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Abstract: The increasingly affordable price point of terrestrial laser scanners has led to a democra-

tization of instrument availability, but the most common low-cost instruments have yet to be com-

pared in terms of the consistency to measure forest structural attributes. Here, we compared two 

low-cost terrestrial laser scanners (TLS): the Leica BLK360 and the Faro Focus 120 3D. We evaluate 

the instruments in terms of point cloud quality, forest inventory estimates, tree-model reconstruc-

tion, and foliage profile reconstruction. Our direct comparison of the point clouds showed reduced 

noise in filtered Leica data. Tree diameter and height were consistent across instruments (4.4% and 

1.4% error, respectively). Volumetric tree models were less consistent across instruments, with ~29% 

bias, depending on model reconstruction quality. In the process of comparing foliage profiles, we 

conducted a sensitivity analysis of factors affecting foliage profile estimates, showing a minimal 

effect from instrument maximum range (for forests less than ~50 m in height) and surprisingly little 

impact from degraded scan resolution. Filtered unstructured TLS point clouds must be artificially 

re-gridded to provide accurate foliage profiles. The factors evaluated in this comparison point to-

wards necessary considerations for future low-cost laser scanner development and application in 

detecting forest structural parameters. 
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1. Introduction 

Since the early 2000s, terrestrial laser scanning (TLS) has matured into a robust, and 

tractable means of measuring forest structural attributes using light detection and ranging 

(LiDAR) from the ground [1]. TLS has been used to model branch architecture [2], quan-

tify leaf angle distributions [3,4], assess habitat quality [5], estimate fuel loads [6–8], map 

forest microtopograpy [9,10], examine biodiversity gradients [11,12], and estimate forest 

biomass [13–18]. Forest biomass carbon storage and productivity and can be inferred from 

estimates of above-ground biomass [19,20]. However, uncertainties exist in the distribu-

tion of above-ground biomass, affecting the understanding terrestrial sink/source status 

[21]. Ground based measurements of forest structure are the current basis for all area-wide 

estimates of aboveground biomass [22]. Tree diameter and height are traditionally related 

to destructive measures of dry biomass and carbon to create allometric scaling relation-

ships that can be applied across forest plots [23–25]. Allometric relationships are difficult 

to create and as a result, tend to be low in sample size, spatially biased, and often exclude 

large trees [15,26]. An accurate and unbiased method of measuring forest structure 

through more direct ground-based measurements would constrain uncertainty in forest 

carbon storage and productivity [27,28].  

TLS offers non-destructive means of estimating above-ground biomass [14,16], forest 

structure [29,30], canopy complexity [31], and structural traits [32], but much of the re-

search employing TLS technology has used high-end TLS units costing more than $75,000 
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USD--a price point directly limiting the widespread adoption of TLS methods. Until re-

cently, high-end TLS units were the only commercially available units. A new generation 

of short-range (<150 m), low-cost TLS systems provide an affordable option for high-qual-

ity TLS data, at the expense of limited range and/or durability. Lower-cost TLS systems 

are designed primarily for use in surveying, architecture, and civil engineering and re-

main relatively untested in forestry and ecological applications. Here we compare the util-

ity of two common lower-cost (< $40,000 USD) TLS systems for deriving forest structural 

parameters: 1) The Leica BLK360 – a less durable (e.g. exposed rotating mirror and non-

waterproof) mid-range (60 m) time-of-flight system; and 2) the Faro Focus 120 3D TLS, a 

mid-range (120 m) phase-shift system.  

 The Leica BLK360 (henceforth Leica) and the Faro Focus 120 3D (henceforth Faro) 

differ in the method of retrieving range estimates –the Leica is a time-of-flight (TOF) sys-

tem, while the Faro is a phase-shift (PS) based system. Calders et al [1] describes the dif-

ference between time-of-flight and phase-shift systems in detail. Briefly, TOF systems emit 

discrete light pulses and measure the time it takes for that pulse to return to the sensor. In 

contrast, PS systems measure the difference in phase between a continuous outgoing and 

incoming signal, the difference or “shift” in phase determines the range estimate. PS scan-

ners are generally less expensive than time-of-flight systems while having smaller beam 

divergence (an instrument specification determining laser footprint at distances), but the 

ranging method results in greater point cloud noise. The Leica examined here is the only 

time-of-flight system at the time of this study below 40,000 USD.  

To compare these two scanners, we first directly assess the point clouds from each 

instrument by comparing the return distribution as a function of range and height above 

ground. We augment this by further providing a direct comparison of point cloud noise. 

Next, we extract and compare tree-level standard forestry measurements (tree diameter 

and height) and total volume estimates. Finally, we evaluate a range of factors that affect 

foliage profile estimates, conduct a sensitivity analysis of laser scanner range, scan reso-

lution, and point cloud filtering, then conclude with a comparison of the specific charac-

teristics of each instrument’s estimated foliage profiles. 

2. Materials and Methods 

2.1 Study Area and Data Collection 

Terrestrial laser scans were acquired at two sites in central Virginia, USA with similar 

vegetation composition--secondary growth mixed forests primarily populated by mature 

chestnut oak (Quercus montana), white oak (Quercus alba), sweetgum (Liquidambar 

styraciflua), dogwood (Cornus florida), tulip poplar (Liriodendron tulipifera). Eastern 

white pine (Pinus strobus) and mountain laurel (Kalmia latifolia) were also minor constit-

uents of the forest. Site 1 was located at Observatory Hill on the grounds of the University 

of Virginia (38.03, -78.52), where we scanned a 0.1 ha circular plot on April 17 and 20, 2018, 

just prior to leaf-out, specifically to capture woody tree structure. Site 2 was located at the 

Pace Estate, a property in holding of the University of Virginia (37.92, −78.27). At site 2, 

which is approximately 25 km East of Site 1, we scanned a second plot of the same size 

during the late growing season (September 10, 2018) to compare vertical foliage profiles. 

At each plot, we arranged eight, 7.2 cm diameter white polystyrene spheres on 2 m fiber-

glass poles throughout the plot to aid in scan registration.  

 

2.2 Laser Scanners 

Here, we compare the Faro Focus 120 3D and Leica BLK360 laser scanners. The Leica 

BLK360 is a 3D terrestrial laser scanner with an integrated spherical and thermal imaging 

system. The BLK360 is a time-of-flight system operating at 830 nm wavelength with a 360-

degree horizontal and 300-degree vertical view, a range of 0.6 to 60 m, a measurement rate 

of 360,000 points per second, with a ranging accuracy of 4 mm at 10 m to 7 mm at 20 m 

distance, respectively. The Leica was set to standard scan quality for a total of 18 million 

pulses per scan. Time elapsed per scan was approximately 2 minutes. The Faro Focus 120 

3D phase-shift TLS was set to medium resolution and quality (1/5 resolution; 4x quality; 
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0.044 mrad; 122,000 points per second) for a total of 28.2 million pulses per scan. Time 

elapsed per scan was approximately 3 minutes.  

Table 1. Laser scanner overview of specifications and parameters used in the study. 

 Faro Focus 120 3D Leica BLK 360  

Ranging Method Phase-shift Time-of-Flight  

Wavelength (nm) 905 nm 830 nm  

Laser Class Class 3R Class 1  

Beam Divergence 0.19 mrad 0.4 mrad  

Specified Ranging Accuracy ±2 mm 4 mm @ 10 m / 7 mm @ 20 m  

Resolution (this study) 1.768 (0.044°) ~1.3 mrad (0.074°)  

Max resolution 0.157 mrad (0.009°) 0.576 mrad  (0.033°)   

Max Measurement Rate 976,000 per second 360,000 per second  

Max Range 120 m 60 m  

Scanning Time 1.5 min 3 min (at high)/1.5 mins (at medium)  

Temperature Operability  5°- 40°C 5 - 40° C  

Weight 5 kg 1 kg  

Full Color 70 Mpix 150 Mpix + Thermal  

Software Faro SCENE Cyclone REGISTER 360  

 

2.3 Scan Acquisition and Registration  

We reduced occlusion from the presence of high-density vegetation by scanning 5 

times in a diamond pattern oriented at approximately each cardinal direction to provide 

sufficient coverage and a standardized sampling scheme [13,15]. At times, an additional 

scan was required for full coverage. This scheme was followed for both scanners. To aid 

in post-processing scan registration, we placed 6-inch diameter polystyrene spheres atop 

fiberglass stakes throughout the plot. Multiple scans were digitally registered using the 

registration points, as described in the following section. 

The Faro TLS scans were registered in the Faro SCENE 5.4 software, where registra-

tion targets were located and the point clouds aligned (plot registration error = 4.8 mm, 

sd = 4.8 mm). We removed all returns with intensity lower than 650 (maximum value = 

2100; [14]). Filtering low intensity returns reduces noise and ensures gaps are correctly 

identified for the PAVD analysis. We exported all single scan files in a gridded PTX for-

mat. Gridded scan formats like PTX are useful for estimating vegetation area index as 

gaps are retained in the data and flagged by being shifted to the scan origin (0,0,0). The 
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gaps are then easily associated with a specific azimuth or zenith angle because the PTX 

format is written according to the row and column in the scan grid. The registered point 

clouds were then filtered with a stray point filter. The stray point filter uses a moving 3 x 

3 grid cell window with a 20% retention and 1 m distance threshold. Finally, we exported 

the TLS data as a single merged ASCII file for stem modeling. 

The Leica BLK 360 scans were registered using Cyclone REGISTER 360. Registration 

targets were located within the point clouds of each individual scan (or setup as Cyclone 

REGISTER 360 refers to scans) and then classified as spherical targets within the software. 

Scans were then auto-aligned using the align cloud feature (plot registration error = 11.6 

mm, sd = 1.6). Cyclone REGISTER 360 provides the user with the option to remove am-

biguous points, intensity overloaded points, and mixed-pixel points, though only the 

mixed-pixel points option provides the user with any control over how the filter is applied 

(i.e. low, medium and high settings). For this reason, all filters were turned off for this 

comparison. We exported the single merged, or “bundled” TLS scan in the same gridded 

PTX format as the Faro scans.  

 

2.4 Comparisons of TLS Measurements 

2.4.1 Point cloud quality 

With the fully aligned Faro and Leica point clouds we conducted a series of compar-

isons. We evaluated the differences in point cloud quality and point density distribution 

with respect to height and range in the leaf-off scans. To evaluate noise in leaf-off condi-

tions, we calculated the nearest neighbor distance between the two point clouds, high-

lighting noise points (points detected greater than 8 cm difference from the Leica point 

clouds).  

2.4.2 Forestry and QSM Measurements 

We separated and modeled individual trees on each plot using an automated work-

flow within the CompuTree software [33], described in detail in Stovall et al. [13,15]. The 

processing took place in four steps: ground point classification and DTM creation, stem 

identification, tree segmentation, and stem reconstruction with QSMs. The tree was auto-

matically segmented from the point cloud using an iterative nearest neighbor approach, 

starting at the initial seed point on the stem and moving vertically while expanding in 

area with the expanding tree crown.  On segmented trees, we estimated diameter at breast 

height (DBH), height, and total volume for 31 trees across the 0.1 ha plots. DBH was esti-

mated at 1.3 m above ground using cylindrical least squares fitting as part of the Simple-

Tree quantitative structure modeling (QSM) algorithm [34,35] within the CompuTree soft-

ware [33]. Two DBH estimates are provided in the software: uncorrected or corrected, 

based on cylinder fits above and below the 1.3 m DBH height. We evaluated both DBH 

estimates. Tree height is also outputted from SimpleTree, as the tallest recorded point 

above ground for a segmented tree. To evaluate the total tree volume estimates from each 

TLS, we modeled the segmented tree point clouds using the SimpleTree method [35]. 

 

2.4.3 Foliage Profiles 

PAVD distributions are derived from a simple calculation of the vertically resolved 

gap probability (Pgap). Pgap is calculated as: 

 

𝑃𝑔𝑎𝑝 (θ, 𝑧)  =  1 −  
(𝑧𝑖 < 𝑧,θ)

𝑁(θ)
     (1) 

 

Where z is the height above ground and θ is the midpoint of the 5 degree zenith angle 

range used to aggregate the LiDAR returns. The equation essentially calculates the cumu-

lative number of returns per unit height divided by the total number of outgoing laser 

pulses. In essence, as more vegetation is intercepted, the probability of a laser pulse es-

caping the canopy decreases.  
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PAVD is accurately estimated at the hinge angle - a viewing zenith angle of 57.5 de-

grees - with Pgap. The hinge angle is used to estimate total plant area index (PAI) as this is 

the angle at which the G-Function is nearly invariable at 0.5 for all typical leaf angle dis-

tributions [36–38].  A five-degree zenith bin between 55 and 60 degrees is used to approx-

imate the hinge angle region. Pgap is converted to the cumulative PAI distribution with 

respect to height aboveground (𝐿(𝑧)) using: 

 

𝐿(𝑧)  ≈  −1.1 𝑙𝑜𝑔 (𝑃𝑔𝑎𝑝(57.5))     (2) 

 

Estimates of 𝐿(𝑧)at the top of the canopy approximate the total PAI for a particular 

sample location. Once cumulative PAI is estimated, Pgap is calculated at 5-degree zenith 

bands from 0-60 degrees and weighted by the sin of the zenith angle to sample the upper-

most area of the hemisphere viewable by the laser scanner. Finally, the total PAI in each 1 

m vertical bin is estimated as the 1st derivative of the 𝐿(𝑧)curve after weighting with re-

spect to zenith angle. 

We tested the sensitivity of scanner range, resolution, and gridding on the final 

PAVD profile. For the first two tests we focused on the Faro scanner, as it had the greatest 

resolution and range in the study, making it an ideal baseline for evaluating the factors 

affecting PADV profile estimates. Scanner range was tested at 10 m intervals, excluding 

points above the range threshold of interest and then processing the resulting point cloud 

as above. Scan resolution was tested by decimating the point cloud by a factor of 10, 100, 

1,000, and 10,000. The resulting point clouds were processed as above to produce PAVD 

and PAI estimates. 

The highly filtered unstructured (not retaining the original pulse grid) Leica point 

clouds produced extreme underestimates of total PAI and PAVD, so we developed a point 

cloud gridding method useful for deriving PAI and PAVD profiles. The raw Leica data 

with xyz information is converted into zenith, azimuth, and range using a cartesian to 

spherical coordinates function. The zenith and azimuth angles can then be projected on a 

consistent artificial scan grid. In our case, the leica data was collected on a grid of ~2410 

(rows; zenith) x ~4821 (columns; azimuth). We say approximately because for a single scan 

the scan grid varies, depending on the stopping point of the laser scanner. From this we 

determined the scan resolution was ~0.075 degrees or 1.3 mrad. To ensure gaps in the scan 

data were filled we decreased the scan grid resolution by a factor of 2 to 2.6 mrad. Using 

the rasterize function in the raster package (R programming language) we created an arti-

ficial scan grid spanning the observed zenith and azimuth range at 2.6 mrad resolution. 

For a given set of points that fall within a unique zenith and azimuth coordinate range the 

mean range value is calculated, creating a gridded set of mean TLS range observations. 

We then re-convert the gridded TLS data from spherical coordinates back to cartesian co-

ordinates, processing using the normal PAI and PAVD processing pipeline described 

above.  

3. Results 

3.4.1 Point cloud quality 

In comparing the two scanners, there are clear differences in point cloud quality vis-

ually as well as the distribution of observed returns. The Leica point cloud had substan-

tially lower noise than the Faro data. Our comparison of the aligned point clouds in leaf 

off conditions highlight this issue clearly (Figure 1). The Faro data - though filtered - have 

obvious ranging errors on the edges of small objects, specifically small branches across a 

range of distances. In comparison to the Faro, a larger proportion of the returns in the 

Leica data occur at a closer distance to the scanner. The log scale distribution of returns in 

the Z-dimension show how the filtered Leica data has no returns above the canopy sur-

face, while the Faro includes extraneous returns in the raw data. Though the Leica scanner 

is only rated to capture returns up to 60 m, we observed returns as far as 100 m in our 

comparisons of the point cloud distributions. 
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Figure 1. Cross-section of Faro point cloud compared to Leica with noise points highlighted (red). 

A point was classified as noise if the distance to the Leica point cloud was greater than 8 cm point 

distances below 8 cm were assumed to be registration error. 
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Figure 2. Comparison of the density of Faro and Leica returns in the [A] vertical and [B] horizontal 

dimensions. 

3.4.2 Forestry and QSM Measurements 

Tree diameter and height were in close agreement across scanners (Figure 3; Table 

2), with an RMSE of 3.8-4.0 (16-17%) for DBH, with the Faro estimating smaller values by 

~6-10%. Tree height estimates had an RMSE of 1.1 m or 6.0% but were virtually unbiased. 

Volumetric estimates differed greatly between scanners, with the Leica having an average 

of ~0.31 or ~29% higher volume than the Faro QSMs. RMSE was ~0.6 m3 or 56%. Through 

visual inspection, we highlight key areas of the point cloud and modeling where dramatic 

differences occur (Figure 4). 

Table 2: Statistics comparing the two laser scanners. The bias estimates were relative to the Faro 

estimates. Parentheses in volume comparison show statistics excluding the largest modeled tree. 

 RMSE RMSE (%) Bias Bias (%) 

DBH (cm) 3.83 16.01 1.07 4.46 

*DBH (cm) 4.03 17.33 1.32 5.69 

Height (m) 1.07 6.01 0.25 1.38 

Volume (m3) 0.61 56.33 0.31 28.97 
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Figure 3. Comparison of [A] uncorrected DBH, [B] corrected DBH, [C] height, and [D] total tree volume estimated from Faro and 

Leica laser scanners. 
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Figure 4.  [top] Overview of the resulting TLS QSMs for Faro (blue) and Leica (red) with subset tree (brown) shown in detail. The 

QSMs in comparison to the point cloud (black) show marked differences depending on instrument, with Faro point clouds having 

several inaccurate fits and Leica closely matching point cloud structure. 
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2.4.3 Foliage Profiles 

PAVD profiles were insensitive to maximum range until ~45 m - the point where 

canopy returns nearest the scanner are lost. Below this, PAVD profiles reduce in height 

and total PAI decreases substantially (from ~2 to less than 0.5). Point cloud or laser scanner 

resolution had a minimal effect on the overall shape of the PAVD profile. Higher degra-

dation of scanner resolution resulted in higher variability in the profile reconstructions, 

but the overall shape remained consistent. The same was true of the PAI estimates, with 

more degraded laser scans resulting in higher PAI variability. Gridding the Leica point 

cloud resulted in a closely matched PAVD profile, similar to the Faro. RMSE of the grid-

ded PAVD profile was 0.0153 m2 m-2 or  ~25% and was virtually unbiased (0.8%). In con-

trast, the ungridded Leica data had large errors in the PAVD profile (RMSE = 100%; Bias 

= -91%). 

 

 

Figure 5. Effect of reducing maximum range on [A] vegetation profiles and [B] total Plant Area Index (PAI) at 5 scan locations 

using the Faro laser scanner. Reducing the maximum range reduces estimates of foliage profiles and PAI if the laser is unable to 

exit the canopy. Here, a ~30 m canopy requires approximately 50 m maximum range to provide unbiased estimates of PAI. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2021                   doi:10.20944/preprints202107.0690.v1

https://doi.org/10.20944/preprints202107.0690.v1


 

 

Figure 6. Effect of point cloud resolution on [A] vegetation profiles and [B] total Plant Area Index (PAI) at the single scan level. 

Reducing point cloud resolution by decimation has little effect on the magnitude of foliage profiles and PAI, but increases 

variability across scans. Foliage profiles stayed stable up to a decimation factor of 10,000. As little as ~3000 points per scan can 

provide reliable estimates of foliage profiles, at the expense of increased variability in PAI estimates. 
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Figure 7. [A] Gridded (purple) and raw filtered (red) Leica point cloud in comparison to Faro (blue) for estimates of foliage 

profiles.  [B] The ungridded Leica point cloud (red) consistently underestimates PAVD. [C] Gridding the Leica data makes PAVD 

estimates comparable to the Faro data.  
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4. Discussion 

We compared the ability of two low-cost terrestrial laser scanners to detect forest 

structural attributes. We assessed the point clouds from each instrument by comparing 

the return distribution and evaluating point cloud noise, clearly showing reduced noise 

in the filtered data from the Leica instrument. We further compare extracted tree-level 

diameter and height, showing consistent estimates with less than 1-5% bias. Volumetric 

estimates from QSMs were less consistent, with 29% bias, depending on model recon-

struction quality. Finally, our sensitivity analysis of factors affecting foliage profile esti-

mates underscored the need for scanners with appropriate range that retain all pulse in-

formation. Surprisingly, scan resolution of extremely degraded quality produced unbi-

ased, but variable PAI estimates. The factors evaluated in this comparison point towards 

necessary considerations for future low-cost laser scanner development and application 

in detecting forest structural parameters.  

 

4.1 Point Cloud Quality 

The quality of TLS point clouds is affected by a suite of instrument parameters/spec-

ification and field conditions - all of which affect the products and estimates derived [1]. 

The technology used to make ranging estimates with TLS can be phase-shift (e.g. Faro) or 

time-of-flight (e.g. Leica). Phase shift instruments are known to offer fast, high-resolution 

scans, but suffer from ranging errors for partial interceptions, such as small branches or 

leaves and edges of larger trunks (Figure 1). In contrast, time-of-flight TLS instruments 

are typically less sensitive to these edge errors, producing low-noise point clouds, but do 

not provide the same level of detail found in phase-shift TLS data. All currently available 

time-of-flight TLS have larger beam divergence than their phase-shift counterparts, con-

sistent with the scanners in this study. Beam divergence of an instrument is the main tech-

nical limitation for many laser scanners, since this controls the size of the laser footprint 

at distance. Larger beam divergences of time-of-flight sensors may result in an inability to 

detect small gaps in the canopy [39]. In leaf-off conditions, however, this large beam di-

vergence is less problematic for detection of interceptions but presents issues with accu-

rate estimates of small branch size. Here, in the winter scans, we found the Leica to pro-

duce a much cleaner (i.e., less noise) point cloud than the Faro and, while the Leica range 

was lower, the overall quality at high distances was superior (Figure 1 and 2).  This was 

particularly obvious in the presence of anomalous returns for the Faro data, where noise 

points could be found far above the forest canopy. These noise points are nearly unavoid-

able, as they result from interference from solar radiation and inaccurate range estimates 

on the edges of objects. Filtering to the extent of removing this noise severely impacts the 

detail in point clouds, so a balance must be struck between filter parameters and presence 

of noise in these phase-shift data. In terms of point cloud quality with minimal user inter-

vention, we conclude that the Leica provides acceptable data for single tree extraction and 

individual tree modeling, assuming appropriate quality control is implemented during 

post-processing. 

 

4.2 Forestry and QSM Measurements 

The fundamental basis of forest measurement lies in consistent plot-based measure-

ments of inventory variables, such as diameter at breast height (DBH) and tree height. 

Here, we found agreement across sensors on the order of typical human error, with ~4 cm 

RMSE and 1 m for diameter and height, respectively. Since diameters were derived from 

a fully automated tree modeling process (SimpleTree) we expect even better agreement 

with algorithms optimized specifically for diameter measurement (e.g. past studies have 

sub-centimeter error [14]). Similarly, tree height estimates were derived directly from the 

derived tree-level QSMs, so point cloud approaches to height and diameter estimation 

would have likely provided much higher precision across sensors [14]. As such, we be-

lieve measurements such as diameter and height are comparable enough for studies that 
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wish to incorporate the two scanners, with the expectation that a small validation plot of 

overlapping scans is collected to provide a reference baseline for sensor agreement. 

Point cloud quality was the major factor affecting QSM-based volumetric estimates. 

Our detailed comparison of QSM fitting highlights how small errors in cylinder fits can 

result in large errors in total volume (Figure 3 and Figure 4). In general, it is clear from 

visual inspection that different representations in the small branches and noise levels di-

rectly affect the QSM reconstruction quality. Leica estimated much higher tree volumes, 

on average, but we believe the estimates to be more accurate than Faro, since many errors 

in cylinder fits were apparent (Figure 4). The inconsistency of the two sensors with respect 

to QSM creation points to a larger issue with TLS measurements as a whole - different 

sensors can produce inconsistent data quality that ultimately propagates error and uncer-

tainty to tree-level products [40]. In our study we ensured the scan position was virtually 

identical (within a few centimeters), but with differing scan acquisition strategies we ex-

pect variation in upper canopy occlusion [41] will result in dramatic differences in QSM 

creation. This finding points to the need for consistent acquisition strategies that are opti-

mized to minimize occlusion - only strategies that reduce occlusion will provide the most 

consistent estimates of tree-level volume and biomass.  

There is a clear need for objective means of evaluating point cloud and QSM quality. 

In Figure 8 we show our proposed method of providing a simple index of QSM fit quality. 

The basic method requires a simple distancing of the point cloud to the QSM cylinder 

mesh. Visualization of the residual point cloud distances (shown here as a divergent red-

white-blue gradient) enables easy quality control of QSM creation. A statistical approach 

using this method could estimate the statistical parameters of the QSM-cloud distances, 

deriving mean and standard deviation. Here, we show how, in contrast to the Faro QSM-

fit, the better fit from Leica data provides lower standard deviation and a mean closer to 

0. Objective methods of QSM and point cloud quality, such as these, will provide more 

consistent estimates from global-scale TLS datasets. 
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4.3 Foliage Profiles 

The most important instrument specifications and processing settings relevant for 

reconstructing PAVD profiles relate to range, resolution, and filtering. In our analysis, we 

found very little effect of range until the 35 m range threshold since, in a 25-30 m canopy, 

a 30-35 m range is required to exit the canopy top. As such, most TLS units have a range 

capable of measuring most canopy heights that exist globally. Of the low-cost TLS units 

evaluated here, the Faro is capable of measuring canopy structure in the tallest forest (Red-

wood species; ~100 m; see [42] using Riegl VZ400), but the high noise with range makes 

the quality of such PAVD profiles potentially error prone. The maximum forest canopy 

Figure 8. Proposed method of evaluating QSM and point cloud quality. (top) Poor 

QSM fits are highlighted in red on the Faro point cloud. The statistics from the distri-

bution of distances to the QSM cylinders (mean and standard deviation) can offer an 

objective method of evaluating the validity of cylinder fits across tree reconstructions.

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2021                   doi:10.20944/preprints202107.0690.v1

https://doi.org/10.20944/preprints202107.0690.v1


 

height that can be measured with the Leica TLS is ~50 m, which covers a large range of 

existing forest heights, making this particular instrument broadly applicable.  

Surprisingly, PAVD profiles were minimally affected by scan resolution, with an in-

crease in profile variability, but the broad shape and trends of the profile reconstructions 

remained consistent. The implications of these results are applicable to future low-cost 

TLS unit development.  In forest stands with PAI up to ~4-5, we believe TLS units can be 

developed with lower angular resolution to reconstruct PAVD profiles. Developments 

such as this have the potential to reduce data volume and increase portability of instru-

ments to the extent that they can become more ubiquitous in their deployment in field 

sites globally. One example of a low-cost and automated instrument specifically designed 

for forests exists (LEAF instrument, [43]. While specifications such as beam divergence 

may be a hindrance, studies of the sensitivity of parameters, as explored here, are key to 

capturing the needed technical specifications for forest-specific instruments that become 

more affordable for the scientific community. 

For the heavily filtered unstructured Leica point clouds gridding of TLS scans was 

necessary to estimate the PAVD profile. The close agreement between Leica and Faro data 

(~25% RMSE) and unbiased estimates are, in part, related to the relative insensitivity of 

the PAVD profile to scan resolution, as discussed above. However, we have uncovered a 

potential tradeoff between high quality filtered TLS data and the reconstruction of PAVD 

profiles. For example, the necessary workflow for creation of QSMs and PAVD profiles is 

specific to the desired end product. PAVD profiles may require minimum filtering of edge 

artifacts with a particular focus on clear quantification of gaps in the canopy. In contrast, 

QSM creation requires extremely clean, denoised point clouds to provide reliable results. 

As it stands, these issues remain unresolved in the TLS community and the need for a 

standardized and systematic processing workflow is necessary to ensure consistency in 

data quality as TLS is more widely adopted. 

 

4.4 Workflow Considerations and Recommendations  

Outside of the specific parameters tested in this study, there are marked differences 

in the field and pre-processing workflow steps between instruments, affecting the effi-

ciency of the entire pipeline of TLS processing. Since TLS requires field-based data collec-

tion, one major consideration in all instruments is ease of use in this setting. With several 

years of experience using the Faro instrument, the authors found field-based data collec-

tion to be efficient and without unexpected delays. Rarely, the Faro instrument would be 

unable to operate due to temperatures outside of the safe specified range and in some 

instances instrument startup would fail; Though all situations resolved in the field and 

did not disrupt data collection. The availability of onboard touchscreen and removable 

storage space is key to ensuring data collection was successful - often revisiting a field plot 

may be impossible, so verifying data was collected successfully is essential.  

The authors found the Leica to also be efficient in field-based data collection--with 

scan acquisition times of similar magnitude to the Faro and with the added benefit of 

lighter weight, and smaller stature making moving from plot to plot easier. The Leica has 

a more restrictive temperature operating range than the Faro and does not scan below 10° 

C. A scanning campaign in central Indiana, USA had to be aborted by the authors in 2019 

simply for this reason as unseasonably cool, spring temperatures prevented scanning. The 

long-term reliability and durability of the Leica is potentially endangered by the lack of 

cover or protection for the scanning mirror and the construction of the proprietary tripod. 

While the Leica tripod is lightweight, this comes at the cost of durability as the tripod is 

not constructed to the standards required for rigorous sustained field use. Additionally, 

the Leica tripod has a specific adapter that fits the Leica, restricting the use of any other 

tripod without aftermarket modifications. The Leica also stores data internally, on a 50 gb 

solid state drive which can only be accessed via a Wi-Fi connection directly with the unit. 

Via a download management software interface, TLS scan files can then be downloaded 

in a proprietary format that must be opened with a Leica brand or related software (Cy-

clone, Autodesk, etc.). Further Autodesk programs such as Recap Pro which can be used 
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directly with the scanner in the field via an iPad wifi connection, automatically filter out 

points in a manner that the user cannot control (for which we specifically developed the 

PAVD gridding technique). While this method may be suitable for construction or archi-

tectural work where use-cases may involve hard edges and angles, this is not adequate 

for forestry or any other ecological related work in a natural environment. The infor-

mation loss is far too great, and the resulting data are not suitable. For example, the entire 

leaves and small branches appear to be removed from scans when this acquisition method 

is used. The only exception to this may be work quantifying microtopography [9], yet we 

advise strongly against the iPad-Autodesk/ReCap pipeline. Additionally, downloading 

files from the Leica takes several minutes per file, as does importing data into Cyclone.  

In summary, we found these two low-cost laser scanners were comparable, but key 

differences in data quality have led us to several recommendations for users of these in-

struments. [i] The two instruments effectively and comparably estimate field inventory 

forestry measurements. We believe the simplicity of such measurements make most laser 

scanners capable of estimating these parameters and future adoption of TLS for this pur-

pose is likely at an operational stage. [ii] QSM reconstruction is highly dependent on point 

cloud quality and thus will be directly impacted by laser scanner choice. In our case the 

higher-noise phase-shift data was problematic, resulting in less certain QSM cylinder fits, 

while low-noise time-of-flight data is best, with the expectation of potentially overesti-

mating small branch volume due to larger beam divergence. [iii] PAVD profiles with the 

highest precision require laser scanners that retain the laser pulse grid, but artificially re-

constructing gridded data can provide comparable PAVD profile results. While range lim-

its on TLS instruments potentially present problems in tall forest canopies, most stationary 

laser scanners capture the range necessary to measure PAVD profiles in forest greater than 

50 m in stature. All recommendations do not point to a clear choice for the ideal laser 

scanner. Most compromises with the Leica instrument are in ease of workflow and field 

data collection, along with the lack of retained pulse grid information. The Faro instru-

ment was efficient to use in the field and - due to the ranging technology - had far noisier 

point clouds, directly affecting the consistency of QSMs, but PAVD profiles could be re-

constructed at a high resolution. In essence, without an available laser scanner that satis-

fies all requirements specific to measurement of forest structure, the TLS community must 

quantify the uncertainty introduced by a particular suite of factors that directly affect 

point cloud quality and PAVD profile reconstruction; Only then can the diversity of TLS 

instruments (of all price points) be aggregated to confidently address global-scale hypoth-

eses related to forest structure. 
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