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Abstract: Pretreatment with non-convulsive dose of methionine sulfoximine (MSO) attenuated lith-
ium-pilocarpine-induced (Li-Pilo) seizures in young rats [1]. We hypothesized that the effect of MSO 
results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors 
to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min 
prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-
injected either together with Pilo (onset) or 15 min before sacrifice (final phase). Their conversion to 
Glu and Gln in hippocampus and entorhinal cortex was followed using [13C] gas chromatography-
mass spectrometry. Release of in vitro loaded [3H]D-Asp from ex vivo brain slices was measured in 
continuously collected superfusates. Protein and mRNA expression were measured by Western Blot 
and real-time PCR techniques, respectively. At no time point nor brain region did MSO modify 
incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high 
potassium-induced [3H]D-Asp release and reduced by ~50% the synaptic vesicular Glu transporter 
VGLUT1 protein, but not mRNA content in the hippocampus. The results indicate that MSO at non-
convulsive dose mitigates the initial Pilo-induced seizures by interfering with synaptic Glu-release 
but not with neurotransmitter Glu recycling. 

Keywords: epilepsy; glutamatergic transmission; glutamine synthesis; methionine sulfoximine; 
metabolomics 
 

1. Introduction 
In mammalian brain, glutamine synthetase (GS) is bimodaly involved in the regula-

tion of excitatory, glutamatergic transmission [2,3]. On one hand, GS-mediated conversion 
of Glu and ammonia to Gln in astrocytes neutralizes Glu newly released from neurons. 
On the other hand, a portion of Gln newly formed in astrocytes is transferred back to 
neurons by specific Gln transporters catalyzing its astrocytic release (system N) and neu-
ronal uptake (system A), respectively [4–6]. Here it enriches neurotransmitter pool of Glu: 
the above sequence of events are defined as the glutamine-glutamate cycle (GGC). 

Methionine sulfoximine (MSO) is an irreversible GS inhibitor [7]. Instant GS inhibi-
tion by high MSO doses rapidly stimulates glutamatergic transmission, inducing convul-
sions and seizures [7–9], while GS inactivation associated with prolonged MSO treatment 
is accompanied by hippocampal sclerosis and spontaneous recurrent seizures (SRS) re-
sulting from inefficient Glu uptake, a status manifesting chronic temporal lobe epilepsy 
(TLE) [8,10–12]. GS loss in brain-vulnerable regions (mainly hippocampus) has also been 
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found to correlate with advanced TLE induced by other chemical stimuli, including pilo-
carpine (Pilo) [13–15] or kainic acid (KA) [16].  

On the other hand, exogenously added Gln will induce a long-lasting, glutamatergic 
transmission-bolstering effect. This has been directly demonstrated in striatal cortical 
slices [17], but has also been recorded in epilepsy models: in entorhinal cortical slices de-
rived from Pilo-treated chronic epileptic rats [18], in rats with KA-induced seizures [19], 
and in an in vitro model of post-traumatic epilepsy [20]. The role of Gln in promoting 
excitatory transmission and seizures has also been demonstrated in experiments employ-
ing low MSO doses causing moderate inhibition of GS. Low MSO depressed glutama-
tergic transmission and epileptiform discharges in cerebral cortical slices in vitro [21,22]. 
In vivo, intracerebral administration of MSO reduced amygdala kindling- induced sei-
zures [23]. 

We recently have demonstrated that in 24-day rats treated with lithium-pilocarpine 
(Li-Pilo), pretreatment with MSO at a low dose which produced no convulsions, delayed 
the onset of, and attenuated the initial convulsive and electrographic seizures [1]. It ap-
peared reasonable to speculate that MSO at this low dose inhibited an aspect of glutama-
tergic transmission critical for provoking the initial seizures. In this study we tested two 
not mutually exclusive hypotheses regarding the mechanism by which MSO could induce 
the inhibition. The first was that, MSO interferes with the GGC in a way affecting de novo 
Glu synthesis in this model. To test this hypothesis, [13C] mass spectrometry was em-
ployed to follow incorporation in vivo of 13C labelled metabolic precursors: acetate and 
glucose, to Glu and Gln. This procedure has previously been used to study Glu synthesis 
and metabolism in models of brain pathologies associated with enhanced glutamatergic 
transmission [24–30], including treatments with convulsive MSO dose in vivo [24] and in 
vitro [30–32]. The main labelling patterns of the metabolites from [U-13C]glucose or [1,2-
13C]acetate in the experimental setting of the present investigation are detailed in Scheme 
1.  

 

Scheme 1. Schematic representation of the main labelling patterns obtained after incubation with [U-13C]glucose or [1,2 
13C]acetate. U-13Cglucose is taken up by cells in the brain tissue and metabolized to U-13Cpyruvate (M+3) during gly-
colysis. U-13Cpyruvate which in turn can be metabolized in the tricarboxylic acid (TCA) cycle, entering as [1,2-13C]Ace-
tyl-Coenzyme A ([1,2-13C]Ac-CoA) which reacts with unlabelled oxaloacetate and, hence, double-labelled (M+2) TCA 
cycle intermediates are produced, illustrated as blue circles. [1,2-13C]acetate can also enter the TCA cycle via [1,2-13C]Ac-
CoA and generate double-labelled intermediates. The labelled neuroactive amino acid [4,5-13C]glutamate (M+2) can be 
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formed from [4,5-13C]ketoglutarate (-kg M+2). From glutamate (M+2), [4,5-13C]glutamine (M+2) can be synthesized in 
the astrocytes by glutamine synthase (GS). In the second turn of the TCA cycle, [1,2-13C]Ac-CoA reacts with oxaloacetate 
M+2 formed in the first turn of the cycle, resulting in the production of M+3 and M+4 labelled metabolites (depicted with 
grey circles).  

The second hypothesis was that MSO interferes with the availability of Glu at the 
synapse by modifying its release and/or reuptake. Here we took into consideration earlier 
published data demonstrating that MSO affects Glu transport in various brain prepara-
tions in vivo [33] and in vitro [34,35]. To account for this hypothesis, we tested the effect of 
MSO on the uptake and release of the newly taken up 3H-labelled Glu surrogate, D-aspar-
tate ([3H]D-Asp) in ex vivo brain slices derived from rats treated with a low dose of MSO. 
High, depolarizing potassium concentrations were used as a generic release stimulus. 
Having found that MSO in the present setting inhibits [3H]D-Asp release, we begun a 
search into the mechanism by which MSO interferes with the mechanism of Glu release. 
Towards this end we measured the expression of VGLUT1, the principal vesicular Glu 
transporter responsible for loading synaptic vesicles with glutamate [36]. 

2. Results 
2.1. Generation of Glu and Gln from [U-13C]glucose or [1,2-13C]acetate 
2.1.1. Glutamate 

At 15 minutes after Pilo administration 13C-enrichment of Glu from labelled glucose 
was drastically decreased by MSO both after the first (M+2) and the second turnover (M+4) 
(Figure 1. A.). In the latter, the levels of 5 out of 6 samples were below the detection limit 
of GC-MS. However, Pilo treatment alone did not induce changes in the enrichment (Pilo 
group), MSO failed to decrease the 13C-enrichment from glucose in Pilo-treated rats 
(MSO+Pilo group). No changes after either combination of treatments were apparent in 
the entorhinal cortex, except for a statistically insignificant tendency towards increase of 
M+4 labeling in Glu (Figure 1. C.). A slight tendency to decrease of Glu labelling from 
acetate by MSO became apparent in the entorhinal cortex (Figure 1. D.) but not in the 
hippocampus (Figure 1. B.). Again, MSO failed to decrease the 13C-enrichment from ace-
tate, leaving M+2 and M+4 Glu levels unchanged relative to the control in both brain struc-
tures. No noteworthy changes in Glu 13C enrichment were observed at 60 min after Pilo 
administration (Figure 1. E.-H.). In both time points and brain structures, and under either 
condition, 13C-enrichment in Glu derived from labeled glucose was around two times 
higher than that derived from acetate.  
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Figure 1. Percentage of 13C-enrichment in glutamate derived from [U-13C]glucose or [1,2-13C]acetate in hippocampus and 
entorhinal cortex of TLE model rats. * - p < 0.05, one-way ANOVA with Tukey’s correction; Control, MSO, Pilo, 
MSO+Pilo N = 6; mean ± SEM. Designations “15’” and “60’” refer to the onset and final phase of Pilo action and corre-
spond to 150-165 min or 195-210 min time of action of MSO, respectively, rendering in each case a 15 min presence of the 
isotope in the body. 

2.1.2. Glutamine 
Similarly to glutamate, glutamine enrichment from 13C-labelled glucose in hippocam-

pus at 15 minutes was significantly reduced by MSO after the first turnover and almost 
indeterminable after the second turnover (4 out of 6 samples below detection limit) (Fig-
ure 2. A.). At 15 min, MSO failed to significantly affect glutamine enrichment from glucose 
in the entorhinal cortex (Figure 2. C.). A slight tendency towards decrease of Gln labelling 
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by MSO was observed in both structures at 60 minutes when glucose was used as a pre-
cursor (Figure 2. E., G.). At 15 min, a tendency of MSO to decrease Gln labelling was also 
observed in acetate-derived metabolites in both structures; however, the effect did not 
reach statistical significance in either of the groups (Fig. 2. B., D.). No change was ob-
served in either structure after either treatment at 60 min (Fig. 2. F., H.). Unlike Glu, where 
majority of the newly labelled neurotransmitter originated from glucose, more than twice 
as much Gln was labelled from acetate than from glucose.  

 
Figure 2. Percentage of 13C-enrichment in glutamine derived from [U-13C]glucose or [1,2-13C]acetate in hippocampus and 
entorhinal cortex of TLE model rats. * - p < 0.05, one-way ANOVA with Tukey’s correction; Control, MSO, Pilo, 
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MSO+Pilo N = 6; mean ± SEM. Designations “15’” and “60’” refer to the onset and final phase of Pilo action and corre-
spond to 150-165 min or 195-210 min time of action of MSO, respectively, rendering in each case a 15 min presence of the 
isotope in the body. 

2.2 Glu and Gln brain tissue content in MSO and/or Pilo-treated rats (HPLC study) 

None of the treatments produced statistically significant changes in hippocampal 
or entorhinal cortical Glu at either time point. Considering all the experimental variants, 
the Glu content ranged from 531.1 ± 89.4 in entorhinal cortex to 788.1 ± 187.8 in hippo-
campus (nmol/mg of protein, mean ± SD). This result is not surprising, as changes in rat 
brain Glu content have been reported to be refractory to a 6 h treatment with MSO doses 
2 times higher than those used in the present study [37].  

2.3. [3H]D-Asp efflux  
D-Asp release evoked by K+-induced depolarization was markedly lowered due to 

administration of MSO (Figure . A.). For four consecutive minutes after potassium pulse 
[3H]D-Asp levels in individual fractions were found to be significantly decreased in com-
parison with control. Area under the curve was on average 37% smaller in the MSO group 
as well (2.445 ± 0.139 vs. 3.888 ± 0.239 in control), indicating that the whole released pool 
of D-Asp was reduced. Baseline level of D-Asp was slightly decreased (0.204 ± 0.006 % in 
MSO vs. 0.309 ± 0.005 % in control) which may suggest that D-Asp transport is affected by 
MSO in normal conditions as well, however, these changes were statistically insignificant. 

 
Figure 3. A. [3H]D-Asp efflux from brain slices of rats that received MSO or vehicle (control group). Arrow indicates the 
moment when K+ depolarizing pulse was introduced. * - statistical significance between time points, multiple t-test with 
Holm- Šidák correction; **, ***, **** - p < 0.01, 0.001, 0.0001 respectively; # - statistical significance between areas under 
curve (AUC), one-tailed t-test; baseline for AUC comparison was set as a mean of fractions 1-5; baselines were compared 
using linear regression but changes between the slopes were not significant; control N = 5, MSO N = 6; mean ± SEM. B. 
[3H]D-Asp uptake from brain slices of rats that received MSO or vehicle (control group). The dashed lines represent 
Michaelis-Menten kinetic curves; Vmax and Km constants were compared using t-test; control, MSO N = 7; mean ± SEM. 

2.4. [3H]D-Asp uptake 
There was no change in kinetics of [3H]D-Asp uptake, especially at lower concentra-

tions of D-Asp (50 – 500 μM) (Fig. 3. B.). At higher concentrations (1000-2000 μM) a slight 
decrease of the uptake rate was observed in the MSO-treated group, however, the impact 
of MSO was not pronounced enough to significantly change Vmax or Km parameters. This 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2021                   doi:10.20944/preprints202107.0706.v1

https://doi.org/10.20944/preprints202107.0706.v1


 7 of 16 
 

 

lack of effect of MSO confirms an earlier observation of unchanged Glu uptake in MSO-
pretreated rat brain synaptosomes [34]. 

 
2.5. VGluT1 expression 

The level of VGLUT1 protein in the hippocampus, 3.5 hours after MSO administra-
tion, was significantly decreased to 47.17 % of the control (Figure .). VGLUT1 mRNA ex-
pression was not altered by MSO treatment (Figure .). 

 
Figure 4. VGLUT1 mRNA and protein content with representative electrophorograms in the hippocampus of rats that 
received or not (control) MSO 3.5 h before decapitation. ** - p < 0.01, t-test; mRNA: control, MSO N = 6; protein: control 
N = 5, MSO N = 6; mean ± SEM. 

3. Discussion 
Our primary hypothesis regarding the mechanism by which low dose MSO attenu-

ates the initial seizures in the Li-Pilo model was that MSO decreases the synthesis of neu-
rotransmitter Glu by reducing the formation of its precursor Gln. The hypothesis was ver-
ified by measuring the effects of MSO treatment on the incorporation in vivo of 13C labelled 
metabolic precursors: acetate and glucose to neurotransmitter Glu and Gln in hippocam-
pus and entorhinal cortex, the two structures involved in the propagation of pilocarpine-
induced seizures [38]. The only statistically significant change observed throughout the 
study was a decrease of 13C -enrichment of both Glu and Gln from glucose in hippocam-
pus in the period of 150-165 min after MSO administration alone. However, at the very 
same time point, MSO failed to modulate in either direction the enrichment from glucose 
in rats with Li-Pilo-evoked seizures. Otherwise, MSO did not induce any significant effect 
on 13C–enrichment from glucose nor acetate, in any animal group either at the onset (15 
min) or at final stage (60 min) of the development of initial seizures. It is intriguing that 
the decrease by MSO of 13C–enrichment from glucose at 15 min was not observed at the 
later time point. Tentatively, this may be due to the biphasic effect of MSO on GS activity, 
leaving open the time brackets of the system in the final phase. A study with human GS 
revealed that initial competitive inhibition is a reversible process and is followed by irre-
versible activation [39]. The general absence of the effects of extrinsic factors became ap-
parent notwithstanding the predictable metabolic fates of 13C glucose or 13C acetate in this 
experimental setting. Both preferential 13C–enrichment of Glu from glucose and of Gln 
from acetate are a good fit into the present views on the role of either of the compound as 
a metabolic precursor in neurons and astrocytes. Indeed, neurotransmitter pool of Glu is 
thought to be preferentially synthesized from glucose. The de novo synthesis may occur 
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directly in neurons [40], or in astrocytes. The synthesis in astrocytes depends on anaple-
rosis, i.e. reactions providing a net increase in TCA cycle intermediates [41]. The primary 
anaplerotic enzyme in the brain, pyruvate carboxylase (PC), which serves as the main 
pathway of de novo glutamate synthesis is exclusively expressed in astrocytes [42,43]; re-
viewed by Schousboe et al. [44]. With regard to Gln, which is exclusively synthesized in 
astrocytes, its relatively high labelling from acetate supports the preferred [45], albeit not 
exclusive [30,32] astrocytic metabolism of acetate. 

 Most previous studies in which MSO was found to significantly affect generation of 
Glu from [13C] metabolic intermediates (glucose and/or acetate) have analyzed effects of 
direct application of MSO to in vitro preparations, at concentrations ranging from 1 to 10 
mM [30–32]. Significant reduction of 13C glucose flux in the brain in vivo was reported 
upon 6h after injection of 150 mg/kg MSO i.p. [24], which is a sub-acute dose reported to 
cause convulsion [46]. The here used 75 mg/kg i.p. dose of MSO administered for 165-210 
min was comparatively low, likely below the threshold required to produce a significant 
effect. It is intriguing, however, that the reduction of 13C–enrichment of Gln and Glu from 
glucose at the 15 min time point by MSO found in control rats, was not observed in Pilo-
treated rats. The mechanism by which Pilo abrogated the effect of MSO could be related 
to deregulation of glucose metabolism. Depending upon the experimental setting, Pilo-
induced seizures in their initial phase are accompanied either by an increased [47–50] or 
decreased cerebral glucose uptake/consumption [51–53]. Whatever their direction, the 
changes in glucose metabolism inflicted by Pilo-induced seizures may interfere with the 
effects of MSO. It is likely that in the MSO+Pilo group, the effect of MSO is additionally 
masked by Pilo-evoked release of a large pool of unlabeled Glu, indeed, a small tendency 
towards decrease of a 13C labelled Glu pool is noted at 15’ post-Pilo (Fig. 1. A.) 

The observation that MSO added at a low, non-convulsive dose did not significantly 
affect the 13C–enrichment of Gln or Glu in Li-Pilo-stimulated brain slices substantiated 
investigation of GGC-bypassing effects of MSO on Glu release and uptake. The key ob-
servation made was that MSO markedly reduced the release of newly loaded [3H]D-Asp 
from ex vivo brain slices subjected to the isotonic depolarization stimulus (75 mM K+). 
[3H]D-Asp release has been observed to mimic fairly well depolarization evoked release 
of the synaptic vesicular pool of Glu in brain slices [54] and cultured neurons [55]. Earlier, 
this paradigm proved useful in explaining variable responses of glutamatergic transmis-
sion in different models of hepatic encephalopathy [56]. The present results suggest that 
in the Li-Pilo-treated rats in situ, MSO attenuated the glutamatergic aspect of the initial 
seizures by directly inhibiting Glu release, albeit interactive interference of MSO and Pilo 
with the with the metabolism of Glu precursors to Glu described in the previous para-
graph cannot be excluded. Since induction and propagation of seizures by Pilo is subject 
to a complex mechanism encompassing a yet not fully resolved interplay of cholinergic 
and glutamatergic stimulation [57,58], it is clear that the reduction of the release, noted in 
brain slices obtained from MSO-treated rats in response to a single depolarizing stimulus, 
can only be considered as a rough approximation of its seizure-attenuating effect of Pilo 
in situ. Of note, basal, unstimulated [3H]D-Asp release from the slices was not affected by 
MSO exposure (Fig. 3.), a finding contrasting with stimulation of Glu release observed in 
different experimental settings at pro-convulsive MSO doses [33,35]. The above discrep-
ancy underscores the dose-dependent duality of the effects of MSO. 

VGLUT1 is the principal vesicular Glu transporter responsible for loading synaptic 
vesicles with glutamate, and as such a specific marker for the glutamatergic networks [36]. 
Notably, VGLUT1 is present in all intrinsic glutamatergic types of neurons of hippocam-
pus [59], the structure involved in generation of seizures by pilocarpine and other chemi-
cal stimulants [60]. The decrease of VGLUT1 protein content by MSO may thus underlie 
the attenuation of [3H]D-Asp release observed in brain slices obtained from MSO-treated 
rats. The mechanism underlying MSO-induced VGLUT1 protein loss remains to be re-
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solved. MSO may affect VGLUT1 protein synthesis or degradation directly, but alterna-
tively or in addition, the response may be secondary to MSO-induced loss of a pertinent 
pool of synaptic Glu and/or Gln.   

Increase of VGLUT1 protein has been recorded in autopsied hippocampi of human 
patients suffering from chronic TLE [61] and of rats in which pilocarpine treatment led to 
the development of SRS [62]. Whether the MSO-induced decrease of VGLUT1 contributes 
to the glutamatergic aspect of pilocarpine-induced initial seizures remains to be unequiv-
ocally proven: the caveats to this interpretation are the same as those outlined above with 
regard to the [3H]D-Asp release study. If this interpretation is correct, and the decrease is 
sustained throughout development of TLE to its full-blown stage, MSO would be a valu-
able addition to the hotly debated list of antiepileptic drugs with antiepileptogenic activity 
[63]. The fact that MSO is relatively much less neurotoxic in primates than in rodents [9] 
substantiates further search into its antiepileptogenic potential. 

 It cannot be excluded that modulation by MSO of glutamatergic transmission in-
volves other Gln synthesis-bypassing mechanisms as well. MSO inhibits not only GS, but 
also γ-glutamylcysteine synthetase, an enzyme diverting a significant portion of Glu to-
wards glutathione synthesis [64]. MSO was also found to variably affect Gln fluxes in cul-
tured astrocytes [65], and brain cortex slices [66]. However, the above mentioned findings 
were obtained in experimental conditions not easily translatable to those recorded in ex 
vivo slices in the present study. 

In conclusion, notwithstanding a number of caveats to be resolved, the results of the 
present study may be best interpreted as indicating that MSO at a non-convulsive dose 
mitigates the initial Pilo-induced seizures by interfering with mechanism of Glu release. 
By contrast, the results do not support the view that the “canonical” glutamine synthetase-
inhibiting activity of MSO plays an essential role in the attenuation of the seizures at this 
stage. 

4.  Materials and Methods 
4.1. Juvenile rat Li+-pilocarpine TLE model 

The procedure was essentially as described previously [1,67] with minor modifica-
tions. At postnatal day 23 (P23), male Sprague Dawley rats (the animal colony of the 
Mossakowski Medical Research Institute, Polish Academy of Sciences in Warsaw) were 
injected intraperitoneally (i.p.) with lithium carbonate (222 mg/kg; Sigma) dissolved in 
saline (pH equalized to 7.4). At P24, 18-20h after Li+ treatment, animals were injected i.p. 
with methyl-scopolamine (1 mg/kg; Sigma) and thirty minutes later with pilocarpine (Pilo 
(40 mg/kg; Sigma). From then on, animal’s behavior was continuously monitored. Rats 
were decapitated either 15’ (onset phase) or 60’ (final phase) after Pilo administration (see 
also paragraph 4.3). 
4.2. Pretreatment with MSO 

MSO (Sigma) was dissolved in saline and administered i.p. at 75 mg/kg. Rats that 
were used in experiments with Pilo received MSO 150 min before Pilo, thus 165 min or 
210 min before decapitation. Rats that were used in experiments with Pilo received MSO 
150 min before Pilo, thus 165 min (Fig. 1., 2. A-D) or 210 min (Fig. 1., 2. E-H, Fig. 4) before 
decapitation. Rats used for ex vivo experiments with brain slices received MSO 210 min 
before decapitation (Fig. 3.). Control rats that did not receive MSO were given equal vol-
umes of saline at the same time. 
4.3. Metabolic studies in vivo 

The following procedures were based on previously published papers [27,68]. Rats 
divided into four groups (control, MSO, Pilo, MSO+Pilo) received a single i.p. dose of [U-
13C]glucose (543 mg/kg) or [1,2-13C]acetate (504 mg/kg) (Cambridge Isotope Laboratories) 
dissolved in saline, either at the same time as Pilo (onset) or 45 minutes after the injection 
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of Pilo (final phase). All animals were decapitated after 15 minutes. Therefore the precur-
sors were present in the body at the onset and in the final phase of Pilo action. Brain tissue 
was immediately dissected and frozen in liquid nitrogen. Frozen hippocampi and ento-
rhinal cortex samples were homogenized in 2 mL of ice-cold 70% ethanol and then centri-
fuged for 20 min at 20,000 x g. Supernatant was collected, lyophilized, and used for amino 
acids analysis in GC-MS and HPLC; pellets were used for protein determination with the 
BCA assay (Thermo Fisher Scientific). 
4.3.1. Metabolic mapping using gas chromatography coupled to mass spectrometry (GC-
MS) 

Lyophilized extracts from hippocampus and entorhinal cortex tissue were resus-
pended, acidified to pH 1-2 with HCl and subsequently evaporated to dryness using ni-
trogen. With the use of 96 % ethanol and benzene, the analytes were extracted, evaporated 
again to dryness and derivatized with 14 % DMF/ 86 % MTBSTFA [69]. Gas chromatog-
raphy (GC, Agilent Technologies 7820A chromatograph, J&W GC column HP-5MS, parts 
no. 19091S-433) coupled to mass spectrometry (MS, Agilent Technologies, 5977E) was 
used to separate and analyze the samples. With the use of unlabeled standards, metabo-
lites of interest were corrected to their 13C natural abundance in order to assess their iso-
topic enrichment. Calculations were performed according to [70]. Data integration and 
enrichment determination was performed with the software MassHunter Quantitative 
Analysis software v.6.0.3881 (Agilent Technologies). Data is presented as labelling (%) of 
M+ X, where M is the mass of the unlabelled molecule and X is the number of labelled C-
atoms in a given metabolite. 
4.3.2. Quantitative determination of intracellular amino acids by HPLC  

Tissue extracts, previously resuspended in water, were separated by reverse-phase 
high performance liquid chromatography (HPLC) using an Agilent ZORBAX Eclipse plus 
C18 column (4.6 × 150 mm, particle size 3.5 μm; 959,963–902, Agilent Technologies, Santa 
Clara, CA, USA) in an Agilent 1260 Infinity system coupled to a 1260 Infinity fluorescence 
detector (Agilent Technologies) as described previously [71]. Briefly, samples were deri-
vatized with o-phthaldialdehyde and separation was performed with a mobile phase gra-
dient consisting of a mixture of buffer A (10 mM Na2HPO4 : 10 mM Na2B4O7, pH 6.9; 5 
mM NaN3) and buffer B (acetonitrile 45 % : methanol 45 % : water 10 %, v:v:v). Amino 
acids quantification was performed using standards containing a mixture of the amino 
acids of interest on increasing concentrations. The acquired data was normalized to the 
protein concentration in the dry tissue samples. Effects of MSO on the Gln content could 
not be accurately assessed because the position of the MSO peak which was in much ex-
cess over Gln largely overlapped with the position of the latter. 
4.4. Metabolic studies ex vivo on acute brain slices 

Rats anesthetized with isoflurane (Baxter) were decapitated, the brain was immedi-
ately removed, and cortices were cut into 350 μm thick slices, using McIllwain tissue chop-
per. The slices were pre-incubated for 30 minutes in the Krebs buffer (37°C, aerated with 
95 % O2 and 5%CO2, pH 7.4 ), composed of [mM]: 118 NaCl, 25 NaHCO3, 4.7 KCl, 1.2 
KH2PO4, 2.5 CaCl2, 1.2 MgSO4, 10 glucose. After preincubation, slices were used either for 
uptake or efflux measurement protocols, employing the radioactive [3H]D-Aspartate 
([3H]D-Asp ) as the non-metabolised analogue of glutamate. 
4.4.1. [3H]D-Asp efflux assay 

The [3H]D-Asp efflux was assayed based on the method previously described [72], 
with modifications. [3H]D-Asp efflux was measured after 15 minutes incubation in Krebs 
buffer containing 1.4 μCi/mL [3H]D-Asp (Perkin-Elmer) and unlabeled D-Asp (100 
μmol/L). The slices were moved to a chamber perfusion system (Brandel) and rinsed with 
Krebs buffer at 0,5 mL/min rate. The initial fraction was collected for 20 min to establish 
baseline efflux. Perfusate samples were then collected for 20 min, at 1 min intervals. At 
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the time period indicated in Figure . A. (fractions 5 and 6), a depolarizing pulse was in-
troduced by raising KCl concentration in the Krebs buffer to 75 mM, with simultaneous 
reduction of NaCl to 47.7 mM). Radioactivity contained in the preparation and released 
from brain slices were measured by a Wallac 1409 Liquid Scintillation Counter (Perkin-
Elmer). 
4.4.2. [3H]D-Asp uptake assay 

The [3H]D-Asp uptake was assayed as previously described [73]. Briefly, the uptake 
was initiated by adding [3H]D-Asp, 0.1 μCi/1 mL (Perkin-Elmer), to varying extracellular 
concentrations of unlabelled D-Asp (50–2000 μM). The incubation with the radioisotope 
was continued for 3 min and was terminated by rapid vacuum filtration through nitrocel-
lulose filter disks (Millipore), followed by flushing four times with 2 mL of ice-cold Krebs 
buffer. The slices were weighed, immersed in 4 mL of InstaGel scintillation fluid (Perkin-
Elmer), and the radioactivity of slices on filter disks was measured in the Wallac 1409 
Liquid Scintillation Counter (Perkin-Elmer). 
4.5. VGluT1 analysis 
4.5.1. RT-qPCR 

Total RNA was isolated from hippocampus using TRI Reagent (Sigma). Extracted 
RNA was reversely transcribed using High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems). The mRNA expression was determined by Taqman Gene Expres-
sion Assays (Applied Biosystems), using 1 μl of cDNA in a reaction of 10 μl. The assay 
IDs were Rn01462431_m1 for rat VGLUT1 and Rn00667869_m1 for β-actin. The fold 
change in the gene expression was determined by the 2-ΔΔCt method [74]. 
4.5.2. Western Blotting 

After decapitation, immediately removed rat hippocampus was isolated on ice and 
snap-frozen in liquid nitrogen. Frozen tissue samples were homogenized in buffer and 
centrifuged as described by Popek et al. [75]. Protein concentrations were performed us-
ing a BCA Protein Assay (Thermo Fisher Scientific). The content of VGluT1 protein was 
assessed by Western Blotting as previously described [75,76]. Membranes were incubated 
overnight at 4º C with anti-VgluT1 antibody (cat. no. EPR22269, 1:1000) (Abcam), washed, 
incubated with HRP-conjugated IgG (cat. no. 269A-1 1:5000) (Sigma) and developed using 
Chemiluminescent Super Signal West Pico Substrate (Pierce). After stripping, the mem-
branes were incubated with HRP-conjugated anti-GAPDH antibody for 1 h (cat. no. HRP-
60004, 1:10000) (Proteintech), which was used as a loading control, and developed as de-
scribed above. Data were expressed as percentage change in fluorescent band intensity of 
VGLUT1 antibody divided by GAPDH. 
4.6. Data evaluation 

All statistical analysis were performed with Prism 7.0 (GraphPad) software. T-tests 
were used for comparisons of two groups and one-way ANOVA for more than two 
groups. Multiple comparisons were followed by Holm-Šidák’s (multiple t-tests) or 
Tukey’s (ANOVA) post hoc tests. The significance level was set at p < 0.05. 
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