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Abstract: Rapid search and localization for nuclear sources can be an important aspect in pre-1

venting human harm from illicit material in dirty bombs or from contamination. In the case2

of a single mobile radiation detector, there are numerous challenges to overcome such as weak3

source intensity, multiple sources, background radiation, and the presence of obstructions, i.e., a4

non-convex environment. In this work, we investigate the sequential decision making capability5

of deep reinforcement learning in the nuclear source search context. A novel neural network6

architecture (RAD-A2C) based on the actor critic (A2C) framework and a particle filter gated7

recurrent unit for localization is proposed. Performance is studied in a randomized 20× 20 m8

convex and non-convex environment across a range of signal-to-noise ratio (SNR)s for a single9

detector and single source. RAD-A2C performance is compared to both an information-driven10

controller that uses a bootstrap particle filter and to a gradient search (GS) algorithm. We find11

that the RAD-A2C has comparable performance to the information-driven controller across SNR12

in a convex environment and at lower computational complexity per action. The RAD-A2C far13

outperforms the GS algorithm in the non-convex environment with greater than 95% median14

completion rate for up to seven obstructions.15

Keywords: deep reinforcement learning; source search and localization; active search; gamma16

radiation; source parameter estimation; sequential decision making; non-convex environment17

1. Introduction18

The advancement of nuclear technology has brought the benefits of energy produc-19

tion and medical applications, but also the risks associated with exposure to radiation20

[1]. Radioactive materials can be used for dirty bombs, or might be diverted from its21

intended use. Effective detection when these types of materials are present in the envi-22

ronment is of the utmost importance and measures need to be in place to rapidly locate23

a source of radiation in an exposure event to limit human harm [2].24

Detection, localization, and identification are based upon the measured gamma-ray25

spectrum from a radiation detector. Radioactive sources decay at a certain rate which,26

with the amount of material, gives an activity, often measured in disintegrations per27

second or Becquerels [bq]. Most decays leave the resulting nucleus in an excited state,28

which may lose energy by emitting specific gamma rays. Localization methods in the29

current work rely upon the intensity [cps] of the gamma photon radiation measured30

by scintillation detectors composed of materials such as sodium iodide (NaI) [3]. The31

number of counts per second recorded by a detector is related to the total photons emitted32

per second through a scaling factor determined by detector characteristics. It is common33

to approximate each detector measurement as being drawn from a Poisson distribution34

because the success probability of each count is small and constant [3]. The inverse35

square relationship, 1
r2 , is a useful approximation to describe the measured intensity of36

the radiation as a function of the distance between the detector and and source, r. The37
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size of the detector also affects count rates, with a larger detector having a larger solid38

angle. This nonlinear relationship paired with the probabilistic nature of gamma-ray39

emission and background radiation from the environment leads to ambiguity in the40

estimation of a source’s location.41

Figure 1. An autonomous mobile robot operating in a non-convex environment. The unshielded
gamma source emits gamma radiation isotropically. Obstructions (blue cubes) attenuate the
gamma radiation signal and block the robot’s path.

In the case of a single mobile detector, there are numerous challenges to overcome.42

Detectors deployed to smaller autonomous systems such as drones or robots have43

a smaller surface area and volume resulting in poorer counting statistics per dwell44

time. Common terrestrial materials such as soil and granite contain naturally occurring45

radioactive materials (NORM) that can contribute to a spatially varying background rate46

[3]. Far distances, shielding with materials such as lead, and the presence of obstructions,47

i.e., a non-convex environment, can significantly attenuate or block the signal from a48

radioactive source. Further challenges arise with multiple or weak sources. Given the49

high variation in these variables, the development of a generalizable algorithm with50

minimal priors becomes quite difficult. Additionally, algorithms for localization and51

search need to be computationally efficient due to energy and time constraints. Figure 152

shows an example illustration of a mobile robot performing active nuclear source search53

in a non-convex environment.54

1.1. Machine Learning (ML)55

ML is broadly concerned with the paradigm of computers learning how to complete56

tasks from data. Reinforcement learning (RL) is a subset of ML focused on developing a57

control policy that maximizes cumulative reward in an environment. Deep learning (DL)58

is another subset of ML with an emphasis on learning a function of interest using data.59

A key difference between RL and other subsets of ML is that learning is dependent on60

the data that is gathered by the policy thereby directly impacting future learning. The61

intersection of RL and DL has resulted in a framework called Deep reinforcement learning62

(DRL). DRL uses deep neural networks to learn a control policy and approximate state63

values through trial and error in an environment. While training of these networks is64

computationally intensive, once the weights are learned, inference (the application of65

a trained ML model) can be performed at lower computational cost. In this paper, we66

investigate a branch of DRL known as stochastic, model-free, on-policy gradients and67

assess its performance in the task of control in the radiation source search domain.68

DRL has far surpassed human expertise in a myriad of other tasks, for example,69

the board game Go, which has a state space of 10174 [4]. Since these algorithms learn70

strictly through environmental interaction, they can discover and develop heuristics and71
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action trajectories that humans might never have considered in their algorithm design.72

Radiation source search is a well studied problem, however, data-driven approaches73

have received less attention, in part because of the high variability mentioned above.74

This paper demonstrates that DRL can learn an effective policy that generalizes across a75

range of scenarios where background rate, source strength and location, and the number76

of obstructions are varied.77

1.2. Related Work78

Many solutions have been proposed for nuclear source search and localization79

across a broad range of scenarios and radiation sensor modalities. These methods are80

generally limited to the assumptions made about the problem such as the background81

rate, mobility of the source, shielding presence, and knowledge of obstruction layout82

and composition. Morelande et al. present a maximum likelihood estimation approach83

and a Bayesian approach to multi-source localization using multiple fixed detectors in84

an unobstructed environment [5]. Hite et al. also use a Bayesian approach with Markov85

chain Monte Carlo to localize a single point source in a cluttered urban environment86

by modeling the radiation attenuation properties of different materials [6]. Hellfeld et87

al. focused on a single detector in 3D space moving along a pre-defined path for single88

and multiple weak sources [7]. They utilized an optimization framework with sparsity89

regularization to estimate the source activity and coordinates.90

There is great interest in autonomous search capabilities for source search to limit91

human exposure to harmful radiation. Cortez et al. proposed and experimentally tested92

a robot that used variable velocity uniform search in a single source scenario [8]. Ristic93

et al. proposed three different formulations of information-driven search with Bayesian94

estimation. An information-driven search algorithm selects actions that maximize the95

available information for its estimates of user-specified quantities at each timestep. The96

first method utilized the Fisher information matrix and a particle filter for a single source97

and single detector in an open area with constant background [9]. The second and third98

method both used the Renyi information divergence metric and particle filter to control99

a detector/detectors in open/cluttered environments with multiple sources, respectively100

[10],[11]. In the cluttered environment, the layout was considered to be known before101

the start of the search. Anderson et al. considered a single mobile detector used for102

locating multiple sources in a cluttered environment through an optimization based on103

the Fisher information and travel costs [12]. The obstruction attenuation and nuclear104

decay models were specified by hand.105

RL and DRL have also been applied to the control of single robots. Landgren used a106

multi-armed bandit approach to control nuclear source search in an indoor environment107

[13]. This was implemented on a Turtlebot3 and used to find multiple radioactive sources108

in a lab through radiation field sampling. Liu et al. used double Q-learning to control109

a single detector search for a single radioactive source with a varying sized wall in110

simulation [14]. The model performed well when the test environment matched its111

training set but did not generalize when new geometries were introduced and had to be112

retrained. This approach is the most similar to the one used in this research.113

In contrast to the majority of the methods mentioned above, our algorithm does114

not directly rely on any hard-coded modeling assumptions for decision making. This115

gives greater flexibility to our approach and allows the opportunity for generalization116

to a greater variety of situations. For example, our approach was only trained on up117

to five obstructions in an environment at any one time but can easily operate when118

greater than five obstructions are present. Additionally, it would be relatively simple to119

retrain the agent to account for a moving source or novel obstruction types and layouts,120

among other things. This comes with the caveat that there is a heavy reliance upon the121

assumptions made in modeling an environment that are likely to fail in capturing the122

intricacies of reality (reality gap). This is an area of intense interest in the DRL research123

space [15].124
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1.3. Contributions125

The main contributions of this paper are an on-policy, model-free DRL approach126

to radiation source search, a novel neural network architecture, the RAD-A2C, and127

an open-source radiation simulation for convex and non-convex environments. Our128

approach will be evaluated in the context of single detector search for a single radiation129

source in a simulated 2D environment with variable background radiation, variable130

source intensity and location, variable detector starting position, and variable number of131

obstructions. The RAD-A2C will be compared against a modified information-driven132

search algorithm previously proposed in the nuclear source search literature and a133

gradient search algorithm in a convex environment across signal-to-noise ratio (SNR)s. We134

will examine the effect of obstructions on the RAD-A2C performance in a non-convex135

environment with comparison to a gradient search algorithm across SNRs.136

2. Materials and Methods137

2.1. Radiation Source Search Environment138

The radiation source search environment was fundamental to the training of the139

policy. The development of the environment required many careful design decisions140

in an attempt to provide a useful proof of concept for the efficacy of DRL in practical141

radiation source search contexts. In the remainder of the paper, we assume that a gamma142

radiation source has already been detected through some other means and the objective143

is to now locate it. We also assume an isotropic detector and a constant background rate144

per search. An episode is defined to be a finite sequence of observations, actions, and145

rewards in an environment.146

2.1.1. Gamma Radiation Model147

Gamma radiation measured by a detector typically comes in two configurations, the148

total gamma-ray counts or the gamma-ray counts in specific peaks. The full spectrum is149

more information rich as radiation sources have identifiable photo-peaks but is more150

complex and computationally expensive to simulate. Thus, our localization and search151

approach uses the gross counts across the energy bins. Cesium-137 was selected as152

the source of interest since it is commonly used in industry applications and is fairly153

monoenergetic [16]. We denote the parameter vector of interest as x = [Is, xs, ys], where154

xs, ys are the source coordinates in [m] and Is is the source intensity in counts per second155

[cps] at a source-detector distance of 1 m. These quantities are assumed to be fixed156

for the duration of an episode. An observation at each timestep, n, is denoted as on,157

and consists of the measured counts, zn, detector position denoted [xn, yn] [m], and 8158

obstruction range sensor measurements.159

The background radiation rate is a constant λb [cps]. The following model is used160

to approximate the mean rate of radiation counts measurements in an unobstructed161

environment (convex),162

λn(x) =
IsεA∆t

4π[(xs − xn)2 + (ys − yn)2]
+ λb, (1)

where A, ε, and ∆t, are the detector surface area [m2], the detector intrinsic efficiency,163

and the dwell time [s], respectively. The detector intrinsic efficiency is assumed to be one164

and we consider a unit dwell time. The detector is assumed to be a cylinder with surface165

area equal to 4π and isotropic for ease of computation. This results in the following166

binary attenuation model when the detector does and does not have line-of-sight (LOS):167

λn(x) =

{ Is
(xs−xn)2+(ys−yn)2 + λb LOS,

λb NLOS.
(2)

Thus, the measurement likelihood function when the detector has LOS is defined as168
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p(zn|θ) = P(zn; λn(x)) =
e−λn(x)λn(x)zn

z!
. (3)

We define the signal-to-noise ratio (SNR) as,169

SNR =
Is/D2

init + λb

λb
, (4)

where Dinit is the initial Euclidean distance between the source and detector posi-170

tions. Equation (4) was also used for the non-convex environments to maintain consis-171

tency even though it is not strictly true. Figure 2 shows a randomly generated episode172

for convex (2a) and non-convex (2b) environments. The environment was implemented173

using the open-source Gym interface developed by OpenAI [17].174
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(a) Convex environment.
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(b) Non-convex environment.
Figure 2. A sample of the starting conditions for (a) convex and (b) non-convex environment. In both environment types,
the red star is the source position, the black circle is the detector position, and the green triangle is the agent’s prediction of
source position. In the non-convex environment, the blue rectangles are obstructions that block line of sight between the
source and detector. The initial source prediction is in the obstruction as the agent does not have any prior information
about the environment.

2.1.2. Partial Observability175

In the context of the radiation search scenario where measurements are noisy and176

uncertain, it is more useful to describe the partially observable Markov decision process177

(POMDP). The finite POMDP is defined by the 6-tuple 〈S ,A, T ,R, Ω,O〉 at each time178

step, n. S ,A,R,O are the states, actions, rewards, and observation, respectively. The179

probability distributions for observation, Ω, and transition, T , are considered fixed180

and unknown. An observation is a function of the true state but is not necessarily181

representative of the true state due to the stochastic nature of the environment.182

A history is a sequence of observations up to timestep n is defined as Hn =183

(o0, o1, ..., on−1, on). A successful policy needs to consider Hn to inform its decisions184

since a single observation does not necessarily uniquely identify the current state. This185

can be implemented directly by concatenation of all previous observations with the186

current observation input or through the use of the hidden state, hn, of recurrent neural187

networks. The function M(Hn) provides a sufficient statistic of the past history and188

serves as the basis for the agent’s decision making [18]. This allows the policy to be189
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reformulated as π(an+1|hn) = p(an+1, M(Hn); θ) where θ is some parameterization and190

an+1 is the next action.191

2.1.3. Reward Function192

The reward function defines the objective of the DRL algorithm and completely193

determines what will be learned from the environment. Reward is only utilized for the194

update of the weights during the optimization phase and does not directly factor into195

the DRL agent’s decision making during an episode. The reward function for the convex196

and non-convex environment is as follows,197

rn+1 =

{
0.1 if ψn+1 < min ψn,
−0.5 ∗ ψn+1

Dsearch
otherwise.

(5)

Here, the source-detector shortest path distance is defined as ψ, and Dsearch defines198

the largest Euclidean distance between vertices of the search area. The shortest path199

distance is essential for the non-convex environment and becomes the Euclidean distance200

when there is LOS. The normalization factor, Dsearch, in the negative reward provides an201

implicit boundary to the search area. This reward scheme incentivizes the DRL agent to202

find the source in the fewest actions possible as the negative reward is weighted more203

heavily. The reward magnitudes were selected so that standardization was not necessary204

during the training process as mean shifting of the reward can adversely affect training205

[19].206

The reward function was designed to provide greater feedback for the quality of an207

action selected by the DRL agent in contrast to only constant rewards. For example, in208

the negative reward case, if the DRL agent initially takes actions that increase D above209

the previous closest distance for several timesteps and then starts taking actions that210

reduce D, the negative reward will be reduced as it has started taking more productive211

actions. This distance-based reward function gives the DRL agent a more informative212

reward signal per episode during the learning process. Figure 3 shows an episode of the213

DRL agent operating within the environment, the radiation measurements it observes,214

and the reward signal it receives.215

(a) Detector path. (b) Radiation measurements. (c) Cumulative reward.
Figure 3. Key data streams used by the DRL agent in training and inference. (a) shows the detector position at each timestep
as it moves closer to the source. (b) shows the radiation counts measurements at each timestep corresponding with the
detector position. (c) shows the cumulative reward signal that the DRL agent uses during training. The reward signal is
only used for weight updates after all episodes in an epoch have been completed.

2.1.4. Configuration216

Detector step size was fixed at 1 m/sample and the movement direction in radians217

was limited to the set, U = {i ∗ π
4 : i ∈ [0, 7]}. The DRL implementation can easily be218
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Parameter Value

Area Dimensions 20× 20 m
Src., det. initial positions [-20, 20] m

Src. rate [1× 102, 1× 103] cps
Background rate [10, 50] cps

State space 11
Action space 8

Max. search time 120 samples
Velocity 1 m/sample

Termination dist. 1.1 m
Min. src.-det. initial dist. 10 m
Number of obstructions [1,5]

Obstruction dim. [2,5] m

Table 1. Radiation source simulation for convex and non-convex environment parameters. The
brackets indicate an interval that was uniformly sampled on a per episode basis. Src. and det. are
abbreviations for source and detector, respectively.

adapted to handle more discrete directions and variable step sizes or even continuous219

versions of these quantities. These two constraints were made to limit the computa-220

tional requirements for the comparison algorithm. Maximum episode length was set221

at 120 samples to ensure ample opportunity for the policy to explore the environment,222

especially in the non-convex case. Episodes were considered completed if the detector223

came within 1.1 m of the source or a failure if the number of samples reached the maxi-224

mum episode length. The termination distance was selected to cover a range of closest225

approaches as the detector movement directions and step size are fixed.226

The state space has eleven dimensions that include eight detector-obstruction range227

measurements for each movement direction. This modeled some range sensing modality228

such as an ultrasonic or optical sensor. The maximum range was selected to be 1.1229

m to allow the controller to sense obstructions within its movement step size. The230

range measurements were normalized to the interval [0, 1], where 0 corresponds to no231

obstruction within range of the detector. If the policy selected an action that moved232

the detector within the boundaries of an obstruction, then the detector location was233

unchanged for that sample.234

2.2. Proximal Policy Optimization (PPO)235

On policy, model-free DRL methods require that the agent learns a policy from236

its episodic experiences throughout training, whereas model-based methods focus on237

using a learned or given model to plan action selection. On policy methods are worse in238

terms of sample efficiency than Q-learning because learning takes place in an episodic239

fashion, i.e., the policy is updated on a per-episode basis. The benefit being that the240

agent directly optimizes policy parameters through the maximization of the reward241

signal. The decision to use model-free policy gradients was motivated by the stability242

and ease of hyperparameter tuning during training. Specifically, we used a variant of243

the actor-critic (A2C) framework called PPO. The actor, πθ , and critic, Vφ, are the two244

main components of the A2C where θ, φ denote neural network parameterizations. This245

will be covered in more detail in Section 2.3.246

Schulman et al. propose the following generalized advantage estimator (GAE) with247

parameters γ, λ to control the bias-variance tradeoff,248

ÂGAE(γ,λ)
n =

N−1

∑
n′=0

(λγ)n′δn+n′ , (6)
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where δ is the temporal difference error as defined in [20].This is an exponentially-249

weighted average of the temporal differences error where γ determines the scaling of the250

value function that adds bias when γ < 1 and λ that adds bias when λ < 1 if the value251

function is inaccurate [21]. This leaves the final A2C gradient used in our algorithm as,252

∇θ J(πθ) = EH [
N−1

∑
n=0
∇θlog πθ(an+1|hn)ÂGAE(γ,λ)

n ]. (7)

The value function parameters are updated with stochastic gradient descent on253

the mean square error (MSE) loss between the value function estimate and the empirical254

returns,255

φk = arg min
φ

Ehn ,R̂n
[(Vφ(hn)− R̂n)

2]. (8)

A common issue in policy gradient methods is the divergence or collapse of policy256

performance after a parameter update step. This can prevent the policy from ever257

converging to the desired behavior or result in high sample inefficiency as the policy258

rectifies the performance decrease. Schulman et al. proposed the PPO algorithm as a259

principled optimization procedure to ensure that each parameter update stays within260

a trust-region of the previous parameter iterate [22]. We chose to use the PPO-Clip261

implementation of the trust-region because of the strong performance across a variety of262

tasks, stability, and ease of hyperparameter tuning as shown in [22] and [23].263

The PPO-Clip objective is formulated as,264

L(θk+1, θk) = EH[En[min(rn(θk+1, θk)Ân, clip(rn(θk+1, θk), 1− ε, 1 + ε)Ân)]]. (9)

Here, rn(θk+1, θk) =
πθk+1

(an+1|hn)

πθk
(an+1|hn)

, denotes the probability ratio of the previous265

policy iterate to the proposed policy iterate and ε is the clipping parameter that enforces266

a hard bound on how much the latest policy iterate can change in probability space267

reducing the chance of a detrimental policy update. A further regularization trick is268

early-stopping based on the approximate Kullback-Leibler divergence (AKLD). The AKLD is269

a measure of the difference between two probability distributions and the approximation270

is the inverse of rn(θk+1, θk) in log space. If the AKLD between the current and previous271

iterate over a batch of histories exceeds a user-defined threshold, then the parameter272

updates over that batch of histories are skipped.273

2.3. RAD-A2C274

2.3.1. Gated Recurrent Unit (GRU)275

The GRU architecture proposed by Cho et al. is a subset of the recurrent neural276

network (RNN)s family that use gates to address the vanishing and exploding gradients277

encountered when using backpropagation-through-time and increase the network’s278

ability to establish dependencies across long temporal gaps [24]. The following set of279

equations describe the GRU operations,280

zn+1 = σ(WT
xrxn+1 + WT

hrhn + bh),

rn+1 = σ(WT
xzxn+1 + WT

hzhn + bh),

h̃n+1 = tanh(WT
xhxn+1 + WT

hh(rn+1 � hn) + bh),

hn+1 = (1− zn+1)� hn + zn+1h̃n+1,

(10)

where σ(·) is the sigmoid activation function and tanh(·) is the hyperbolic tangent281

activation function. The GRU has more parameters than the standard RNN but the huge282

gain is in training stability and the increased range for sequence relationships.283
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Figure 4 shows the design of a single GRU cell taken from Olah [25]. Each box284

represents a weight matrix and activation function and the circles represent mathemat-285

ical operations. The conjoining lines represent the concatenation of the quantity and286

diverging lines represent the copying. The crux of the reset (rn) and update (zn) gates287

are to modify the candidate hidden state (h̃n), which then becomes the output hidden288

state (hn). The reset gate determines how much of the previous hidden state to factor289

into the new hidden state and the update gate determines the convex combination of the290

previous hidden state and the candidate hidden state. This cell is a drop-in replacement291

for the hidden state hn found in Figure 4a.292

(a) RNN sequential inputs. (b) GRU architecture.
Figure 4. (a) shows the input flow for an RNN where each xn is fed to the network sequentially. The learned weight matrices
Who, Wxi, Whh are the same across all sequence steps so the only changes are the input, output and hidden state. The hn

represents the hidden state which is passed between sequence steps and is combined with the input to carry information
across time. The output, yn, is mapped from the hidden state. (b) shows the GRU architecture, a variation on the hn in
(a). Each box represents a weight matrix and activation function and the circles represent mathematical operations. The
conjoining lines represent concatenation of the quantity and diverging lines represent the copying. The crux of the reset (rn)
and update (zn) gates are to modify the candidate hidden state (h̃n) which then becomes the output hidden state (hn) [25].

2.3.2. Architecture293

The RAD-A2C is composed of a particle filter gated recurrent unit (PFGRU) proposed294

by Ma et. al [26] (Appendix A.1), one GRU module to encode the inputs over time for295

action selection, and three linear layers. At each timestep, the observation is propagated296

to both the PFGRU and the A2C modules. The PFGRU uses a linear layer to regress its297

mean “particles” onto a source location, which is concatenated with the observation and298

fed into the A2C. The Actor layer regresses the GRU hidden state onto a multinomial299

distribution over actions using a softmax function. The Critic layer regresses the hidden300

state onto a value prediction. This value prediction is only necessary for the training301

phase and has no direct impact during inference. Figure 5 shows the RAD-A2C archi-302

tecture and the flow of information through the system. The dotted lines indicate the303

path of the error gradients for backpropagation during training. Appendix A.2 covers304

implementation and training details and Table 1 shows the selected hyperparameters.305

The code is available at https://github.com/peproctor/radiation_ppo.306
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Figure 5. RAD-A2C source search architecture where quantities in the parenthesis denote the dimensions. The PFGRU
provides a location prediction, denoted (x̂s, ŷs), at each timestep, which is concatenated with the observation and fed into
the A2C. The GRU module encodes the inputs over time in its hidden state and the Actor layer selects an action from this
hidden state. The Critic layer predicts the expected return from the hidden state and is only needed during training. The
dotted lines indicate the gradient flow during backpropagation.

The RAD-A2C is easily extendible to other source search scenarios such as a 3D307

environment, moving sources, using more advanced radiation transport simulators, and308

selection of detector step size and dwell time. These variations would only require a309

change in the dimensions of the input and output of the model, a potential increase in310

the hidden state size, and an appropriate update of the simulation environment/reward311

function. This is a major advantage of DRL as compared to human-specified algorithms.312

The downside of DRL is the long and computationally intense training costs and sensitiv-313

ity to hyperparameters. A weakness of our RAD-A2C implementation is that the source314

intensity is not predicted by the PFGRU as this would require prior knowledge about the315

upper limit of the intensity. We opted for scenario generalization by performing search316

without a source intensity estimate. While source intensity is of interest in radiation317

source localization scenarios, an additional estimator such as least squares fitting could318

be used in conjunction with our model for this end.319

2.4. Evaluation320

Appendix B details the information-driven control method (RID-FIM) and the321

gradient search (GS) algorithms used as comparison against our method. All search322

methods were evaluated across a range of SNRs in the convex environment. Only323

the RAD-A2C and GS were compared in the non-convex environment as the bootstrap324

particle filter (BPF) measurement and process model do not account for obstructions.325

The SNRs were broadly grouped into “low” (1.0− 1.2), “medium” (1.2− 1.6), and326

“high” (1.6− 2.0) intervals. For each SNR, 1, 000 different environments were uniformly327

randomly sampled to create a fixed test. Monte Carlo simulations were performed for328

all experiments to determine the average performance of the algorithms. Each algorithm329

was run for 100 episodes per environment.330

2.4.1. Metrics331

Weighted median completed episode length and median percent of completed332

episodes served as the main performance metrics. The weighted median was used for333

the completed episode length with a weighting factor between 1− 100, determined334

by the number of Monte Carlo simulations that were completed by the agent per en-335

vironment. The completed episode length corresponds to the number of radiation336
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measurements required to come within the episode termination distance of the source337

before the maximum episode length is reached. This quantifies the agent’s effectiveness338

in incorporating the measurements to inform exploration of the search area. Percent339

of episodes completed is the more important metric as the priority in radiation source340

search is mission completion and this works in tandem with the completed episode341

length to characterize the agent’s performance. An ideal agent would have a low median342

episode length and a high median percent of episodes completed.343

2.4.2. Experiments344

Three sets of experiments were run in the radiation source search environment to345

assess the performance characteristics of our proposed RAD-A2C architecture. The first346

experiment focused on the comparison of all of the search algorithms. The second exper-347

iment assessed the RID-FIM and A2C action selection quality with BPF performance as348

a proxy. The final experiment looked at the performance of the GS and RAD-A2C in a349

non-convex environment where the number of obstructions was varied.350

3. Results351

3.1. Convex Environment352

3.1.1. Detector Path Examples353

Two detector paths for the RAD-A2C and the RID-FIM in two different SNR config-354

urations of the convex environment are shown in Figures 6a, 6b. The source prediction355

marker was omitted to reduce clutter. Both algorithms must explore the area as they356

search for radiation signal above the noise floor. In the high SNR configuration, both357

algorithms make sub-optimal decisions that move the detector away from the source,358

a result of the probabilistic nature of the measurement process. However, they both359

quickly adjust and successfully find the radiation source. The detector starts much360

further from the source in the low SNR configuration and the controllers select many361

more actions before picking up any signal. In both scenarios, the RID-FIM makes more362

diagonal movements relative to the RAD-A2C.363
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(a) High SNR configuration.
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(b) Low SNR configuration.
Figure 6. Two detector paths for the RAD-A2C and the RID-FIM in high and low SNR configurations of the convex
environment overlayed on a single plot. The black square denotes the detector starting position and the red star represents
the radiation source. (a) shows a low SNR configuration and (b) shows a high SNR configuration. In both cases, the
stochastic nature of gamma radiation measurement results in the control algorithms taking sub-optimal actions before the
source could be located.
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3.2. Performance364

Box plots for the completed episode percentage and completed episode length for365

all methods in the convex environment are found in Figures 7a and 7b, respectively. The366

median is denoted in red, the boxes range from the first to the third quartile and the367

whiskers extend to the 2.5th and 97.5th percentiles. GS achieved the shortest episode368

completion length for all experiments at high SNR but performance decreased swiftly369

at the lower SNR levels. The RID-FIM had a consistent performance with tight boxes370

for both metrics at all SNRs. The RAD-A2C was the only algorithm to maintain 100%371

completion for all SNRs with the tradeoff being the longest median episode length for372

all but one of the SNRs. Figure 8 shows the relationship between median episode length373

to median episode completion. Top-performing search algorithms are located on the far374

right of the plot and ideally near the bottom.375
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(a) Completed episode percentage.
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(b) Completed episode length.
Figure 7. Box plots for the completed episode percentage and completed episode length against SNR in the convex
environment. The median is denoted in red, the boxes range from the first to the third quartile and the whiskers extend
to the 2.5th and 97.5th percentiles. Figure 7b shows the RID-FIM consistently found the source in a short amount of time
even as SNR decreased. Figure 7a shows the RAD-A2C was the only method that completed 100% of the episodes. GS
performance sharply declined for lower SNRs.
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Figure 8. Median completed episode length against median completion rate. The marker shapes denote the SNR level and
the color denotes the search method. An ideal search algorithm would be located in the bottom right of the plot for all the
SNRs. GS has the best performance at high SNR due to the strong radiation field but also uses seven more measurements
per action selection than the other methods.
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3.3. BPF Comparison376

The RID-FIM and A2C controller are compared directly by replacing the PFGRU377

in the RAD-A2C with the BPF. This new system will be denoted as BPF-A2C in the378

following plots. Swapping in the BPF for the PFGRU facilitates in-depth analysis of the379

controllers through the lens of the BPF performance. The estimator performance depends380

entirely on the quality of action selection throughout an episode as this determines381

what information the estimates will be based on. Thus, we compare the RMSE for the382

Euclidean distance between the actual and predicted source location at each timestep for383

three different episode completion lengths across SNR.384

Figures 9, 10, and 11, show the RMSE and posterior Cramér-Rao lower bound (PCRB)385

for the RID-FIM and the BPF-A2C for three different completed episode lengths across386

SNRs. The PCRB serves as a proxy for the sub-optimality of the controllers because of387

the use of the same estimator (see Appendix B.5). Each plot is averaged over at least 200388

different episodes and at least 700 total runs. An episode was only considered for this389

analysis if the completed episode length was the same for both algorithms in the set of390

the Monte Carlo runs for that episode. This ensured that RMSEs and PCRBs were only391

averaged over the same set of episodes.392

These specific completed episode lengths were chosen to highlight a variation in393

estimator performance that was observed across completed episode lengths ranging394

from 10− 60 samples and SNR levels. The RMSE for the RID-FIM is lower or equal to the395

BPF-A2C at a completed episode length of 17 across SNR. This changes for a completed396

episode length of 20 where the RID-FIM RMSE is only lower than the BPF-A2C at the397

lowest SNR. For the completed episode length of 28, the BPF-A2C now has a lower398

RMSE than the RID-FIM for all SNRs. In all of the plots, the PCRB for the BPF-A2C is399

slightly lower or equal to the PCRB for the RID-FIM. The PCRB decreases at a faster rate400

for the high SNR compared to the low SNR. Estimator RMSE consistently approaches401

the PCRB by the end of an episode. The RMSE initially increased for the high SNR in402

direct relation with the completed episode length in all the RMSE plots shown.403
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(a) Low.
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(b) Medium.
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(c) High.
Figure 9. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 17. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged
over at least 200 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a
lower RMSE than the BPF-A2C for the low and medium SNR but the RID-FIM’s action selection was solely dependent on
potentially spurious BPF state estimates, which caused the BPF-A2C to match the RID-FIM performance at the high SNR.
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(a) Low.
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(b) Medium.
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Figure 10. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 20. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged over
at least 400 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The RID-FIM has a lower
RMSE than the BPF-A2C for the low SNR but the RID-FIM’s action selection was solely dependent on potentially spurious
BPF state estimates, which caused the BPF-A2C to outperform the RID-FIM at medium and high.
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(a) Low.
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(b) Medium.
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Figure 11. Comparison of the Monte Carlo RMSE for BPF estimation of the source location at each timestep for a completed
episode length of 28. Each plot contains the BPF PCRB and RMSE for the RID-FIM and BPF-A2C controllers averaged over
at least 650 different episodes. (a) is at low SNR, (b) is at medium SNR, and (c) is at high SNR. The BPF-A2C has a lower
RMSE than then RID-FIM when the completed episode length was longer due to the RID-FIM’s action selection dependence
on potentially spurious BPF state estimates.
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3.4. Non-convex Environment404

3.4.1. Detector Path Examples405

Two detector paths for the RAD-A2C and the GS in two non-convex environments406

with three and seven obstructions are shown in Figures 12a and 12b, respectively. The407

source prediction marker was omitted to reduce clutter. The GS takes many more408

samples to find a radiation gradient in the three obstruction environment but eventually409

finds the source. Gradient information is extremely sparse in the seven obstruction410

environment and thus the GS only moves randomly. The RAD-A2C can avoid the411

obstructions and find the source in both situations, even moving diagonally between412

two obstructions in Figure 12b. As in the convex environment, the majority of the413

RAD-A2C movements are in the cardinal directions.414
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(a) Three obstructions.
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(b) Seven obstructions.
Figure 12. Two detector paths for the RAD-A2C and the GS overlayed on a single plot for the non-convex environment. (a)
shows the three obstruction environment and (b) shows the seven obstruction environment. The black square denotes the
detector starting position, the blue rectangles represent obstructions that block radiation propagation, and the red star is the
radiation source. Both algorithms must explore the area as they search for radiation signal above the noise floor.

3.5. Performance415

Box plots for the episode completion percentage and completed episode length416

against SNR for both methods in the non-convex environment are found in Figures 13417

and 14, respectively. Figures 13a and 14a are results with one obstruction, Figures 13b418

and 14b are results with three obstructions, Figures 13c and 14c are results with five419

obstructions, and Figures 13d and 14d are results with seven obstructions. The median420

is denoted in red, the boxes range from the first to the third quartile and the whiskers421

extend to the 2.5th and 97.5th percentiles.422

Across obstruction number, the RAD-A2C maintains above 95% episode completion423

even at low SNR. The distribution of the RAD-A2C episode completion gets larger as424

the number of obstructions increases. GS has > 85% episode completion when there425

are less than 7 obstructions at high SNR but sees a sharp decrease in performance as426

the SNR level decreases. Even at high SNR, GS only completes 77% of episodes when427

7 obstructions are present. GS also has significant spread in the first and third quartile428

for most of the completed episode non-convex experiments. The RAD-A2C median429

for completed episode length increases by approximately 10 samples from a single430
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obstruction to seven obstructions. The first and third quartiles for completed episode431

length also increase as the number of obstructions increase.432
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(b) Three obstructions.
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(c) Five obstructions.

Low Med. High
SNR

0

20

40

60

80

100

Ep
iso

de
 C

om
pl

et
io

n 
%

RAD-A2C
GS

(d) Seven obstructions.
Figure 13. Box plots for the completed episode percentage against SNR in the non-convex environment, where each plot
corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes range from
the first to the third quartile and the whiskers extend to the 2.5th and 97.5th percentiles. (a) was for a single obstruction,
(b) was for three obstructions, (c) was for five obstructions, and (d ) was for seven obstructions. GS episode completion
deteriorates with increasing number of obstructions while the RAD-A2C maintains greater than 95% median episode
completion.
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(a) One obstructions.
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(b) Three obstructions.
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(c) Five obstructions.
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(d) Seven obstructions.
Figure 14. Box plots for the completed episode length against SNR in the non-convex environment, where each plot
corresponds to a different number of obstructions in the environment. The median is denoted in red, the boxes range from
the first to the third quartile and the whiskers extend to the 2.5th and 97.5th percentiles. (a) was for a single obstruction, (b)
was for three obstructions, (c) was for five obstructions, and (d) was for seven obstructions. The RAD-A2C maintains a low
completed episode length across the varying number of obstructions and SNR while GS performance deteriorates.

4. Discussion433

4.1. Convex Environment434

The results indicate close search performance between the RID-FIM and RAD-A2C435

algorithms in the convex environment. GS had the shortest episode completion length436

at high SNR but this required 7 more measurements per action selection. The RAD-A2C437

showed the best reliability in completing all of the episodes with a minimal spread in438

the distribution of results but had a greater spread in the completed episode length even439

at the highest SNR. The longer completed episode length of the RAD-A2C could be due440

to learned behavior that is advantageous in non-convex environments as the training441

environment always had obstructions present. The RID-FIM had a tighter and lower442

distribution of completed episode lengths across the SNRs.443

Completion of episodes is the priority in practice as this will eliminate the threat444

of human harm from nuclear materials. Both algorithms get the job done effectively,445

however, the RID-FIM has a slightly greater chance of failing when SNR conditions446
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are poor compared with the RAD-A2C. The RID-FIM utilized perfect knowledge of447

the background rate, which is a reasonable assumption in this particular source search448

context, however, its performance is likely to be degraded to some degree when it449

must also estimate an unknown background rate. The RAD-A2C did not receive the450

true episode background rate directly but did have prior exposure to the interval of451

background rates through training. Additionally, the RAD-A2C input standardization452

filters the radiation measurement inputs (see Appendix A.2).453

4.2. BPF Comparison454

The BPF serves as an interesting comparison point between the A2C and RID-FIM455

controllers. When the completed episode length was short (< 16 samples), the RID-FIM456

location prediction RMSE was lower than the BPF-A2C and closer to the PCRB at all457

SNRs. This evidences the effectiveness of information-driven search schemes and the458

near-optimal performance of the RID-FIM when the BPF does not make spurious esti-459

mates. However, the occurrence of the intersection point of the RMSE curves highlights460

the disadvantage of the RID-FIM’s reliance on the estimator for action selection. If461

early state estimates are incorrect, this leads the RID-FIM to take more sub-optimal462

actions until the estimate is corrected. This is evidenced by the longer completed episode463

lengths (20, 28) that have a greater initial increase in the RMSE as seen in Figures 10c464

and 11c. Interestingly, the higher SNR contributes a sharper increase, likely due to the465

strong radiation measurements being interpreted by the BPF as evidence for the incorrect466

estimate.467

In contrast, the A2C module of the BPF-A2C selects its actions from the location468

prediction and the measurement directly. Thus, when the SNR is high, the RMSE469

intersection point occurs at an earlier completed episode length (17 samples) because the470

A2C factors in measurement information at each timestep, rather than strictly following471

the possibly incorrect location prediction as the RID-FIM must do. This also explains472

why the BPF-A2C has lower RMSE at longer completed episode lengths as seen in Figure473

11. The intersection point occurred at longer completed episode lengths for lower SNR474

because it takes the A2C longer to come across informative measurements that can475

correct the spurious BPF state estimates.476

4.3. Non-convex Environment477

The results showcase the strong performance of the RAD-A2C in the non-convex478

environment. Surprisingly, the episode completion percentage did not decrease substan-479

tially in the seven obstruction configuration and the median completed episode length480

did not increase drastically. This demonstrates the algorithm’s ability to generalize as481

it was only trained on up to five obstructions per environment. The RAD-A2C is not482

simply a gradient search algorithm as the non-convex environment has many areas with483

no gradient information as evidenced by the ineffectiveness of the GS. Overall, these484

results support our hypothesis that the RAD-A2C is an effective search algorithm for485

both convex and non-convex environments.486

5. Conclusions and Future Work487

This paper investigated the efficacy of PPO and our proposed DRL architecture, the488

RAD-A2C, for a convex and non-convex radiation source search through comparison489

against the RID-FIM and GS across SNR. The GS had strong performance when the SNR490

was high but quickly lost efficacy with decreasing SNR. The RID-FIM typically required491

fewer measurements to complete episodes but had a slightly greater chance of not492

completing all of the episodes at lower SNRs. The RAD-A2C consistently completed all493

episodes albeit at the cost of taking more measurements. Guaranteed episode completion494

is arguably the most important criteria for radiation source search applications.495

Estimator performance served as another lens to compare the controller perfor-496

mance directly. The same BPF was used for both controllers (RID-FIM, A2C) so that497
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the RMSE and PCRB for the location prediction could be compared. We found that on498

average, the BPF RMSE was lower for the longer episode lengths when the A2C was the499

controller as it was able to factor in measurements to its action selection, as opposed to500

the RID-FIM which selected actions solely on the BPF location prediction. The RID-FIM’s501

action selection scheme is well-motivated but is susceptible to incorrect state estimates502

from the estimator.503

In the non-convex environment, the RAD-A2C completed greater than 95% of504

episodes over a range of obstructions and SNRs. There was very little gradient informa-505

tion available in the environments with more obstructions and thus the GS algorithm506

completed a much lower percentage of episodes. The RAD-A2C demonstrated general-507

izability as it was able to maintain a high completion percentage in a seven obstruction508

environment that it had never been trained on.509

As mentioned in Section 2.3, the RAD-A2C formulation has the potential to be510

applied to other variations of the radiation source search. These include moving and/or511

shielded nuclear sources, spatially varying background rates, utilizing an attenuation512

model for different environment materials, locating an unknown number of multiple513

sources, and a larger, more complex urban environment such as the one used by Hite et514

al. [6]. A classification layer could also be added to the A2C module that is trained on515

detecting whether a source is present or not and how many sources are present. Noise516

could be added to the other dimensions of the observation vector such as the detector517

coordinates and/or the obstruction range measurements. In theory, the majority of these518

cases only require modification of the simulation environment, clever shaping of the519

reward signal, and hyperparameter sweeps to determine the model parameters.520

Our proposed algorithm could be trained in a more realistic environment and521

gamma sensor simulation such as the one utilized for a single UAV source search by522

Baca et al. [27]. The authors developed a realistic gamma radiation simulation plugin523

for the Gazebo/ROS environment. Gazebo is a realistic open-source robotics simulator524

[28]. This plugin could then be easily interfaced with our DRL algorithm using the525

OpenAI_ROS Gym developed by Ezquerro et al. that seamlessly connects Gazebo and526

OpenAI Gym interfaces [29].527
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A2C Actor-critic
BPF Bootstrap particle filter
BPF-A2C Bootstrap particle filter and actor-critic
CRB Cramér-Rao lower bound
DRL Deep reinforcement learning
DL Deep learning
FIM Fisher information matrix
GRU Gated recurrent unit
GS Gradient search
LOS Line-of-sight
NLOS No line-of-sight
ML Machine learning
PCRB Posterior Cramér-Rao lower bound
PFGRU Particle filter gated recurrent unit
PPO Proximal policy optimization
RAD-A2C Our proposed actor-critic architecture
RNN Recurrent neural network
RID Rényi information divergence
RID-FIM Hybrid information-driven controller that uses RID and FIM
RL Reinforcement learning
SNR Signal-to-noise ratio

543

Appendix A. RAD-A2C544

Appendix A.1. Particle Filter Gated Recurrent Unit (PFGRU)545

The PFGRU is an embedding of the BPF into a GRU architecture proposed by Ma546

et al [26]. As in the BPF, there are a set of particles and weights used for filtering and547

prediction of the posterior state distribution. In the case of the PFGRU, the particles548

are represented by the set of hidden or latent state vectors, {hi
n}

Ngp
i=1 . The latent states549

are propagated and the weights updated at each timestep by a learned transition and550

measurement function denoted as,551

hi
n+1 = ftr(hi

n, ζ i
n+1)

yi
n+1 = fout(hi

n+1),
(A1)

where ζ i
n ∼ p(ζ i

n+1|hi
n+1) is a learned noise term akin to the process noise in the552

BPF. The weight update also relies on a learned likelihood function,553

wi
n+1 = η fobs(yn+1, hi

n+1)w
i
n, (A2)

where η is a normalization factor.554

The PFGRU utilizes a soft resampling scheme to combat particle degeneracy while555

maintaining model differentiability. This is achieved by sampling particle indices from556

a multinomial distribution with probabilities determined by a convex combination of557

a uniform distribution and the particle weight distribution. The new weights are then558

determined by,559

w
′
n+1 =

waj
n

n+1

αw
aj

n+1
n+1 + (1− α)(1/Ngp)

, (A3)

where α is the mixture coefficient parameter. The loss function consists of two560

components to capture the important facets of state space tracking. The first component561

is the mean squared loss between the mean particle and the predicted quantity. The562

second component is the evidence lower bound (ELBO) loss that measures the difference in563

distribution of the particle distribution relative to the observation likelihood, for more564

details see [26]. The total loss is expressed as,565
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L(θ) = LMSE + β ∗ LELBO, (A4)

where β is a weighting parameter determined by the user. Figure 1 shows the566

PFGRU architecture.567

Figure 1. PFGRU Architecture. The hidden state hi
n and weights wi

n are elements of a set of size Ngp. Each box represents a
weight matrix and activation function and the circles represent mathematical operations. The conjoining lines represent
concatenation of the quantity and diverging lines represent the copying. The crux of the reset (rn) and update (zn) gates are
to modify the candidate hidden state (h̃n) which then becomes the output hidden state (hn). The hidden state and weights
are resampled using a soft-resampling scheme at each timestep to preserve differentiability. Recreated from [26].

A.2. Training568

The estimate of the gradient iterate (Eq. 7) is improved by increasing the num-569

ber of histories being averaged over. Schulman et al. improved training scalability570

by instantiating copies of the DRL agent and environment on different CPU cores to571

parallelize episode collection [22]. Each DRL agent computes its parameter gradients572

after all episodes for an epoch have been collected. The gradients are then averaged573

across all the cores and a weight update is performed per core. An important distinction574

in the implementation used here is the environment variation across the CPU cores. All575

of the sampled quantities were different per core and fixed per epoch resulting in a more576

generalized policy. This is because the averaged gradient step will be in the direction577

that improves performance across a diverse set of environments. Tobin et al. proposed a578

similar idea called domain randomization that aimed to bridge the gap between DRL579

simulators and reality by introducing extra variability into the simulator [15]. Table580

1 shows the hyperparameters that resulted in the strongest performance for the DRL581

agent from the parameter sweep. The total training time for a single DRL agent running582

on 10 cores took approximately 26 hours.583
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Parameter Value

Epochs 3, 000
Episodes per epoch 4

Num. cores 10
Tot. weights & biases 7, 443

GRU hidden size 24
PFGRU hidden size 24

PFGRU particles 40
Learning Rate A2C 3× 10−4

Learning Rate PFGRU 5× 10−3

Optimizer Adam
(γ,λ,η) (0.99, 0.9, 0.105)

Table 1. Hyperparameter values with the strongest performance for the DRL agent from our
parameter sweep. The parameters γ and λ are used in the generalized advantage estimator [21].
The parameter η is the maximum value for the approximate Kullback-Leibler divergence before
weight updates are terminated for the epoch.

The RAD-A2C was trained eight separate times with eight different random seeds to584

assess model stability. In seven of the eight models, the RAD-A2C achieved performance585

that was consistent with the model we used for the assessment in this paper. This is586

evidenced by the training curves in Figure 2 that show the average number of completed587

episodes and the average episode length over the 10 parallelized environments per epoch.588

The dark blue line represents the smoothed mean and the shaded region represents the589

smoothed 10th and 90th percentiles over the eight random seeds. The maximum possible590

number of completed episodes per epoch was 40. The one model that did not converge591

as well as the others showed oscillations in the performance curves indicating that a592

parameter update resulted in an adverse policy change. Training for more than 3000593

epochs did not significantly improve performance.594
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(b) Average episode length.
Figure 2. Performance curves during the training process for the RAD-A2C over eight random seeds. (a) shows the number
of completed episodes and (b) shows the episode length averaged over the 10 parallelized environments per epoch. The
dark blue line represents the smoothed mean and the shaded region represents the smoothed 10th and 90th percentiles over
the eight random seeds. Episode length decreases and number of completed episodes increases as the model converges to a
useful policy. Training for more than 3000 epochs did not significantly improve performance.
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A.2.1. Standardization595

A common technique in DL is to standardize the input data to increase training596

stability and speed. This is done by subtracting the mean and dividing by the standard597

deviation per feature across a batch of input data. The DRL context does not have easy598

access to the full data statistics since it is collected and processed online. We used a599

technique proposed by Welford for estimating a running sample mean and variance as600

follows [30],601

µn+1 = µn +
(on+1 − µn)

n
Sn+1 = Sn + (on+1 − µn)(on+1 − µn+1)

σ2
n+1 =

Sn+1

n
,

(5)

where µ0 = o0, S0 = 0. The statistics were updated after each new observation and602

then standardization was performed.603

B. Information-driven Controller604

Information-driven search is an information-theoretic framework for sequential605

action selection. This framework endows the controller with the ability to update606

its path plan as new observations become available as opposed to relying only on607

whether the target has been detected or not [31]. Information is integrated across time by608

tracking the posterior probability density of states of interest. This can quickly become609

computationally prohibitive and so heuristic methods such as the bootstrap particle filter610

(BPF) are employed.611

B.1. Bootstrap Particle Filter (BPF)612

The BPF is typically used to track a dynamic process over time. It has been proven613

that an optimal estimate of the state can be recovered from the posterior state distribution,614

however, it is often computationally intractable to track when the state dimension is high615

[32]. Thus, methods such as the BPF attempt to approximate the posterior state through616

a set of samples, {xi
n, wi

n}
Np
i=1, often referred to as particles and weights, respectively.617

This leads to the approximation,618

P(xn+1|y0:n+1) ≈
Np

∑
i=1

wi
n+1δ(xn+1 − xi

n+1), (6)

where P(xn+1|y0:n+1) is the marginal posterior, wi
n+1 is the ith particle weight,619

xi
n+1 is the ith particle state, δ(·) is the Dirac Delta function, and Np is the number of620

particles. At each timestep, the particles are propagated through the process model621

and a measurement prediction is generated with the measurement model. The particle622

weights are calculated recursively as,623

wi
n+1 ∝

p(yn+1|xi
n+1)p(xi

n+1|xi
n)

q(xi
n+1|xi

n, yn+1)
wi

n, (7)

where p(yn+1|xi
n+1) is the measurement likelihood, p(xi

n+1|xi
n) is the transition624

density, and q(xi
n+1|xi

n, yn+1) is an importance density [32]. Particles are drawn from a625

user-specified importance density qx. In our implementation, the importance density is626

set equal to the prior distribution to reduce the weight update step to the measurement627

likelihood and the previous weight:628

wi
n+1 ∝ p(yn+1|xi

n+1)w
i
n. (8)
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If a particle has a low probability for a given measurement, this effectively removes629

the particle’s contribution to the estimated posterior which can adversely affect state esti-630

mation over the trajectory and is known as the degeneracy problem. Particle degeneracy631

can be tracked by the following metric to characterize the number of effective particles632

at a given time step,633

Ne f f ,n =
1

∑
Np
i=1(w

i
n)

2
. (9)

Particle degeneracy can be alleviated by resampling the particles and reinitializing634

the weights when the number of effective particles becomes too low. In our context,635

the nuclear source intensity and coordinates are fixed throughout an episode. We636

adapt the BPF for parameter estimation with a random walk process model that has637

low variance Gaussian noise. The initial particles were sampled uniformly from fixed638

intervals as specified in Table 2. Equation 2 and Equation 3 are the measurement model639

and likelihood, respectively. The background rate, λb, was considered constant and640

known.641

Sequential importance resampling is a technique to combat particle degeneracy and642

occurs when the number of effective particles drops below a given threshold. We selected643

the Srinivasan sampling process (SSP) resampling proposed by Gerber et al. because of644

asymptotic convergence of the error variance [33]. Additionally, SSP resampling requires645

only O(Np) operations. See [33] and [34] for more details.646

B.2. Fisher Information Matrix (FIM)647

The FIM is a measure of the information content of a measurement relative to the648

measurement model. It was first used in optimal observer motion for bearings-only649

tracking by Hammel et al. [35]. In their implementation, the controller selects the action650

at each timestep that maximizes the determinant of the FIM (system observability),651

which is equivalent to minimizing the area of the uncertainty ellipsoids around the state652

estimates. This arises from the connection between the FIM and the Cramér-Rao lower653

bound (CRB).654

The CRB provides a lower bound on the error covariance of an unbiased estimator655

and is the inverse of the FIM [36]. The FIM is the Hessian of the log-likelihood and is656

denoted as follows,657

Jn+1(x) = −E[∇x∇T
x ln(p(zn+1|x))], (10)

where T denotes the transpose. Morelande et al. derived the closed form FIM for658

the radiation source localization problem as [5],659

Jn+1(x) =
∇xλn+1(x)∇T

x λn+1(x)
λn+1(x)

, (11)

where λn(x) is defined in Eq. 2. This results in the following gradient for each660

parameter,661

δλn

δIs
=

1
(xn − xs)2 + (yn − ys)2 ,

δλn

δxs
=

2(xn − xs)Is

[(xn − xs)2 + (yn − ys)2]2
,

δλn

δys
=

2(yn − ys)Is

[(xn − xs)2 + (yn − ys)2]2
.

(12)

Ristic et al. used the BPF particles at each time step to calculate the FIM as follows,662
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Jn+1(xn) ≈
Np

∑
j=1

Jn+1(x
j
n)w

j
n, (13)

due to better performance when the posterior is multi-modal [9]. They applied this663

formulation to action selection in the radiation source search in the following manner,664

an+1 = arg max
un+1,L

[
L

∑
l=n+1

tr(Jl(ul))

]
, (14)

where L is the number of lookahead steps, tr() is the matrix trace, and un is the665

control vector that determines the detector’s next position.666

Helferty et al. proposed to use the trace of the CRB as it is a sum of squares of the667

axes of the uncertainty ellipsoid [37]. This is also known as A-optimality in the optimal668

experimental design literature [38]. Ristic et al. maximized the trace of the FIM that669

corresponds to maximizing the information, however, it is beyond the scope of this670

paper to show the relation between these two criteria. This control strategy will result in671

the optimal trajectory for minimizing the uncertainty of the estimated quantities given672

perfect source information (i.e., low or no measurement error). The source information673

in the nuclear source search context is not perfect due to the stochastic nature of nuclear674

decay and background radiation. Additionally, the FIM is not well defined for initial675

search conditions where the background radiation dominates the signal from the source,676

i.e., when the source-detector distance is large and/or the background rate is high.677

B.3. Rényi Information Divergence (RID)678

Ristic et al. proposed another information-driven search strategy to address the679

shortcomings of the FIM-based approach. This approach is based upon the RID, also680

known as α-divergence, a general information metric that quantifies the difference be-681

tween two probability distributions. In Bayesian estimation, maximizing this difference682

corresponds to reducing the uncertainty around the state estimates. The use of RID was683

first proposed in the sensor management context by Kreucher et al. [39]. The RID is684

defined as,685

Dα(P||Q) =
1

α− 1
ln
[∫

Pα(x)Q1−α(x)dx
]

, (15)

where α specifies the order. In the limit as α approaches one, the RID approaches686

the Kullback-Leibler Divergence [39].687

Ristic et al. adapted the RID for action selection in the nuclear source search context688

with a BPF [10]. The general flow of the algorithm is to apply an action from the set of689

actions to get the next potential detector position, calculate the expected posterior density690

for that action over a measurement interval, and then select the action that resulted in the691

greatest RID. The particle approximation of the RID is shown in the following equation,692

E[Dα(p(xun+1 |z), p(x|z))] ≈ 1
α− 1

Z1

∑
z=Z0

p(z|x)ln
[

pα(z|xun+1)

p(z|x)α

]
, (16)

where xun+1 denotes the potential detector position after taking action un+1, Z0, Z1693

is a measurement interval, and z ∈ N. The density pα(z|xun+1) is approximated after694

filtering the latest measurement and particle resampling as,695

pα(z|xun+1) =
Np

∑
j=1

wj
n p(z|xj,un+1

n )α, (17)

and p(z|x) results from the particle approximation of the marginal distribution of a696

measurement. Like the FIM, the RID can also be computed for L-step planning.697
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B.4. Hybrid RID-FIM Controller698

We propose a hybrid controller that utilizes either the RID or FIM as metrics for699

action selection. This was motivated in part by the empirical observation that the RID700

controller would often get stuck oscillating between two positions that were just above701

our termination criteria for source-detector distance resulting in incomplete episodes.702

The FIM is a poor control metric when there is little information available as is often703

the case at the start of a search. The RID is more computationally expensive than the704

FIM but provides a principled control method even in low information contexts. Thus,705

the RID was used for control at the beginning of each episode until the RID reached a706

sufficient threshold, then the metric was switched over to the FIM for the remainder as707

shown in Algorithm 1.708

Algorithm 1 RID-FIM Controller

Input:{xj
0, wj

0}
Np
j=1, set RID FLAG to 1, switch threshold η, effective particles threshold

β, measurement interval [Z0, Z1]
Receive init. measurement, z0, perform prediction and filtering of particles
while episode not terminated do

if RID FLAG then
Calculate RID according to 16 over [Z0, Z1]

else
Calculate FIM according to 13

end if
Select action that maximizes information metric
Receive zn+1, perform prediction and filtering of particles
if Ne f f < β ∗ Np then

Resample and reweight particles
end if

end while

We decided on myopic (one-step lookahead) planning due to the exponential709

increase in computational cost inherent to both metric calculations. Additionally, many710

source search scenarios will have high uncertainty in the state estimates for many711

timesteps so planning far in advance is not advantageous. Myopic search is often sub-712

optimal but is a fair tradeoff when the problem dynamics are stable [39]. The parameter713

values for the RID-FIM, as well as the BPF, are detailed in Table 2. All parameters were714

selected by a parameter sweep over a set of 100 randomly sampled environments where715

the selection criteria was shortest average episode length and most episodes completed.716

Parameter Value

Np 6, 000
Ne f f 6, 000

Process noise XY 15 cps
Process noise Is 0.01 m

Prior XY [0, 22] m
Prior I [100, 1, 000] cps

Resampling threshold, β 1.0
Lookahead, L 1

Order, α 0.6
Switch threshold, η 0.36

Meas. interval [Z0, Z1] ±75 cps

Table 2. Parameter values for the BPF and RID-FIM.
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B.5. Posterior Cramér-Rao Lower Bound (PCRB)717

The BPF is a biased estimator as it only uses a finite number of particles. The718

PCRB provides a lower bound on the root-mean-square error (RMSE) performance for a719

biased estimator. Tichavsky proposed the PCRB for discrete-time nonlinear filtering [40],720

however, we follow a similar formulation found in Bergman’s dissertation [41]. The721

PCRB is determined recursively in the following manner,722

P−1
0|0 = Σ−1Λ−1

∫
x
∇xλ0(x)∇T

x λ0(x)dx,

P−1
n+1|n+1 = Qn + Rn+1 − ST

n (P−1
n|n + Vn)

−1Sn,
(18)

where the terms are Sn, Vn, and Qn are all the same inverse process noise covariance723

matrix, denoted as Σ−1. This arises from the fact that our process model is a random724

walk with Gaussian noise for each state. The term Rn is the FIM defined in Eq. 10. The725

prior, P0|0, is a result of the uniform distribution of the particles where Λ is a diagonal726

matrix of the uniform probabilities for each parameter. More details of the derivation of727

the PCRB and prior can be found in Bergman’s dissertation in Theorem 4.5 and Section728

7.3, respectively [41].729

We average the RMSE and PCRB over the Monte Carlo evaluations resulting in the730

following formulation,731 √√√√ 1
K

K

∑
i=1

∥∥∥x̂i
n − xi

n

∥∥∥2
&

√√√√ 1
K

K

∑
i=1

tr(Pi
n), (19)

where K is the total number of episodes and & denotes that the inequality only holds732

approximately for finite K [41]. The PCRB provides an indicator of the suboptimality of733

an estimator and so we use it to directly compare the performance of the A2C with the734

RID-FIM. This is accomplished by evaluating the A2C with the exact same BPF estimator735

used with the RID-FIM for the source location state estimates. Not only can the estimator736

RMSE be compared against the PCRB, but the PCRBs resulting from both controllers737

can be compared as well. This will serve as a proxy for the quality of the control path738

generated by each controller.739

C. Gradient Search740

We use the simple GS algorithm implemented by Liu et al. [14]. GS relies on741

sampling the gradient of the radiation field for each search direction at each timestep.742

This is not an efficient algorithm as the detector must make D moves per action selection743

but serves as a useful baseline for performance comparison. The action selection is made744

stochastic by sampling from a multinomial distribution, denoted multi(n,p), over actions745

with probabilities proportional to the softmax of the gradients to avoid the trapping of746

local optima. GS is summarized by the following equation,747

an+1 ∼ multi(|U |, softmax([
1
q

δzn+1

δu1
, . . . ,

1
q

δzn+1

δu|U |
])), (20)

where u is the detector position after action i, σ is the softmax function, and q748

is a temperature parameter. The temperature parameter was set at 0.0042 and was749

determined via a parameter sweep over a set of 100 randomly sampled environments750

where the selection criteria was shortest average episode length and most episodes751

completed.752
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