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Abstract

A quantitative description of the second law of thermodynamics in small scale systems
and over short time scales comes from various fluctuation theorems. The applicability of
the transient fluctuation theorem in particular to small scale systems perturbed from an
initial equilibrium steady-state distribution has been demonstrated both theoretically
and experimentally in several works over the past few decades. In addition, some
experimental works in the past have also made successful attempts to demonstrate the
applicability of the fluctuation theorem to small scale systems evolving from a certain
nonequilibrium steady-state distribution over relatively long time scales. To this end,
this paper seeks to demonstrate the transient fluctuation theorem for a Brownian
particle confined within a power-law trapping potential by following the trajectory of
the particle that itself is translating linearly along one dimension with constant
acceleration in a viscous fluid. Considered herein is an idealized version of this model, in
that it is assumed that the force of the trapping potential is only felt by the translating
Brownian particle confined within the trap, and that this Brownian particle moves
relative to the fluid molecules that are held stationary. The results presented herein
show that the transient fluctuation theorem applies not only to equilibrium steady-state
distributions but also to nonequilibrium steady-state distributions of an ideal colloidal
system in an accelerated frame of reference in the asymptotic (long-time) limit.

Introduction

The behavior of classical systems under the influence of external perturbations and
microscopic forces has been a subject of long-standing interest amongst both
theoreticians and experimentalists over the past several decades. At its heart,
thermodynamics deals with a set of laws that govern the exchange of heat, work done
and the entropy production and/or loss in a classical system [1] when in contact with
another system or the environment. The characterisation of classical systems in
thermodynamic equilibrium stems from equilibrium statistical mechanics in the
microscopic domain which states that the probability of finding a classical system in a
specific microstate (when in contact with a thermal reservoir) is simply given by the
Boltzmann factor [2]. On the other hand, linear response theory allows one to
characterise the dynamics of classical systems under very small deviations from
equilibrium [1] through correlation functions derived under equilibrium conditions.

The quest of going beyond linear response theory and entering deep into the
non-equilibrium regime to study how the exact thermodynamic relations applicable
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under equilibrium conditions get modified when the thermodynamic properties of a
classical system can no longer be described by equilibrium steady-state distribution
functions has seen much development over the past few decades. Of particular interest
has been the application of these general laws (derived under non-equilibrium
conditions) to the realization of small scale systems such as nano-engines and protein
motors. In essence, the idea is to scale down the sizes and/or dimensions of machines to
accommodate a myriad of technological applications [3]. An important point to note is
that if the work performed during the duty cycle of a machine is of the order of the
thermal energy per degree of freedom, one could expect said machine to operate in
‘reverse’ over very short time scales [3]. By this, it is meant that the heat energy
available in the surroundings could be extracted by the machine to perform useful work,
which in turn would seemingly imply a violation of the second law of thermodynamics,
in that entropy is being consumed rather than produced. One’s main focus then shifts
towards quantifying the probability of observing entropy consumption in small scale
systems over short time scales. Loschmidt’s paradox puts the second law of
thermodynamics at odds with the time-reversal symmetry of almost all known
fundamental physical processes operating at low-levels. It states that if there exists a
motion of a system that leads to a reduction of entropy with time, then there definitely
must exist another permissible state of the motion of said system, in which a steady
increase in the entropy occurs with time. When put in the context of reversible
microscopic equations of motion [3], this implies that in a classical system that respects
time-reversal symmetry, for every phase-space classical trajectory, there must exist a
time-reversed classical anti-trajectory (see [4]). The possibility of extrapolating such
realizations to large scale systems would prove beneficial in circumventing the issues of
low efficiency and increased losses.

A short note on stochastic thermodynamics: As understood in the context of
the discussion and results that follow in this paper, stochastic thermodynamics applies
to colloidal particles and other small scale systems such as biological motors, enzymes,
and so forth. The following types of non-equilibrium situations can arise in such
systems [1]: The system is prepared initially in a nonequilibrium state and is thereafter
allowed to relax towards an equilibrium steady state. Also possible is the case when the
system, initially in an equilibrium steady state, is acted upon by an external
time-dependent driving force that pushes it towards a nonequilibrium steady state.
Considering that in either case, the system maintains contact with an external thermal
reservoir or a heat bath, its temperature, which is same as that of the thermal reservoir
it is coupled to, remains well-defined throughout its temporal evolution. A consistent
description of the thermodynamic properties of the system can then be constructed [1],
by ensuring that an adequate time-scale separation be maintained between the
adiabatically evolving degrees of freedom of the system and the rapidly-fluctuating
degrees of freedom that are made up by the thermal reservoir. The thermodynamic
states of the system are fully characterised and/or described by its adiabatically
evolving degrees of freedom, in addition to certain fluctuations (that evolve on time
scales much shorter than the slowly evolving degrees of freedom) that might be present
in the system. The transition from one thermodynamic state to another constitutes a
trajectory [1]. Busiello et al. much recently investigated the time-scale separation
between adiabatically evolving degrees of freedom and rapidly evolving degrees of
freedom in biology-inspired systems that incorporate a large number of multiple
couplings between different allowed states (both, discrete and continuous), connected
through different transition rates [5]. These are systems that typically operate in
out-of-equilibrium conditions and in which, multiple couplings between different allowed
states are active at a particular instant. Given the presence of multiple physical
processes driving such systems at the same time, it becomes essential to treat these

April 13, 2022 2/21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2022                   doi:10.20944/preprints202107.0686.v2

https://doi.org/10.20944/preprints202107.0686.v2


systems at a coarse-grained level by employing a separation of time scales [5]. The
authors propose a general framework to study stochastic systems involving multiple
couplings between states, from which it becomes possible to analytically deduce the
well-known laws and/or formulae of entropy production. This however is inherently
dependent on the amount of information that is known about each process that drives
any such system of interest out of equilibrium [5]. A separation of time scales allows the
dynamics of the classical system under investigation to assume a Markovian nature.

Entropy production has long been considered as an essential feature and/or
characteristic of systems operating in out-of-equilibrium conditions. The definition of
‘entropy production’ has however continued to remain vague in the context of stochastic
systems, since there exist a number of classical systems that exhibit both, unidirectional
and bidirectional transition characteristics between allowed states. To this end, Busiello
et al. attempt to provide a consistent definition to entropy production in classical
systems exhibiting such characteristics by employing a mapping scheme that preserves
the average thermodynamic fluxes [6]. In addition, the authors analyze at length a
certain class of stochastic systems composed of unidirectional links forming cycles as
well as detailed-balance bidirectional links [6], demonstrating that these behave in a
semi-deterministic manner. It is possible to numerically and experimentally simulate
the distribution functions associated with the thermodynamic quantities of interest
pertaining to a particular trajectory (for instance, the entropy loss and/or production,
the heat exchanged with the thermal reservoir/environment, and so forth), as discussed
and demonstrated in Refs. [3] and [7]– [11]. In general, one imposes the constraint that
the system in question respect time-reversal symmetry to derive useful relations and
theorems that quantify the distribution functions associated with the thermodynamic
variables. As a consequence, ‘entropy-consuming’ trajectories that seem to violate the
second law of thermodynamics manifest over typically short time scales. It however
must be noted that this theoretical framework does not take into account the effects of
fluctuations that might be present in the system [1]. If we interpret the second law of
thermodynamics in a slightly different way, i.e., we instead talk about the mean entropy
production and not merely the transient entropy consumption, the second law of
thermodynamics in this sense is not violated. Furthermore, it can be shown that the
probability of observing these entropy-consuming trajectories decays off exponentially
over time, given which one must sample a very large number of transient trajectories of
a classical thermodynamic system in order to observe these second law violations [12].
Specifically, if we assume the entropy production along a certain transient trajectory to
be some quantity (hereby denoted as α), the theorem states that the ratio of the
probability to observe an entropy-consuming trajectory to the probability of observing
an entropy-producing trajectory (same magnitude, but with sign reversed) is given as
(see Refs. [3], [12])

P(σt = −α)
P(σt = α)

= exp(−α). (1)

A large body of work in the past couple of decades has been dedicated to developing
and extending this theorem further (see Refs. [13]– [24]).

In this paper, we demonstrate the applicability of the transient fluctuation theorem
to classical systems by numerically following the trajectory of a Brownian particle
confined within a harmonic trap and a quartic potential well which translate linearly in
one dimension with a constant acceleration (whilst immersed in a viscous fluid).
Further, we derive a general expression for the stochastic work done along transient
classical trajectories for a Brownian particle confined within a power-law trapping
potential, which is then tested and compared against numerical results. The numerical
model presented in this paper closely resembles the experimental realization of the
transient fluctuation theorem reported by Wang et al. [3].

April 13, 2022 3/21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 April 2022                   doi:10.20944/preprints202107.0686.v2

https://doi.org/10.20944/preprints202107.0686.v2


Studies of fluctuation theorems involving colloidal
particles in confining potentials

Numerous works over the recent years have experimentally and theoretically
demonstrated the transient fluctuation theorem for colloidal particles confined in
trapping potentials. Zon et al. for instance, used an overdamped Langevin equation for
a Brownian particle confined in a harmonic trap to theoretically obtain the transient
fluctuation theorem and the integrated stationary state fluctuation theorem for the case
when an arbitrary motion of the focal point of the harmonic trap is considered [25]. Not
long after, Carberry et al. directly demonstrated the transient fluctuation theorem for a
confined Brownian particle in an experimental setting [26]. They did this by tracking in
real-time the time-relaxation of a confined Brownian particle that underwent a step
change in the depth of the optical trap held stationary over the course of the
experiment. The experimental study of the thermodynamics of a Brownian particle
confined in a time-dependent anharmonic trap was reported by Blickle et al. [27]. In
this work, the authors demonstrate the validity of the first law of thermodynamics
through the experimental estimation of the work done, heat exchanged and internal
energy at the level of a single transient trajectory. Their results show that the
probability distribution of the applied work along transient Brownian trajectories for
this anharmonic trapping potential assumes a non-Gaussian profile, which bears
excellent correspondence to numerical results. Also verified to a relatively good
accuracy in their experimental realization of the transient FT are the Jarzynski relation
and a detailed fluctuation theorem.

In light of some of the initial experimental realizations (i.e., in the early 2000s),
Narayan et al. extended the analysis of the Jarzynski relation [28] and the transient
fluctuation theorem in particle-dragging and polymer-stretching [29] experiments to
provide a somewhat simpler proof for the transient fluctuation theorem for classical
systems governed by Langevin dynamics [28] and generalize it to some extent for
linearized versions of the Langevin equation. In 2005, Wang et al. demonstrated
experimentally the steady-state fluctuation theorem from a single trajectory of a
colloidal particle weakly confined in a moving optical trap [30]. Their setup closely
resembled the one reported by Wang et al. [3] that sought to test the validity of the
transient fluctuation theorem at colloidal length and time scales.

In recent years as well, there has been much development in the experimental
realizations of fluctuation theorems for confined Brownian particles and/or
nanoparticles. Pal et al. for instance, consider a numerical model of a Brownian particle
confined in a harmonic trap whose focal point is continuously modulated in accordance
with an Ornstein-Uhlenbeck process [31]. In this regard, the authors investigate the
work fluctuations in this modulated trap within a certain time interval (the analysis is
carried out in the steady state). Furthermore, they report on the calculations of the
large deviation and the complete form of the probability distribution function of the
stochastic work done by the Brownian particle in this modulated harmonic trap in the
long-time limit. In 2014, Gieseler et al. investigated the case of a system that initially
starts out in a nonequilibrium state but which gradually relaxes towards equilibrium [32].
Using a vacuum-trapped nanoparticle, they demonstrated the validity of a fluctuation
theorem [32] for the entropy change that occurs during the relaxation process in an
experimental setting. A comprehensive review of the potential use of optically-levitated
nanoparticles in the study microscopic and stochastic thermodynamics appeared in
2018 [33]. The study of work fluctuations of active Brownian particles moving in
viscoelastic mediums has also gained some traction in recent years. Narinder et al. for
instance, experimentally investigate the work fluctuations of an active Brownian particle
in a viscoelastic medium (the motion of the active Brownian particle is
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self-propelled) [34]. Recent works have also shed light on the use of confined Brownian
particles to study heat exchange between hydrodynamically coupled optical traps and
investigate stationary and transient fluctuation theorems for effective heat fluxes
between these traps [35], to investigate the out-of-equilibrium character of active matter
systems [36], [37], and in the experimental realization of colloidal heat engines [38]- [40].

Materials and methods

Analytical description of the model

For a classical Newtonian system, it is customary to describe the system’s state by an
arbitrary point in phase space, which consists of the coordinates q and momenta p of all
molecules and/or particles in the system. A point in phase space is typically represented
as ρ ≡ [q, p]. The Newtonian equations of motion are time-reversible, which implies
that for every classical trajectory that exists between points ρ ≡ [q0, p0] and ρt∗ ≡ [qt∗ ,
pt∗ ], there exists a time-reversed trajectory between points ρ

′

0 ≡ [qt∗ , -pt∗ ] and ρ
′

t∗ ≡
[q0, -p0]. We now define a volume element for a set of classical trajectories at some
arbitrary time instant t′, as dV(ρt′ ≡ [qt′ , pt′ ]), corresponding to which we will have a
volume element for a set of time-reversed trajectories [3], which we denote as dV(ρ

′

t′ ≡
[qt−t′ , -pt−t′ ]). As seen previously [see Eq. 1], the reversibility of a system can be
defined as the ratio of the probability of observing time-reversed trajectories to the
probability of observing ‘time-forward’ trajectories. to this end, we evolve the system
(and in turn, the transient classical trajectories) from an equilibrium steady-state
distribution, for which the dynamics is well-known, i.e., the temporal evolution of the
system begins at t′ = 0. From Eq. 1, the dissipation function or equivalently, the
stochastic work along a transient classical trajectory is given as

σt(ρ0) = ln

[
P(σt > 0)

P(σt < 0)

]
. (2)

We consider a Brownian particle confined within a power-law trap which is translating
linearly along one dimension (for the purpose of discussion, assume the motion to be
along the x-axis) at constant acceleration. At a particular time instant t′, we denote the
position and momentum of the Brownian particle as x∗t′ and pt′ , respectively. This
power-law trap (and thus, the Brownian particle) moves in a viscous fluid and only the
Brownian particle feels the effect of the confining potential (the neighboring fluid
molecules do not feel any force and are held stationary relative to the moving Brownian
particle). Also, we assume that the viscous fluid is maintained at a constant
temperature, given which the application of the canonical ensemble to this system
becomes possible. We denote this temperature as T . The Hamiltonian for this classical
system can be expressed as the sum of the kinetic and potential energies of the system
that arise as a result of intermolecular interactions and the confining potential. Also
assumed in this model are very small displacements of the Brownian particle from its
mean equilibrium position (i.e., the center of the trap) such that it never escapes the
influence of the trapping potential. For the time-forward trajectories, the Hamiltonian
assumes the form

H(ρ0) = EK(p0) + Uint(x0) + Utrap(x
∗
0), (3)

where EK(p0) denotes the Brownian particle’s kinetic energy and Uint(x0) denotes the
component of the potential energy that arises due to intermolecular interactions. Here,
Utrap(x0) denotes the potential energy of the confining potential. We note that EK(p0)
and Uint(x0) do not evolve over time, given which they remain constant throughout.
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The confining potential assumes the form

Utrap(x) =
k

2n
(xr)

2n, (4)

where k is the trap stiffness constant and xr denotes the position of the Brownian
particle relative to the center of the trap at arbitrary time instances. Here, n ∈ N. Note
that we obtain bounded solutions only for even-exponent traps. For an odd-exponent
trap, the Brownian particle will simply escape the influence of the confining potential.
Since the trap is accelerating uniformly, the position of the trap center at an arbitrary
time instant t∗ can, from basic kinematics, be given as

xtrap(t
∗) =

1

2
atrap(t

∗)2, (5)

where atrap is the trap’s acceleration. Note that the trap starts from rest at t = 0.
Given Eq. 5, we have for xr

xr = x− 1

2
atrap(t

∗)2. (6)

Thus, from Eq. 4 and Eq. 6, the confining potential assumes the form

Utrap(x) =
k

2n

(
x− 1

2
atrap(t

∗)2
)2n

. (7)

In a similar manner, the Hamiltonian for the time-reversed trajectories assumes the form

H(ρ
′

0) = EK(−pt) + Uint(xt) + Utrap(xt∗), (8)

where we have considered a time-reversal in the phase space coordinates. Also to be
noted is that to respect time-reversal symmetry, the motion of the trap must begin at
the position 1

2atrap(t
∗)2 for a time-reversed phase-space trajectory. Note that in a

canonical ensemble, we have

P(dV(ρ0)) ∝ exp

(
−H(ρ0)

kBT

)
. (9)

From Eq. 2 and Eq. 9, we have

σt(ρ) = ln

[
exp

(
−H(ρ0)

kBT

)
exp

(
−H(ρ

′
0)

kBT

)], (10)

which on further simplification yields

σt(ρ) =
1

kBT

(
H(ρt)−H(ρ0)

)
, (11)

where we have exploited the time-reversal symmetry that the transient trajectories obey.
We can further simplify Eq. 11 by converting it into its integral form, as follows

σt(ρ) =
1

kBT

∫ t

0

(
dH(ρt∗)

dt∗

)
dt∗. (12)

The term in the parentheses of the integrand in Eq. 12 can be expressed as the sum of
the differentials of three energy terms appearing in the Hamiltonian of the system [see
Eq. 3 and Eq. 8]. We consider these individually, as follows∫ t

0

(
dUtrap(xr)

dt∗

)
dt∗ =

∫ t

0

k

(
x− 1

2
atrap(t

∗)2
)2n−1

×
(
dx

dt∗
− atrapt

∗
)
dt∗, (13)
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and a similar expression (in which the terms are accompanied by a negative sign) can be
found for the kinetic energy. Following some simplification, we find that the stochastic
work σt(ρ) is given as

σt(ρ, n) =
atrapk

kBT

∫ t

0

(
x− 1

2
atrap(t

∗)2
)2n−1

t∗dt∗, (14)

where x ≡ x(t) is the position of the Brownian particle within the trap at intermediate
instances of time. Note that the acceleration atrap remains constant throughout and we
place the observer in the center-of-mass frame of the moving Brownian particle/trap.

Description of the numerical model

For the numerical tests, we allow the system to initially relax towards an equilibrium
steady-state. The Brownian particle positions as a consequence, assume a
Maxwellian-Boltzmann distribution before the trap is set in motion. The trap simulated
has a stiffness constant of k = 3.87 × 10−7 N/m. We consider the viscosity of the fluid
to be η = 2.5 Poise and the radius of the Brownian particle to be R = 9.23 µm. In the
case of the harmonic trap, the temperature of the fluid (the thermal reservoir) is
maintained at 400 K, whereas for the case of the quartic potential well, we maintain a
constant temperature of T = 433 K throughout the motion. The friction constant for
the fluid medium is, by Stoke’s law, given as γ = 6πηR. Note that the position of the
particle within the trap at intermediate time instances is computed using the Langevin
equation, given as

m
d2x

dt2
= −∂Utrap(x)

∂x
− γ

dx

dt
+ ξ(t), (15)

where m is the mass of the Brownian particle and ξ(t) is a delta-correlated Gaussian
white noise term that satisfies ⟨ξ(t)ξ(t′)⟩ = 2γkBTδ(t− t′). In the numerical model, we
implement ξ(t) using a Gaussian random number generator. Note that here, we consider
an overdamped Langevin equation, in which case γ is large enough that the inertia
term, i.e., the LHS of Eq. 15 drops out. The trap is set in motion for 20 seconds,
starting from t = 0, from which we sample out transient classical trajectories of different
lengths (i.e., over different time scales). The sub-trajectories of a transient trajectory in
each case are spaced 4 ms apart (i.e., the time step implemented in the numerical
model). The trap is accelerated uniformly at atrap = 4× 10−7 m/s2. The initial position
of the Brownian particle relative to the bottom of the sample cell is 0.85 µm, whereas
the initial distance of the center of the trap relative to the bottom of the sample cell is
0.35 µm. We use Eq. 14 to model the stochastic work done by the Brownian particle
along transient classical trajectories.

Numerical results

Of interest to us is the determination of a closed-form expression for the temporal
dependence of the probability density function of σt. A detailed analysis of the same
appears in Ref [10]. Presented in this section is an outline of the derivation for the case
of a harmonic trap (a similar (albeit more complicated) calculation is possible for the
case of a quartic potential well ( x4 potential)).

We set m = 1 for simplicity. Note that in Eq. 14, we replace the terms appearing
inside the integral by Ftrap for the sake of notational convenience. Eq. 14 then reads

σt =
atrap
kBT

∫ t

0

Ftrap(t
∗)dt∗. (16)
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It is essential to note that although the derivation of Eq. 14 follows form a deterministic
dynamics treatment, the derivation of a closed form expression for P (σt) will follow
from a stochastic dynamics treatment (due to the presence of the stochastic force term
ξ(t)). Note that at any time t, the condition Fdrag + Ftrap + Fstochastic = 0 is satisfied,
given which the force due to the confining potential in the overdamped limit assumes
the form Ftrap = γdx/dt− ξ(t) [see Eq. 15]. Plugging this definition into Eq. 16, we get

σt =
atrapγ

kBT

(
x(t)− x0 − Ω(t)

)
, (17)

where x(t) denotes the position of the Brownian particle within the trap and Ω(t) is

given as Ω(t) = 1
γ

∫ t

0

ξ(t∗)dt∗. Here, x0 denotes the equilibrium position of the

Brownian particle within the trap before it is set in motion (i.e., before the initial
transient). We see that the contribution proportional to the displacement of the
Brownian particle within the trap, i.e., ∝ [x(t)− x0] arises from the viscous drag force
that the fluid exerts on the Brownian particle, whereas the contribution Ω(t) arises as a
consequence of the presence of the stochastic force term ξ(t) [10]. The analysis can be
made simpler by making a coordinate transformation, i.e., a transformation to a
reference frame co-moving with the trap. In this case, we have
r(t) = x0 + 1/2atrapt

2 − atrapγ
2/k2 and r0 = x0 − atrapγ

2/k2. Eq. 17 in this frame can
then be recast as

σt =
atrapγ

kBT

(
x(t) +

1

2
atrapt

2 − x0 − Ω(t)

)
. (18)

Note that τ ≡ γ/k is the characteristic time scale of the system’s motion. Since the
Brownian particle was allowed to thermalize initially, we know that x0 assumes a
Maxwellian-Boltzmann distribution. The general form of the solution to the stochastic
differential equation for x(t) is given as

x(t) = x0 exp

(
− t

τ

)
+

∫ t

0

ξ(t∗)

γ
exp

(
− (t− t∗)

τ

)
dt∗. (19)

Given Eq. 18, we see that to compute the probability distribution function of σt, it is
essential that we obtain a closed-form expression for P

(
x(t)− Ω(t)

)
. From Eq. 19, we

see that x(t)− Ω(t) (which we denote as ψ(t)) assumes the form

ψ(t) = x0 exp

(
− t

τ

)
+

∫ t

0

ξ(t∗)

γ

[
exp

(
− (t− t∗)

τ

)
− 1

]
dt∗. (20)

We see that Eq. 20 consists of a sum of terms, all of which are Gaussian distributed
(since x0 assumes a Maxwellian-Boltzmann distribution, and ξ(t) is a delta-correlated
Gaussian white noise term). Thus, we can conclude that the distribution of ψ(t) will
also be a Gaussian distribution, the general form of which can be expressed as [10]

P (ψ(t)) =
1√

2πθ(t)
exp

(
−
(
ψ(t)− µ(t)√

2θ(t)

)2)
, (21)

where θ(t) denotes the distribution’s time-dependent standard deviation and µ(t)
denotes the mean. Note that P (ψ(t)) ≡ P (ψ(t), x0, t) is the probability of finding ψ(t)
at x = x0 and at time t [10]. Since the distribution of ψ(t) is expected to be Gaussian
[see Eq. 21], we can directly compute µ(t) by taking the ensemble average of Eq. 20.
Noting that the ensemble average of the stochastic force term ξ(t) vanishes, i.e.,
⟨ξ(t)⟩ = 0, we see that µ(t) = x0 exp(−t/τ). Further, we compute θ(t) as [10]

θ(t) = ⟨
(
ψ(t)−µ(t)

)2⟩ = ∫ t

0

dt1

∫ t

0

dt2
γ

[
exp

(
− (t− t1)

τ

)
−1

]
×
[
exp

(
− (t− t2)

τ

)
−1

]
⟨ξ(t1)ξ(t2)⟩. (22)
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Note that ξ(t) is a delta-correlated noise term, i.e., ⟨ξ(t1)ξ(t2)⟩ = 2γkBTδ(t1 − t2).
Plugging this definition into Eq. 22 and integrating, we obtain for θ(t)

θ(t) =
kBT

γ

(
2t+ 4τ exp

(
− t

τ

)
− τ exp

(
−2t

τ

)
− 3τ

)
. (23)

The distribution of x0 assumes the form [10]

P (x0) =

√
k

2πkBT
exp

(
− k

2kBT

(
x0 −

atrapγ
2

k2

)2)
. (24)

From Eqs. 21 through 24, one can compute the full distribution of ψ(t). From Eq. 18,
we obtain ψ(t) = kBTσt/atrapγ + x0 − 1/2atrapt

2, where we use the fact that
ψ(t) = x(t)− Ω(t). Integrating over x0 yields [10]

P (σt) =
kBT

atrapγ

∫ ∞

−∞
dx0P

(
kBTσt/atrapγ + x0 − 1/2atrapt

2, x0, t

)
P (x0). (25)

As in [10], we introduce the following time-dependent function

ϕ(t) = ∆2

(
t

τ
−
(
1− exp

(
− t

τ

)))
, (26)

where ∆ is a dimensionless factor that is defined as the ratio of the motion’s lag
distance (i.e., ≡ atrapγ

2/k2) to the characteristic length scale of the system (or more

precisely, the motion), given as
√
kBT/k. Essentially, ∆ is a convenient measure of the

opposing forces that act on the Brownian particle localized within the trap [10]. Solving
Eq. 25 then yields the following for the probability distribution of σt

P (σt) =
1√
πϕ(t)

exp

(
− 1

4ϕ(t)

(
σt − ϕ(t)

)2)
, (27)

where we note that the time-dependent mean of the distribution µ(t) ≡ ϕ(t). We thus
see that the probability distribution of σt is a Gaussian whose peak moves with time.
The implications of this as well as its physical interpretation is discussed in the next
section. Note that this derivation is only applicable for a harmonic trapping potential.
This is because from Eq. 15, we see that unlike the harmonic trapping case, a term
proportional to x3 would appear (i.e., the differential term on the RHS of Eq. 15) for the
quartic trapping potential case, for which the derivation presented above does not hold.

Harmonic trap

Consider first the case of the harmonic trap, for which we set n = 1 in Eq. 14 to
numerically compute and model the stochastic work done by the Brownian particle
along transient classical trajectories. For this, we consider the entropy production
and/or consumption along trajectories of different lengths (i.e., sampled over different
time scales). The probability distributions are computed numerically at different time
instances.

By employing the maximum likelihood estimation method, we fit a Gaussian to each
of the histogram distributions depicted in Fig. 1, the results of which are shown in
Fig. 2.

As predicted analytically, we see that the peaks or equivalently, the mean of the
distributions moves towards positive σt with time. Moreover, we note that the variance
of the distributions or equivalently, the spread in the probability distributions of σt
increases with time, which given the time-dependent nature of ϕ(t), as it appears in
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Fig 1. (Color outline) Probability distributions of the stochastic work done
by a Brownian particle confined within a uniformly accelerating harmonic
trap.
A) Probability distribution of σt (stochastic work) computed at t = 2 seconds. B)
Probability distribution of σt (stochastic work) computed at t = 4 seconds. C) Proba-
bility distribution of σt (stochastic work) computed at t = 8 seconds. D) Probability
distribution of σt (stochastic work) computed at t = 12 seconds. Note that in accord
with Eq. 27, the peaks of the distributions move towards positive σt with the passage of
time.

Fig 2. (Color outline) Gaussian fits to the probability distributions of σt at
different time instances.
A) Gaussian fits to the probability distributions of σt computed at t = 0.36 seconds
(solid red line) and t = 0.44 seconds (solid blue line), respectively. B) Gaussian fits to the
probability distributions of σt computed at t = 2 seconds (solid red line), t = 4 seconds
(solid blue line), t = 8 seconds (solid black line) and t = 12 seconds (solid green line).
Note that in accord with Eq. 27, the peaks of the distributions move towards positive σt
with the passage of time.

Eq. 27, is an expected outcome. It must be noted that Fig 2A has also been obtained
via a Gaussian fit to the probability distributions of σt computed at t = 0.36 seconds
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and t = 0.44 seconds, respectively. An important point to consider is the probability of
observing entropy-consuming trajectories over certain time scales. To be noted from
Fig. 2 is the fact that for times ≥ 2 seconds, the probability of observing
entropy-consuming trajectories reduces to zero. On the other hand, we see that for
times below 0.5 seconds (more specifically, 0.36 seconds and 0.44 seconds, as depicted in
Fig. 2), there exists a finite probability of observing phase-space classical
anti-trajectories (with the tail of the distributions extending towards negative values of
σt). A further verification of this observation is presented in Fig. 3, where we note the
rapid decrease in the probability of observing phase-space classical anti-trajectories. We
see that the probability P (σt < 0) is finite for times below 0.5 seconds, which beyond
0.5 seconds reduces to zero. This is also in accord with Eq. 1, which predicts the
exponential decrease of P (σt < 0) with time, until a point after which no
entropy-consuming trajectories are observed.

Fig 3. (Color outline) Plot for the number ratio of entropy-consuming to
entropy-producing classical trajectories vs. time.
Plot for the number ratio of entropy-consuming to entropy-producing classical trajectories
(i.e., P (σt < 0)/P (σt > 0)) vs. time (black dots). The solid blue line corresponds to the
RHS of Eq. 1. We see that the numerical results bear excellent correspondence with
analytical calculations.

Further, we note from Eq. 26 that for long times, the variation of the mean of the
distributions with time is expected to be linear (since the exponential term effectively
drops out). This observation is substantiated in Fig. 4, where we extract the values of
the means of the distributions at t = 2 through 12 seconds from the Gaussian fits
depicted in Fig. 2, and fit these to a linear model. We see that the values of the means
fit reasonably well to this linear model, in accord with analytical calculations.

Quartic potential well

A similar analysis numerical has been carried out for the case of a uniformly
accelerating quartic potential well (that moves in a viscous fluid), within which a
Brownian particle is confined. For this, we set n = 2 in Eq. 14 to numerically compute
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Fig 4. (Color outline) Linear fitting of the values of the means of the
probability distributions extracted from the Gaussian fits in Fig. 2.
Plot for the variation of the means of the probability distributions (of σt) vs. time (blue
hollow circles). The solid red line corresponds to the linear fit to the values of the means
with 95% confidence bounds. Note that we extract the values of the distribution means
(computed at t = 2 through 12 seconds) from the Gaussian fits depicted in Fig. 2.

and model the probability distribution of σt at different instances of time. Akin to the
case of the harmonic trap, we consider the entropy-consumption and/or production
along classical trajectories of different lengths (i.e., sampled over different time scales).

Fig 5. (Color outline) Lorentzian fits to the probability distributions of the
stochastic work done by a Brownian particle confined within a uniformly
accelerating quartic potential well at times closer to the initial transient.
A) Probability distribution of σt (stochastic work) computed at t = 0.5 seconds. B)
Probability distribution of σt (stochastic work) computed at t = 0.84 seconds.

Dissimilarities between the harmonic trap and the quartic potential well cases
become evident. In particular, we see that the probability distributions for P (σt) in the
case of the quartic confining potential assume a Lorentzian profile for different time
instances. This is in contrast with what we observe and/or expect in the case of the
harmonic trapping potential, where the distributions are Gaussian. At times closer to
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the initial transient, we see that there exists a finite probability of observing
entropy-consuming trajectories. This is evident from Fig. 5, where we see that the tails
of the distributions extend towards negative values of σt. Also to be noted is the fact
that given the apparent Lorentzian nature of the distribution profiles, the tails of the
distributions decay more slowly as compared to the Gaussian profiles one expects for an
∼ x2 trapping potential. In any case, we see that the distributions are not stationary,
but tend to evolve towards positive values of σt.

Fig 6. (Color outline) Lorentzian fits to the probability distributions of the
stochastic work done by a Brownian particle confined within a uniformly
accelerating quartic potential well at longer times.
A) Probability distribution of σt (stochastic work) computed at t = 2 seconds. B)
Probability distribution of σt (stochastic work) computed at t = 4 seconds. (C) Proba-
bility distribution of σt (stochastic work) computed at t = 8 seconds. (D) Probability
distribution of σt (stochastic work) computed at t = 12 seconds.

An important point to consider is the probability of observing entropy-consuming
trajectories over certain time scales. To be noted from Fig. 6 is the fact that for times ≥
2 seconds, the probability of observing entropy-consuming trajectories reduces to zero.
On the other hand, we see that for times below 1 second (more specifically, 0.5 seconds
and 0.84 seconds, as depicted in Fig. 5), there exists a finite probability of observing
phase-space classical anti-trajectories (with the tail of the distributions extending
towards negative values of σt). A further verification of this observation is presented in
Fig. 7, where we note the rapid decrease in the probability of observing phase-space
classical anti-trajectories. We see that the probability P (σt < 0) is finite for times below
1 second, which beyond 1 second effectively vanishes. This is also in accord with Eq. 1,
which predicts the exponential decrease of P (σt < 0) with time, until a point after
which no entropy-consuming trajectories are observed.
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Fig 7. (Color outline) Plot for the number ratio of entropy-consuming to
entropy-producing classical trajectories vs. time.
Plot for the number ratio of entropy-consuming to entropy-producing classical trajectories
(i.e., P (σt < 0)/P (σt > 0)) vs. time (black dots). The solid blue line corresponds to the
RHS of Eq. 1. We see that the numerical results bear reasonably good correspondence
with analytical calculations.

Discussion

For the numerical analysis carried out in the previous section, it is important to
emphasize that the system must evolve from an initial equilibrium steady-state. The
analytical calculations as such do not incorporate phase-space compression factors. A
detailed derivation of the stochastic work done along transient classical trajectories for a
nearly similar model and/or scenario that considers thermostatting constraints and
phase-space compression factors can be found in Ref. [41]. In Ref. [41], the authors
consider a stationary trap (as opposed to the trap in motion analyzed in this paper)
whose stiffness constant increases with time, starting from t = 0. One can infer from the
analysis that if the trap contained no Brownian particle, no energy would be dissipated
in translating it linearly [10]. Essentially, the numerical results suggest that heat and/or
thermal fluctuations in the surroundings (which in our case, is the viscous fluid) were
converted to useful work for up to a few seconds (about 0.5 seconds in the case of the
moving harmonic trap and about a second in the case of the moving quartic potential
well), beyond which the probability of this happening dwindled to zero. As to why the
system must evolve from an initial equilibrium steady-state can be seen from Eq. 25:
the derivation involves knowing the distribution of the initial particle positions. This
implies that under the given conditions, it would not be possible to deduce analytically
a closed-form expression for P (σt) if the system were allowed to evolve from an initial
non-equilibrium steady-state, since knowing P (x0) exactly in such a case would not be
possible. Also to be noted is that the deviations in Figs. 3 and 7 seemingly arise
because we approximate the transient fluctuation theorem with an approximate form of
the dissipation function σt (in the steady-state). This thus corresponds to an
approximation to the transient fluctuation theorem that holds true in the asymptotic
(long-time) limit [10]. The integration over time, as seen in Eq. 14, starts from an initial
equilibrium steady-state distribution, where the form of the dissipation function as
deduced in Eq. 14 satisfies the transient fluctuation theorem in the long-time limit.

For the probability distribution of σt along transient classical trajectories in the case
of the harmonic trapping potential, we see from Eq. 27 that the distribution tends to
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move towards positive σt with the passage of time. Moreover, it can be seen that the
spread of the distribution increases with time. This result is verified in Figs. 2 and 4. A
possible physical interpretation of this is that it merely represents the dissipation
production as the Brownian particle is dragged along with the trap (note that it is
confined within the trap) with an acceleration atrap [10]. We see that at sufficiently long
times, the mean of the distribution of σt scales as ∝ t [see Eq. 26], which has been
verified in Fig. 4 for the harmonic trap case. In the limit of sufficiently large t, we see
that from Eq. 26, ϕ(t) assumes the form ϕ(t) = a2trapγ

3/(k2kBT )t− a2trapγ
4/(k3kBT ).

The first term contributing to the evolution of the mean at long times arises from the
dissipation production discussed above, whereas the second term is a contribution
arising from the initial translation of the trap in the viscous medium [10]. Furthermore,
it is important to note that owing to the Gaussian nature of P (σt) for the ∼ x2

confining potential, σt can assume both positive and negative values, as one can see for
times very close to the initial transient. As such, it can be concluded that if the classical
system happens to be fluctuating around equilibrium, there exists an equal probability
for σt to assume positive and negative values, with the distribution centred at σt = 0.
However, once the system enters a non-equilibrium steady-state (in our case, this
corresponds to the translation of the trap at a uniform acceleration), the symmetry that
P (σt) exhibits in the equilibrium case vanishes, and the mean of the distribution evolves
towards positive σt [42]. A detailed argument can be found in Ref. [42]. For the quartic
confining potential, the numerical results suggest that the distributions for σt assume a
Lorentzian profile at different instances of time. Given this, the tails of the distributions
decay more slowly as compared to a typical Gaussian distribution. Figs. 3 and 7
confirm this, in that a slower decay for the number ratio of entropy-consuming to
entropy-producing trajectories can be observed for the quartic confining potential case.
It is, in any case, quite clear from Figs. 5 and 6 that the distributions evolve towards
positive values of σt with the passage of time, an observation consistent with the fact
that we are dealing with a classical system in a non-equilibrium steady-state.

In what follows, a select few of the applications of fluctuation theorems are
summarized and discussed. Micro-sized and nano-sized machines that are primarily
entropy-driven can be realized in principle for a myriad of medical and industrial
applications [43], [44]. More recently, significant advances made in the area of stochastic
thermodynamics have shown that in far-from-equilibrium classical systems, random
fluctuations are naturally constrained by the rate of entropy production through certain
thermodynamic uncertainty relations [45]– [48]. To this effect, the thermodynamics of
quantum nanomachines and qubit engines have been studied extensively, the results of
which serve as a positive reinforcement to the idea that power outputs for certain
thermodynamic configurations can be enhanced within a particular regime of entropy
production. In mechanobiology in particular, the fluctuation theorem can be applied to
the real-time analysis of the thermodynamic properties of motor proteins in
solution [49]– [51]. A comprehensive review of the study of far-from-equilibrium driven
systems appeared in 2013 [52]. Studies pertaining to the analysis of nonequilibrium
systems in the absence of detailed balance conditions have also appeared in recent years.
Cengio et al. for instance, provide a comprehensive study of situations wherein detailed
balance is broken in nonequilibrium systems and how this relates to the resulting
violations of the fluctuation-dissipation theorem [53]. In essence, the authors exploit the
fact that detailed balance is broken to establish and/or derive general constraints on
nonequilibrium steady-states. Ouldridge in his 2017 paper highlights the importance of
thermodynamical fluctuation theorems at the molecular level [54], especially with
regards to the design and realization of nanoscale self-assembling systems. Studies
linking stochastic thermodynamics with information theory have been undertaken over
the recent years. Dinis et al. for instance, demonstrate that by reversibly confining a
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Brownian particle in an optical trap, it is possible to extract the resulting increase in
the free energy of the system as useful work [55]. Furthermore, they show that by
repeatedly modulating the optical trap potential and by tracking the Brownian particle
in real-time, it becomes possible to extract an optimal amount of work from the system,
even when high degrees of inaccuracies in the measurements are introduced. Recently,
Ito discussed a link between stochastic thermodynamics and information theory, in that
he demonstrates that it is possible to interpret an information geometric inequality as a
thermodynamic uncertainty relationship between speed and thermodynamic cost [56]. A
central result of nonequilibrium statistical mechanics is the formulation of an exact
closed-form expression for the entropy flow out of a classical system that undergoes
dynamical evolution, starting from a given initial distribution over thermodynamic
states. In computer science, this result plays an especially crucial role for analyzing how
the total entropy flow out of a computing device depends on its global structure which
in turn determines the initial distributions into all of the computing device’s
subsystems [57]. Wolpert in his 2018 paper illustrates at length the application of this
result and other related results to investigate the thermodynamics of computation and
information retrieval [57]. A recent important work pertaining to the determination of
thermodynamic uncertainty relations surfaced in 2019 [58]. Ref. [58] in particular
presents a detailed derivation of a thermodynamic uncertainty relation from the
fluctuation theorem which is shown to be valid for arbitrary dynamics, be it
deterministic or stochastic. Most importantly, the authors demonstrate that the
thermodynamic uncertainty relation holds true when applied to an asymmetric
observable of a system obeying overdamped Langevin dynamics. In addition, the
authors show that the thermodynamic uncertainty relation applies to systems governed
and/or controlled by external time-symmetric protocols, in which the lower bound on
uncertainty is determined through the work exerted on such systems [58].

Conclusion

In this paper, we demonstrate the applicability of the transient fluctuation theorem to a
classical system consisting of a Brownian particle confined within a uniformly
accelerating power-law trap. We consider two such special cases, one corresponding to a
harmonic trap and the other corresponding to a quartic potential well. For the harmonic
trap case, we derive an approximate analytical expression for the stochastic work done
by the Brownian particle over transient classical trajectories of different lengths (i.e.,
over different time scales) and thereafter, a closed-form expression for the probability
distribution for the stochastic work as a function of time. We see that the probability
distribution for σt (i.e., the stochastic work) for a Brownian particle confined within a
uniformly accelerating harmonic trap assumes a Gaussian profile for all times t > 0. On
the other hand, it is observed that the distribution for σt for a quartic confining
potential is Lorentzian in nature for different time instances, in direct contrast with the
numerical results obtained for the harmonic trap case. We see that the analytical results
(the key results being Eq. 14 and Eq. 27) are in good agreement with numerical results,
thus demonstrating that the form of the dissipation function deduced in Eq. 14 satisfies
the transient fluctuation theorem in the asymptotic (long-time) limit. In conclusion, it
can also be said that given a finite probability of observing phase-space classical
anti-trajectories over certain time scales, the study of the role of non-equilibrium
steady-states in the manifestation of time symmetry-breaking in classical systems could
prove to be an interesting and fruitful venture in the near future [42].
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