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Abstract: Neural decoding from spiking activity is an essential tool for understanding the infor-
mation encoded in population neurons, especially in applications like brain-computer interface 
(BCI). Various quantitative methods have been proposed and have shown superiorities under dif-
ferent scenarios respectively. From the machine learning perspective, the decoding task is to map 
the high-dimensional spatial & temporal neuronal activity to the low-dimensional physical quanti-
ties (e.g., velocity, position). Because of the complex interactions and the abundant dynamics among 
neural circuits, good decoding algorithms usually have the capability of capturing flexible spatio-
temporal structures embedded in the input feature space. Recently, the Transformer-based models 
are widely used in processing natural languages and images due to its superior performances in 
handling long-range and global dependencies. Hence, in this work we examine the potential appli-
cations of Transformers in neural decoding and introduce two Transformer-based models. Besides 
adapting the Transformer to neuronal data, we also propose a data augmentation method for over-
coming the data shortage issue. We test our models on three experimental datasets and their per-
formances are comparable to the previous state-of-the-art (SOTA) RNN-based methods. In addition, 
Transformer-based models show increased decoding performances when the input sequences are 
longer, while LSTM-based models deteriorate quickly. Our research suggests that Transformer-
based models are important additions to the existing neural decoding solutions, especially for large 
datasets with long temporal dependencies. 

Keywords: Transformer; spike; neural decoding; CNN; RNN; LSTM; deep learning; information; 
neuroscience 
 

1. Introduction 
Neural decoding studies the relationship between neural population activities and 

the outside world. It is a central tool to understand how neurons encode external variables 
and can facilitate engineering applications such as brain-computer interfaces (BCI). In es-
sence, neural decoding is to find a mapping relationship between neuronal data and par-
ticular variables (velocity, position, etc.) observable in the outside world. Such relation-
ship was traditionally described by linear methods in the past. Recently machine learning 
methods especially those based on neural networks have been widely used [1], facilitating 
neural decoding from various aspects.    

Because of the complex interactions and the abundant dynamics among neural cir-
cuits, good decoding algorithms usually have the capability of capturing spatiotemporally 
dependent structures embedded in the input feature space. Recurrent Neural Networks 
(RNNs) are by far the most common deep learning architectures applied in neural decod-
ing due to its ability of dealing with sequentially dependent data [1]. Among them LSTMs 
are the most commonly used because they are able to learn long-range dependencies bet-
ter than other recurrent structures [1–6]. Convolutional Neural Networks (CNNs) are also 
frequently used for decoding neural signals in the form of fMRI image, calcium image or 
multi-channel EEG waves [7–9] because they are able to learn local dependencies of the 
data. Although most of these deep learning algorithms have achieved better performances 
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compared with traditional machine learning methods, they still suffer from problems such 
as gradient vanishing and the weakness of extracting global features.  

Transformer is a new neural network structure that has been widely used in machine 
learning community in recent years. It has achieved state-of-the-art (SOTA) performances 
in tasks such as natural language processing [10], object detection [11], image classification 
[12] and protein engineering [13], etc., suggesting its wide applicability. Transformer uses 
multi-head attention, enabling it to avoid information loss over time steps compared to 
recurrent structures and giving it wider receptive fields than convolutional layers. Such 
attention mechanism suggests Transformer’s superior ability of handling long-range and 
global dependencies. However, Transformer-based models are still relatively little used 
in neural decoding. 

In this work we explore possibilities of applying Transformers in neural decoding 
and introduce two Transformer-based models, Spatial Temporal Transformer (STT) and 
Convolutional Spatial Temporal Transformer (CSTT). In experimental datasets of record-
ings from monkey motor cortex, monkey somatosensory cortex, and rat hippocampus, 
our Transformer-based models achieve performances comparable to the previous SOTA 
RNN-based methods. Besides adapting the Transformer to spikes, we also propose a data 
augmentation method based on Generalized Linear Model (GLM) to generate synthetic 
neuronal datasets larger than real ones. We test our models on three augmented datasets 
and they show better decoding performances. In addition, Transformer-based models 
show stable and increased decoding performances when the input sequences are longer, 
while LSTM-based models deteriorate quickly. Our research suggests that Transformer-
based models might be an alternative in neural decoding, especially for large datasets 
with long temporal dependencies. 

2. Materials and Methods 
2.1. Dataset 

We used the same three datasets as in [1], which were separately collected from mo-
tor cortex, somatosensory cortex and hippocampus. In the task for decoding from motor 
cortex, monkeys moved a manipulandum that controlled a cursor on a screen [14], and 
we aimed to decode the x and y velocity of the cursor. The data were 21 min and contained 
164 neurons. The mean and median firing rates were 6.7 and 3.4 spikes/s respectively. 
Data were put into 50 ms bins. We used 700 ms of neural activity (the concurrent bin and 
13 bins before) to predict the current movement velocity.  

Dataset recorded from somatosensory cortex [15] was from the same task. It con-
tained data of 51 min and 52 neurons. They were put into 50 ms time bins. The mean and 
median firing rates were 9.3 and 6.3 spikes/s respectively. We used 650 ms surrounding 
the movement (the concurrent bin, 6 bins before, and 6 bins after) to predict the current 
movement velocity.  

Dataset recorded from hippocampus came from the task that rats chased rewards on 
a platform[16,17], and we aimed to decode the x and y position of the rat. This dataset 
contains data over a period of 75 min from 46 neurons. They had mean and median firing 
rates of 1.7 and 0.2 spikes/s respectively. Data were put into 200 ms bins. We used 2 s of 
surrounding neural activity (the concurrent bin, 4 bins before, and 5 bins after) to predict 
the current position. 

For all three datasets we performed the same treatment as in paper [1]. 

2.2. Model Structure 
A distinctive feature of the spike signal is that it has both temporal and spatial fea-

tures, with the temporal features arising from the encoding dynamics of variables in the 
outside world and the spatial features arising from the interactions between neurons. We 
perform a simple experiment to confirm this idea. We build a Generalized Linear Model 
(GLM) for each neuron to get the firing rate of each time bin. Then sample it according to 
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a Poisson distribution to generate fake spikes which do not contain many spatial features. 
The results are shown in Table 1. We find that the fake spike signals have lost some fea-
tures compared with the real spike signals, considered to be the spatial features mentioned 
above. This provides a clue for the design of our Transformer-based model.  

Table 1. The LSTM performs better on real data than on synthetic neural signals generated by 
GLM, suggesting that spikes contain spatial features. 

Dataset 
Somatosensory  

Cortex ( 2R ) 
Motor Cortex  

( 2R ) 
Hippocampus  

( 2R ) 
Synthetic 0.7578 0.6889 0.4763 

Real 0.8621 0.8826 0.6088 
 

Transformer was first used in Natural Language Processing (NLP) to take a sentence 
as the input of the network, where each word is embedded as a token. In the task of neural 
decoding of spike signals, a natural idea is to take time series as the input and embed each 
time bin as a token which contains the firing rates of all neurons at this moment. The 
attention structure in Transformer is concerned with the relationship between tokens, 
which is appropriate for solving NLP tasks where we need to focus on the relationship 
between each word. However, for spike's neural decoding task this means that only the 
temporal information is attended and the spatial features are not sufficiently extracted. 

To fully extract the spike signals’ spatial features, we embed each neuron's time bins 
as a token, so that attention can focus on the interactions between neurons. We try to ex-
tract spatial and temporal features of spike signals separately with Transformer, or do 
both sequentially, and the results are shown in Table 2. The results show that Transformer 
performs best for extracting both spatial and temporal features, which is consistent with 
the above idea. 

Table 2. Attend spikes from temporal or spatial axis or both. Temporal Transformer extracts more 
features than spatial Transformer and combining these two can improve the ability of extracting 
features. 

Model 
Somatosensory  

Cortex ( 2R ) 
Motor Cortex  

( 2R ) 
Hippocampus  

( 2R ) 
Temporal 0.7904 0.7762 0.5004 

Spatial 0.7413 0.4601 0.0290 
Spatial & Temporal 0.8153 0.8208 0.5518 

 
Based on the above ideas, we modify Transformer structure and introduce a new 

model called Spatial Temporal Transformer (STT). Our structure improves the multi-head 
attention in [18] by enabling the attention layer to extract features of the input data from 
both temporal and spatial dimensions. Compared to using two Transformers sequentially, 
our approach reduces network parameters and mitigate information loss over layers. The 
structure of our model is shown in Figure 1, where two attention heads are used to extract 
spatial and temporal features from the input data, respectively. And each attention head 
can be split into multiple smaller attention heads to increase the diversity of the extracted 
features. These heads are all simply concatenated and linearly transformed to maintain 
the same shape as the input data.  
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Figure 1. Spatial Temporal Transformer (STT) architecture. We do positional encoding only across 
temporal dimension for its strict chronological order. Both spatial and temporal attention are done 
to inputs after positional encoding. The results of attention are concatenated and then linearly 
transformed to keep shape. It is then added with inputs and normalized. In the end there is a posi-
tion-wise feed-forward network followed by an add & norm module the same as before. 

The complete data input process is as follows: the input data is shaped as S T N  , 
where S represents the number of input samples, T represents the length of the input se-
quence, and N represents the number of neurons. After positional encoding, it is input 
into the Transformer structure, where the data goes through spatial attention and tem-
poral attention to get spatial head and temporal head respectively. The two heads are 
concatenated and linearly transformed to keep the original shape S T N  . It is then 
summed with the original input. And a layer normalization is performed to get the output 
of the attention part, which is put into the position-wise feed-forward part consists of two 
fully connected layers with a ReLU activation in between. The outputs of attention part 
and feed-forward part are then summed and layer-normalized to get the final output of 
the transformer block, keeping the original input of S T N  . 

To further enhance the feature extraction capability of our model, we introduce a new 
structure denoted as Convolutional Spatial Temporal Transformer (CSTT) with a convo-
lutional structure before the input of the network, containing two one-dimensional con-
volution layers to extract features across neurons and time. One is a spatial convolutional 
layer of size N 1 and the other is a temporal convolutional layer of size1 3 . In the tem-
poral convolutional layer, we set padding mode to ‘same’ to keep number of time bins 
unchanged. We can change the number of convolutional kernels C to adjust the output 
shape of convolutional structure. The data is then fed into STT after normalization, acti-
vation and dropout layers. The architecture of CSTT is shown in Figure 2.  
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Figure 2. CSTT architecture and data shape transformation details. We add a convolutional structure before STT to further 
enhance its modeling ability. The convolutional part consists of two 1-D convolutional layers, one is a spatial convolutional 
layer of size N 1 and the other is a temporal convolutional layer of size1 3 . In the temporal convolutional layer, we set 
padding mode to ‘same’ to keep number of time bins unchanged. The data is then fed into STT after normalization, acti-
vation and dropout layers.  

3. Results 

3.1. Transformer-based models perform better than CNN and are comparable to recurrent 
architectures 

We test 6 different deep models on 3 datasets. To qualitatively display the decoding 
ability of different decoders, we compare the decoder results with the real data from 3 
datasets as shown in Figure 3. We also perform quantitative measurements of the decoder 

results. We use
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values to evaluate the goodness of fit, where ˆiy are the 

predicted values, 
iy are the true values, and y is the mean value. We use a ten-fold cross-

validation method for training, using 90% of the data as training data and 10% of the data 
as test data. The final 2R value is obtained by averaging the 2R values across the x and y 
components of velocity or position of the test set for each fold. The one with the highest

2R value is considered to have the best ability of decoding. The results are shown in Table 
3.  
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Figure 3. These are the decoder results clips, which reflect the goodness of fit. Results are from 
somatosensory cortex (left), motor cortex (middle) and hippocampus (right), for all 6 decoders. 
The black traces represent ground truth and the colored traces are the decoder results. 

Table 3. The goodness of fit of six different models on the three datasets. 

Model 
Somatosensory  

Cortex ( 2R ) 
Motor Cortex  

( 2R ) 
Hippocampus  

( 2R ) 
LSTM 0.8600 0.8826 0.6088 
GRU 0.8592 0.8787 0.5835 
CNN 0.8498 0.8399 0.5034 

Spatial & Temporal 0.8153 0.8208 0.5518 
STT 0.8517 0.8644 0.5828 

CSTT 0.8632 0.8734 0.5833 
1 Spatial & Temporal means a spatial Transformer followed by a temporal Transformer. 

 
Our modified Transformer-based model STT achieves higher 2R values than Spatial 

& Temporal Transformer on all the three datasets, which indicates that the combination 
of spatial and temporal attention does help improve model’s decoding ability. The CSTT 
model performs better than STT due to convolutional structure which improves its mod-
eling capacity. The CSTT model achieves the highest 2R value of 0.8632 on the dataset col-
lected from the somatosensory cortex. However, the LSTM maintains its dominance on 
the other two datasets. 
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Such difference across datasets may be due to various reasons, such as the size of the 
datasets or the length of the input sequences. The dataset from somatosensory cortex has 
the largest sample size of 61,339 with 13 bins per trial, while the volume of dataset from 
motor cortex and hippocampus is 25,299 and 22,283 with input length of 14 and 10 bins, 
respectively. We try to increase dataset size and sequence length to see how these two 
factors can affect the decoding ability of different models. 

3.2. Transformer-based models perform better on large-scale datasets 
We use GLM model described in section 2.2 to generate synthetic spikes and get three 

fake datasets. The size of synthetic dataset from somatosensory cortex is ten times larger 
than the original with 613,390 trials. To achieve a similar size, we expand the hippocam-
pus dataset to 30 times its original size, with 668,490 trials. For the dataset from motor 
cortex, we only expand it to 13 times the original size due to the limitation of computing 
device. We use them to do pre-training on LSTM, STT and CSTT respectively. Then train 
and test with real data. We compare the 2R values of the three models before and after the 
dataset augmentation and the results are shown in Table 4. 

Table 4. Comparison of decoding ability of LSTM, STT and CSTT on three datasets before and after expansion. 

Dataset Model Before After 

Somatosensory Cortex ( 2R ) 
LSTM 0.8600 0.8650 
STT 0.8517 0.8644 

CSTT 0.8632 0.8734 

Motor Cortex ( 2R ) 
LSTM 0.8826 0.8831 
STT 0.8644 0.8711 

CSTT 0.8734 0.8847 

Hippocampus ( 2R ) 
LSTM 0.6088 0.6312 
STT 0.5828 0.6429 

CSTT 0.5833 0.6427 
 

After data augmentation, the decoding performances of the three models improve on 
all the three datasets, with the two Transformer-based models showing a more significant 
improvement than the LSTM. The 2R values of STT improve by 0.0127, 0.0067 and 0.0601 
on the three datasets, and those of CSTT improve by 0.0102, 0.0113 and 0.0594, while those 
of LSTM only improve by 0.005, 0.0005 and 0.0224. Moreover, after data augmentation, 
CSTT achieves the best decoding results for both somatosensory cortex and motor cortex 
tasks, which are 0.8734 and 0.8834, respectively. STT scores the highest 2R value of 0.6429 
on hippocampus. Such improvements in decoding ability are consistent with our expec-
tation that the Transformer-based models perform better on large-scale datasets. 

3.3. Transformer-based models can better handle long-range dependencies 
In the above experiments we use 650 ms surrounding the movement (the concurrent 

bin, 6 bins before, and 6 bins after) for data from somatosensory cortex, 700 ms of neural 
activity (the concurrent bin and 13 bins before) for data from motor cortex and 2 s of sur-
rounding neural activity (the concurrent bin, 4 bins before, and 5 bins after) for data from 
hippocampus. We try to increase the length of the input sequence to see how input length 
can influence models’ decoding performances. Each time we add 10 bins to the input se-
quence (5 bins before and 5 bins after) and repeat 10 times. The results are shown in Figure 
3.  
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Figure 4. This is how the prediction accuracy varies with the input length. We increased input sequence length to evaluate 
its effect on prediction accuracy of STT, LSTM and CSTT on three datasets. Each column represents an experiment on a 
dataset.  

The variation of prediction accuracy of the three models with increasing length of the 
input sequence is generally consistent across the three datasets. On the somatosensory 
dataset, the prediction accuracy of the CSTT remained between 0.86 and 0.88 with the 
increase of the input length and the prediction accuracy of the STT remained stable be-
tween 0.82 and 0.86 though with a decreasing trend. The prediction accuracy of LSTM 
varies the most drastically with the input length, except for a slight improvement before 
23 bins, after which it keeps decreasing to around 0.74 at 103 bins.  

On the Motor Cortex dataset, the stability difference in prediction accuracy between 
the LSTM and the two Transformer-based models is more obvious. As the input length 
grows, the prediction accuracy of the LSTM decreases rapidly from nearly 0.9 at 14 bins 
to nearly 0.1 at 104 bins. The two Transformer-based models, however, have maintained 
high stability.  

On the dataset from hippocampus, the prediction accuracy of LSTM increases until 
50 bins, then keeps decreasing and is surpassed by STT. The prediction accuracy of both 
Transformer-based models continues to increase, with STT slightly decreasing at 100 bins. 
CSST maintains the highest prediction accuracy after 20 bins.  

The high stability in decoding performance with the growth of sequence length 
shows that Transformer-based models have a stronger ability of handling long-range de-
pendencies. 

4. Discussion 
We modify Transformer for spike signals and introduce the Spatial Temporal Trans-

former (STT) model. To further improve its decoding ability, we combine the convolu-
tional structures with STT and introduce the Convolutional Spatial Temporal Transformer 
(CSTT) model. The decoding ability of these two Transformer-based models are compa-
rable to the recurrent neural network structure represented by LSTM. Moreover, the two 
Transformer-based models show excellent ability of handling large-scale and long-range 
dependencies. By increasing the dataset volume, our models achieve significant improve-
ment in prediction accuracy, with CSTT outperforming the LSTM in decoding tasks for 
all three datasets and achieving the best decoding results in dataset from somatosensory 
cortex and motor cortex, while STT getting the highest 2R value on dataset from hippo-
campus. In addition, Transformer-based models show stable and increased decoding per-
formances when the input sequences are longer, while LSTM-based models deteriorate 
quickly. Our study of the inter-neuron connectivity also corroborates that neural signals 
do contain information generated by the interactions between neurons, which provides a 
clue for the design of neural decoding algorithms. 
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However, there are still many issues remained to be explored for the application of 
Transformer in neural decoding: 
 We use GLM to generate synthetic data for data augmentation, which means an in-

evitable loss of features compared with real neural signals. The performances of 
Transformer on large-scale datasets with more abundant features can be further in-
vestigated in the future. 

 Transformer's ability of dealing with long-range dependencies allows us to find ap-
propriate input sequence length to achieve the best decoding results. Instead of man-
ually setting the number of bins, we may let the model decide the best input length. 
And Transformer can offer the possibility to achieve a better decoding result com-
pared with RNNs. 

 We use a simple two-layer convolutional structure to form CSTT, which is proved to 
have better decoding ability than STT. Compared with the global feature extraction 
capability of Transformer, convolutional structure may have a stronger local feature 
extraction capability. It is a worthwhile problem to investigate how to combine CNN 
with Transformer better. In addition to convolutional structures, the combination of 
Transformer and other forms of feature extraction structures such as RNN or graph 
neural network is also worth further exploration. 

 Transformer's attention structure is similar with convolutional structure in some 
way. There has been many successful examples of Transformer-based models being 
applied to images [11,12,19,20]. We may use Transformer structures on neural signals 
in the form of image such as fMRI and calcium image. 
With the further development of neuroscience research, large-scale neural signal da-

tasets will become available in the future. The superior processing capability of Trans-
former for large-scale datasets gives it potential to place RNNs as the most widely used 
deep learning algorithm in the field of neural decoding. Besides, there is now a boom of 
research on Transformer in machine learning community. As the research on Transformer 
deepens, we may achieve structures with stronger modeling ability and more applications 
under different scenarios. The possible explosion of neuronal data and research of Trans-
former in the future may bring huge change to neural decoding. Hence, our ability of 
decoding information from neuron population activities will be further improved, which 
will help us better understand neuron circuits and facilitate engineering applications. 
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