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Abstract: Semantic segmentation is a very popular topic in modern computer vision and it has ap-

plications to many fields. Researchers proposed a variety of architectures over time, but the most 

common ones exploit an encoder-decoder structure that aims to capture the semantics of the image 

and it low level features. The encoder uses convolutional layers, in general with a stride larger than 

one, to extract the features, while the decoder recreates the image by upsampling an using skip 

connections with the first layers. In this work, we use DeepLab as architecture to test the effective-

ness of creating an ensemble of networks by randomly changing the activation functions inside the 

network multiple times. We also use different backbone networks in our DeepLab to validate our 

findings. We manage to reach a dice coefficient of 0.888, and a mean Intersection over Union (mIoU) 

of 0.825, in the competitive Kvasir-SEG dataset. Results in skin detection also confirm the perfor-

mance of the proposed ensemble, which is ranked first with respect to other state-of-the-art ap-

proaches (including HardNet) in a large set of testing datasets. The developed code will be available 

at https://github.com/LorisNanni 

Keywords: semantic segmentation; activation function, deep ensembles.  

 

1. Introduction 

Semantic segmentation is a computer vision application that consists in labelling the 

pixels of an image with the class they belong to. This has very important applications in 

many fields such as autonomous driving [1] and computer aided medical diagnosis [2]. 

In recent years, deep learning techniques became the most relevant ones to address this 

problem. An early architecture for sematic segmentation was U-Net [3], which was based 

on an encoder-decoder structure. However, it failed to precisely classify the borders of the 

figures, due to the lack of skip-connections in the decoder. After that, many other segmen-

tation networks were proposed and most of them followed more or less the same structure 

[4–6]. 

In this paper we use DeepLab v3+, which is one of the architectures of the DeepLab 

family. Here we focus on two applications, in particular on colorectal cancer segmentation 

and on skin detection. 

Colorectal Cancer is one of the most dangerous cancers according to the statistics. 

The early diagnosis is crucial to be able to fully remove it while it is small. The presence 

of polyps in the colon is highly correlated with the appearance of cancer, hence they must 

be recognized and removed as soon as possible [7]. However, this is a challenging task 

even for trained doctors, hence an automatic tool able to recognize them would be very 

useful in this case. The boundaries of polyps are not always easy to recognize, due to their 

similarity with surrounding mucosa, besides there might be partial occlusions. Polyp be-

long to four different classes: adenoma, serrated, hyperplastic and mixed, which is quite 

rare. This makes the classification and the detection even harder. 

Skin detection is a completely different task when it comes to the applications. It is a 

useful step for face detection, body tracking and gesture recognition [8–10]. However, the 
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deep learning tools, as well as the challenges, are very similar in polyp segmentation and 

skin detection. Again, we usually face occlusions and intra-class variance, since images 

have very different light and the subjects can be very different from each other. 

The outbreak of deep learning for computer vision led to an increasing effort to im-

prove the classification performances of segmentators on a variety of applications. Now-

adays segmentators have been reported to have performances comparable with human 

experts in polyp segmentation [2,11–13]. However, the tasks we are discussing are older 

and the first segmentators use classic machine learning techniques. For example, Tham-

bawita et al. [14] trained five models for polyp segmentation including both classical ma-

chine learning techniques as well as convolutional networks. Guo et al. [15] proposed a 

couple of fully convolutional networks to participate at the Gastrointestinal Image ANAl-

ysis (GIANA) in 2017 and 2018 and managed to reach the first and second place in the 

ranking in two consecutive years. Until recently, polyp segmentators were trained and 

tested on very small datasets, preventing the networks to generalize enough and also not 

allowing a good statistical significance of the results. Besides, many times the larger da-

tasets were not publicly released [2,11]. 

Jha et al. [16] recently proposed a new public polyp dataset, which is called Kvasir-

SEG dataset and it is made by 1,000 polyp images annotated at the Oslo University Hos-

pital by expert endoscopists at pixel level. Jha et al. [17] managed to train a segmentator 

on this novel dataset based on ResNet and U-Net and managed to reach very promising 

results. 

Skin segmentation also saw an increase in the number of papers dealing with this 

issue. For example, Phung et al. [18] proposed a segmentator based on classical machine 

learning techniques such as histograms analysis and Gaussian mixture classifiers. More 

recently, Roy et al. [19] proposed a system for hand recognition based on skin segmenta-

tion using CNNs. Arsalan et al. [20] used a CNN with skip connections for generic skin 

recognition, following the modern trends that tend to apply skip connections in neural 

networks more and more often. Shahriar et al. [21] used skin recognition again to detect 

hands, with the purpose of interpreting the sign language. They also used CNNs for their 

segmentation. 

Our approach to segmentation consists in creating an ensemble of existing networks, 

but we randomly substitute their activation functions, which are usually ReLUs, with ran-

dom ones extracted from a pool of activations proposed in the literature. We use different 

backbone networks for our DeepLab v3 architecture, which are ResNet, Xception, Effi-

centNet and MobileNet. Our aim is to show that we are able to train a large number of 

high performing classifiers that are independent enough from each other to be useful 

when included in an ensemble. 

Each neural network has been stochastically designed by varying the activation lay-

ers in order to increase the diversity of the ensemble, then a pool of K most diverse net-

works has been selected (using only training data) to be included in the final ensemble. 

Experimental results carried out in two very different segmentation problems confirm the 

good performance of the ensemble. Our approach has been compared with other state-of-

the-art methods in both problems, included the recently proposed HarDNet-MSEG [49] 

which here is evaluated for the first time in a skin segmentation problem.  

 

2. Materials and Methods 

2.1. Deep Learning for Semantic Image Segmentation 

Image segmentation is a pixel-based classification problem which performs pixel-

level labeling with a set of object categories for all image pixels. Fully Convolutional Net-

works (FNC) [6] are one of the first attempts to use CNN for segmentation: they were 

designed by replacing the last fully connected layers of a net with a fully-convolutional 

layer that allow the classification of the image on a per-pixel basis.  
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A step forward in the design of segmentation network is done by the encoder-de-

coder architecture [3] which overcomes the loss of information of FNC due to the absence 

of deconvolution, by proposing an architecture where a multi-layer deconvolution net-

work is learned. A similar architecture is proposed by U-Net, a U-shape network where 

the decoder part downsamples the image and increases the number of features, while the 

opposite encoder part increases the image resolution to the input size [22]. Another en-

coder-decoder structure is proposed in SegNet [4], which uses VGG [23] as backbone en-

coder, coupled to a symmetric decoder structure. In SegNet decoding is performed using 

max pooling indices from the corresponding encoder layer, as opposed to concatenating 

it as in U-Net, thus saving memory and getting a better boundary reconstruction.  

The next step to image segmentation is represented by DeepLab [24], a semantic seg-

mentation model designed by Google which achieves dense prediction by simply up-sam-

pling the output of the last convolution layer and computing pixel-wise loss. The novelty 

is in the use of atrous convolution for up-sample: it is a dilated convolution which uses a 

dilation rate to effectively enlarge the field of view of filters without increasing the num-

ber of parameters or the amount of computation. The last improvement of the DeepLab 

family is DeepLabV3+ [25], which combines cascaded and parallel modules of dilated con-

volutions and it is the architecture used in this work. 

The DeepLab family of segmentators [24–27] is a very popular collection of segmen-

tation tools. They have three key features. First, the used dilated convolutions to avoid the 

decrease in resolution caused by pooling layers and large strides. The second one is Atrous 

Spatial Pyramid Pooling, which consists in using filters with multiple sampling rates to 

get relevant information from the image at different scales. The third one is a better way 

to localize object boundaries that combines usual convolutional networks and probabilis-

tic graphical models. DeepLabV3 was the third member of the DeepLab family and which 

consisted in an improvement of the previous versions by combining cascade and parallel 

modules of dilated convolutions. Besides, the Atrous Spatial Pyramid Pooling is modified 

adding a 1x1 convolution and batch normalization. The output of this network is given 

by a final layer which is again a 1x1 convolution that outputs the probability distribution 

of the classes on every pixel. The version that we use here, however, is DeepLabv3+, which 

is a modification of the older version that includes a decoder with point-wise convolu-

tions, that operate on the same channel and on different locations, and depth-wise convo-

lutions, that operate at the same location but on different channels. They kept the same 

encoder structure of DeepLabV3. 

Several other architectures have been proposed in the literature for image segmenta-

tion, including recurrent neural network based models, attention-based models and gen-

erative models. The interested reader can refer to [28] for a recent survey.   

Apart from the main architecture of the network, there are a handful of other good 

design choices that would help achieve good performance. For example, the choice of a 

pretrained backbone for the encoder part of the network. Among several CNNs [29] 

widely used for transfer learning we tested  the following models:  

• MobileNet-v2 [30] is a lightweight CNN designed for mobile devices based on depth-

wise separable convolutions. 

• ResNet18 and ResNet50 [31] are two CNNs of the ResNet family, a set of architectures 

based on the use of residual blocks in which intermediate layers of a block learn a 

residual function with reference to the block input. 

• Xception [32], is a CNN architecture that relies solely on depthwise separable convo-

lution layers.  

• IncR, Inception-ResNet-v2 [33] combines the Inception architecture with residual 

connections. In the Inception-Resnet block, multiple sized convolutional filters are 

combined with residual connections, replacing the filter concatenation stage of the 

Inception architecture. 

• EfficentNetb0 [34], is a family of CNNs designed to scale well with performance. Ef-

ficientNet-B0 is a simple mobile-size baseline architecture, the other networks of the 
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family are obtained applying an effective compound scaling method for increasing 

the model size to achieve maximum accuracy gains. 

 

In Table 1 a summary of the above models is reported. 

Table 1: Summary of CNN models. 

Network Depth Size (MB) Parameters (Millions) Input Size 

mobilenetv2 53 13 3.5 224×224 

resnet18 18 44 11.7 224×224 

resnet50 50 96 25.6 224×224 

xception 71 85 22.9 299×299 

IncR 164 209 55.9 299×299 

efficientnetb0 82 20 5.3 224×224 

 

Also the choice of the loss function influences the way the network is trained. The 

most commonly used loss function for the task of image segmentation is a pixel-wise cross 

entropy loss. This loss treats the problem as a multi-class classification problem at pixel 

level comparing the class predictions to the actual label. Pixel-wise loss is calculated as 

the log loss summed over all the classes and averaged over all pixels. This can be a prob-

lem if some classes have unbalanced representation in the image, as training can be dom-

inated by the most prevalent class. A possible solution is to use weighting for each class 

in order to counteract a class imbalance present in the dataset [6]. 

Another popular loss function for image segmentation is the Dice loss [35], which is 

based on the Sørensen-Dice similarity coefficient for measuring overlap between two seg-

mented images. This measure ranges from 0 to 1 where a Dice coefficient of 1 denotes 

perfect and complete overlap. The dice loss is used in this work. Other popular loss func-

tions for image segmentation and their usage for fast and better convergence of a model 

are reviewed in [36] . 

Moreover, the choice of the activation function can be significant. ReLU is the non-

linearity that most works use in the area, but several works have reported improved re-

sults with different activation functions [37]. In subsection 2.2 our approach for perturbing 

models by replacing activation layer is explained.  

Finally, data augmentation can help avoid overfitting since in many applications the 

size of the dataset is small compared to the number of parameters in a segmentation deep 

neural network. We perform experiments with data augmentation, consisting in horizon-

tal and vertical flips and rotations of 90°.  

2.2. Stochastic Activation Selection 

Given a neural network architecture and a pool of different activation functions, Sto-

chastic Activation Selection consists in creating different versions of the same architecture 

that differ in the choice of the activation layers. This method was first introduced in [37]. 

The process to create a new network is based on the replacement of each activation layer 

(ReLU) by a new activation function which can be fixed a priori or randomly selected from 

the ones in the pool. This new function is substituted into the original architecture. This 

leads to a new network, which in the stochastic version, has different activation layers 

through the network. Since this is a random procedure, it yields a different network every 

time. Hence, we iterate the process multiple times to create many different networks that 

we use to create an ensemble of neural networks. We train each network independently 

on the same set of data and then we merge their results using the sum rule, which consists 

in averaging the softmax output of all the networks in the ensemble. 

In our paper, we use Deeplabv3+ [25] as neural architecture. The pool of activation 

functions is made by ReLU and a list of its modifications proposed in the literature: ReLU 

[38], Leaky  ReLU [39], ELU [40], PReLU [41], S-Shaped ReLU [42] (SReLU), Adaptive 

Piecewise Linear Unit [43] (APLU), Mexican ReLU [44] (MeLU) (with 𝑘 ∈ {4,8}), Gaussian 
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Linear Unit (GaLU) [37] (with 𝑘 ∈ {4,8}), PDELU, [45], Swish (fixed and learnable) [46], 

Soft Root Sign [47], Mish (fixed and learnable) [48] and Soft Learnable [37]. 

 

 

3. Results on colorectal cancer segmentation 

 

3.1 Datasets, testing protocol and metrics 

 

All the experiments on colorectal cancer segmentation have been carried out on the 

Kvasir-SEG dataset [16] which includes 1000 polyp images acquired by a high-resolution 

electromagnetic imaging system, with a ground-truth consisting of bounding boxes and 

segmentation masks. For a fair comparison with other approaches (see table 4) as [17] and 

[49] we use the following testing protocol: 880 images are used for training, and the re-

maining 120 for testing.  

The image sizes vary between 332 × 487 to 1920 × 1072 pixels. For training purposes, 

the images are resized to the input size of each model, but for performance evaluation the 

predicted masks are resized back to the original dimensions (please note that other ap-

proaches evaluated performance on the resized version of the images).  

We train our models with SGD optimizer for 20 epochs and a learning rate of 10e-2 

(see the code for details) using the Dice loss function and data augmentation.  

   

Several metrics have been proposed in the literature to evaluate the performance of 

an image segmentation models. We report metrics for segmentation in two classes (fore-

ground/background), which are suited to the polyp segmentation problem, anyway they 

can be easily extended to multiclass problems. The following metrics are the most popular 

to quantify model performance. All the following definitions hold for single images and 

are defined pixel-wise: 

• Accuracy / Precision / Recall / F1-score / F2-score can be defined for a bi-class problem 

(or for each class in case of multiclass) starting from the confusion matrix (TP, TN, 

FP, FN refer to the true positives, true negatives, false positives and false negatives, 

respectively) as follows:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP + TN

TP +  FP +  FN + TN
(1) 

 

is the number of pixels correctly classified over the total number of pixels in the im-

age. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

TP +  FP
(2) 

 

is the fraction of the polyp that is correctly classified. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP +  FN
(3) 

 

is the fraction of the model polyp outputs that were actually polyp pixels. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ TP

2 ∙ TP +  FP +  FN
(4) 

𝐹2 − 𝑠𝑐𝑜𝑟𝑒 =
5 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙

4 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
(5) 

 

are two measures that try to average precision and recall. 

• Intersection over Union (IoU): IoU is defined as the area of intersection between the 

predicted segmentation map A and the ground truth map B, divided by the area of 

the union between the two maps:  
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𝐼𝑜𝑈 =  
 |𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
=

TP

TP +  FP +  FN
(6) 

• Dice: Dice coefficient is defined as twice the overlap area of the predicted and 

ground-truth maps divided by the total number of pixels. For binary maps, with fore-

ground as the positive class, the Dice coefficient is identical to the F1-score: 

𝐷𝑖𝑐𝑒 =  
 |𝐴 ∩  𝐵|

|𝐴| + |𝐵|
=

2 ∙ TP

2 ∙ TP +  FP +  FN
(7) 

 

All the above reported metrics range in [0,1] and must be maximized. The final per-

formance is obtained averaging on the test set the performance obtained for each test im-

age. 

 

3.2 Experiments 

 

The first experiment (Table 2) is aimed at comparing the different backbone net-

works listed in subsection 2.1. Since the size of images in Kvasir dataset is quite large we 

also evaluate versions of the Resnet with larger input size, i.e. 299×299 (resnet18-299/res-

net50-299) and 352×352 (resnet18-352/resnet50-352). 

 

Table 2: Experiments with different backbones.  

 

Backbone IoU Dice F2 Prec. Rec. Acc. 

Mobilenetv2 0.734 0.823 0.827 0.863 0.841 0.947 

resnet18 0.759 0.844 0.845 0.882 0.856 0.952 

resnet50 0.751 0.837 0.836 0.883 0.845 0.952 

xception 0.699 0.799 0.792 0.870 0.800 0.943 

IncR 0.793 0.871 0.878 0.889 0.892 0.961 

efficientnetb0 0.705 0.800 0.801 0.860 0.814 0.944 

resnet18-299 0.782 0.863 0.870 0.881 0.883 0.959 

resnet50-299 0.798 0.872 0.876 0.898 0.886 0.962 

resnet18-352 0.787 0.865 0.871 0.891 0.884 0.960 

resnet50-352 0.801 0.872 0.884 0.881 0.900 0.964 

 

The second experiment (Table 3) is aimed at designing effective ensembles by vary-

ing the activation functions. Each ensemble is fusion by the sum rule of 14 models (since 

we use 14 activation functions). The ensemble name is the concatenation of the name of 

the backbone network and a string to identify the creation approach: 

• act: each network is obtained by deterministically substituting each activation layer 

by one of the activation functions of subsection 2.2 (the same function for all the lay-

ers, but a different function for each network) 

• sto: ensembles of stochastic models, whose activation layers have been replaced by a 

randomly selected activation function (which may be different for each layer) 

• sel: ensembles of “selected” stochastic models. The network selection is performed 

using cross validation on the training set among 100 resnet50 stochastic models. The 

selection procedure is based on the idea of Sequential Forward Floating Selection 

(SFFS) [50], a selection method originally proposed for feature selection and here 

used for selecting the most performing/independent classifiers to be added to the 

ensemble. SFFS is an iterative method which, at each step, adds to the final ensemble 

the model which provides the highest incremental of performance to existing subset 

of models. Then a backtracking step is performed in order to exclude the worst model 

from the actual ensemble. Since SFFS requires a training phase we perform a 3-fold 

cross validation on the training set. For a fair comparison with other ensembles, we 

selected a set of 14 networks, which are finally fine-tuned on the whole augmented 

training set at larger resolution.  
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• relu: an ensemble of original models which differ only for the random initialization 

before training. It means that all the starting models in the ensemble are the same, 

except for the initialization. 

 

Table 3: Experiments on ensembles. 

 

Ensemble name IoU Dice F2 Prec. Rec. Acc. 

resnet18_act 0.774 0.856 0.856 0.888 0.867 0.955 

resnet18_relu 0.774 0.858 0.858 0.892 0.867 0.955 

resnet18_sto 0.780 0.860 0.857 0.898 0.864 0.956 

resnet50_act 0.779 0.858 0.859 0.894 0.869 0.957 

resnet50_relu 0.772 0.855 0.858 0.889 0.870 0.955 

resnet50_sto 0.779 0.859 0.864 0.891 0.877 0.957 

resnet50-352_sto 0.820 0.885 0.888 0.915 0.896 0.966 

resnet50-352_sel 0.825 0.888 0.892 0.915 0.902 0.967 

 

Finally, in Table 4 a comparison with some state-of-the-art results is reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: State-of-the-art approaches using the same testing protocol (all values are 

those reported in the reference paper, except for our approaches). The results of many 

methods are reported in [17], please read it for the original reference of a given approach. 

Other results [51][52] using a different protocol are not included in the comparison. 

 

Method IoU Dice F2 Prec. Rec. Acc. 

resnet50-352  0.801 0.872 0.884 0.881 0.900 0.964 

resnet50-352_sel  0.825 0.888 0.892 0.915 0.902 0.967 

U-Net [17] 0.471 0.597 0.598 0.672 0.617 0.894 

ResUNet [17] 0.572 0.69 0.699 0.745 0.725 0.917 

ResUNet++ [17] 0.613 0.714 0.72 0.784 0.742 0.917 
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FCN8 [17] 0.737 0.831 0.825 0.882 0.835 0.952 

HRNet [17] 0.759 0.845 0.847 0.878 0.859 0.952 

DoubleUNet [17] 0.733 0.813 0.82 0.861 0.84 0.949 

PSPNet [17] 0.744 0.841 0.831 0.89 0.836 0.953 

DeepLabv3+ResNet50 [17] 0.776 0.857 0.855 0.891 0.861 0.961 

DeepLabv3+ResNet101[17] 0.786 0.864 0.857 0.906 0.859 0.961 

U-Net ResNet34 [17] 0.81 0.876 0.862 0.944 0.86 0.968 

ColonSegNet [17] 0.724 0.821 0.821 0.843 0.850 0.949 

DDANet [53] 0.78 0.858 --- 0.864 0.888 --- 

HarDNet-MSEG [49] 0.848 0.904 0.915 0.907 0.923 0.969 

 

4. Result on skin segmentation 

4.1 Datasets, testing protocol and metrics 

To evaluate the proposed ensemble for image segmentation we also perform a test on 

another relevant segmentation problem: skin segmentation. A skin segmentation (or de-

tection) is a problem that discriminates regions in images and videos into the two classes 

skin and nonskin. Following the testing framework developed in reference [54], the per-

formance results of the ensemble proposed here are compared to several state-of-the-art 

approaches on 11 datasets (Table 5) for skin segmentation; the training protocol provides 

that network models are trained only on the first 2000 images of the ECU dataset; while  

the other skin datasets are used only for testing (including the remaining 2000 from ECU). 

 

Table 5. Summary of the Skin segmentation datasets. 

 

ShortName Name #Samples Ref. 

FV Feeval Skin video DB 8991 [55] 

Prat Pratheepan  78 [56] 

MCG MCG-skin 1000 [57] 

UC UChile DB-skin 103  [58] 

CMQ Compaq 4675 [59] 

SFA SFA 1118 [60] 

HGR Hand Gesture Recognition 1558 [61] 

Sch Schmugge dataset 845 [62] 

VMD 5 datasets for human activity recognition 285 [63] 

ECU ECU Face and Skin Detection 4000 [18] 

VT VT-AAST 66 [64] 

 

The evaluation and comparison of the state-of-the-art approaches is performed ac-

cording to the most used performance indicators in skin segmentation: F1-measure, i.e. 

Dice, which is calculated at pixel-level (and not at image-level) to be independent on the 

image size in the different databases 

 

4.2 Experiments 

 

Table 6 reports the results of the evaluation of some of the networks and ensemble 

proposed in this paper compared to some state-of-the-art approaches on the testing sets 

described above. For each dataset the F1-measure is used as performance indicator, more-

over the average F1-measure on the datasets is reported and the rank of the method with 

respect to the average value is calculated. The results of approaches followed by a citation 

are taken from the related papers, while for HarDNet are calculated using the same pa-

rameter configuration of the Polyp dataset [49] (a loss function which is a weighed sum 

of binary cross entropy and IoU, Adam optimizer with learning rate 0.001 and 100 
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epochs). As to our methods are concerned, in order to avoid overfitting we have main-

tained for the training on skin the same parameter configuration described above for 

polyp segmentation, including data augmentation, SGD optimizer with learning rate 0.1 

for 20 epochs. Due to this configuration the results are quite different from those pub-

lished in [54] for the same network, but the aim in this case was to validate our ensemble 

without an ad hoc tuning per dataset.  

 

 

 

 

 

 

Table 6. Experiments on skin datasets (F1-measure). The last two columns report the av-

erage F1-measure on all the tested datasets and the rank of Avg. 

 

Method FV Prat MCG UC CMQ SFA HGR Sch VMD ECU VT Avg Rank 

resnet50-224 0.694 0.874 0.862 0.866 0.797 0.939 0.954 0.760 0.608 0.927 0.682 0.815 7 

resnet50-352 0.745 0.910 0.880 0.881 0.831 0.948 0.962 0.784 0.727 0.945 0.742 0.850 4 

HarDNet-224 0.674 0.890 0.882 0.894 0.819 0.949 0.963 0.792 0.677 0.936 0.756 0.839 3 

HarDNet-352 0.667 0.913 0.887 0.902 0.835 0.952 0.968 0.795 0.729 0.946 0.744 0.849 2 

resnet50-352_sel 0.742 0.917 0.884 0.910 0.840 0.952 0.968 0.785 0.742 0.949 0.755 0.859 1 

FusAct3 [37] 0.790 0.874 0.884 0.896 0.825 0.951 0.961 0.776 0.669 0.933 0.737 0.845 6 

FusAct10 [37] 0.796 0.864 0.884 0.899 0.821 0.951 0.959 0.776 0.671 0.929 0.748 0.845 5 

SegNet [54] 0.717 0.730 0.813 0.802 0.737 0.889 0.869 0.708 0.328 - - -  

U-Net [54] 0.576 0.787 0.779 0.713 0.686 0.848 0.836 0.671 0.332 - - -  

DeepLab [54] 0.771 0.875 0.879 0.899 0.817 0.939 0.954 0.774 0.628 - - -  

 

Compared with the state-of-the-art results in [54] and [37] (only the best method are re-

ported in Table 6 for sake of space), the proposed ensemble resnet50-352_sel gets the best 

average performance. Notice that in [54] we have compared DeepLabV3+ with several 

other skin detector methods, it was shown that DeepLabV3+ obtained state of the art per-

formance. This is a valuable result, since it proves that the good performance reported for 

the previous problem can be replicated in a very different context.  

 

5. Discussion 

Clearly using larger input sizes boost the performance of Resnet50 as proved by re-

sults in Table 2 for stand-alone models and Table 3 for ensembles. For ensemble creation, 

stochastic variation of activation functions (sto) allows a performance improvement with 

respect to a simple fusion of network based on ReLu activations (relu) or a set of networks 

differing by the activation function (act), moreover the selection procedure (sel) allows for 

a further improvement. In fact, the best performance, among the ensembles, is obtained 

by resnet50-352_sel (Table 3).  

Our best approach obtains the best performance with except to HarDNet-MSEG [49] 

a segmentation network based on weighed loss. Notice that our approach strongly out-

performs several other deep learning approaches including the recently published Colon-

SegNet [17] which works with larger image size (512).  

We are aware that ensemble methods greatly increase computational costs and com-

plexity with respect to a stand-alone network, therefore we suggest a simple rejection rule 

to reduce the computational effort. Considering that in a real dataset the incidence of im-

ages presenting polyps is quite low, we can use a first level rule to reject images non con-

taining polyps based on a single net, and then use the ensemble only to gain a more precise 

segmentation if needed. Preliminary tests using a very low threshold, suggests that it is 
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possible to set a rule able to discard images non containing lesions without losing in pre-

cision.  

6. Conclusions 

Semantic segmentation is a very important topic in medical-image analysis. In this 

paper our aim is to optimize the performance in polyp segmentation during colonoscopy 

examinations and skin detection. 

We have compared several convolution neural network architectures, including Res-

Net, Xception, EfficentNet, MobileNet, HarDNet and different methods for building en-

semble of CNN.  

Our reported results show that the best ensemble obtains state of the art performance 

in the tested dataset (Kvasir-SEG dataset, skin test sets). To reproduce our results the 

MATLAB source code is available at GitHub: https://github.com/LorisNanni. 

As a future work we plan to deal with the complexity problem of deep neural net-

works. Deploying large models or big ensembles on the edge is infeasible, since 

smartphones and IoT sensors are resource-constrained devices; hence, it is vital to focus 

research also on techniques for compressing large models into a compact one with mini-

mal performance loss. We plan to study the feasibility of reduce the complexity of our 

ensemble by applying one of more of the following techniques: pruning, quantization, 

low-rank factorization and distillation.  
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