection is made
stochastic by sampling from a multinomial distribution, denoted multi(n,p), over actions
with probabilities proportional to the softmax of the gradients to avoid the trapping of
local optima. GS is summarized by the following equation,

16 16
ayy1 ~ multi(|U], softmax ([~ Znt1 2 %Zn41

7 20
q oup q Oupy (20)

where u is the detector position after action 7, ¢ is the softmax function, and g
is a temperature parameter. The temperature parameter was set at 0.0042 and was
determined via a parameter sweep over a set of 100 randomly sampled environments
where the selection criteria was shortest average episode length and most episodes
completed.
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