Supporting information for

Vertically Aligned Binder-Free TiO$_2$ Nanotube Arrays Doped with Fe, S and Fe-S for Li-ion Batteries

1Suriyakumar Dasarathan1,2 1Mukarram Ali2,3 Tai-Jong Jung2,3 Junghwan Sung1,2 Yoon-Cheol Ha3 Jun-Woo Park3, Doohun Kim1,2

1Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea
Electrotechnology Research Institute, Changwon 51543, Republic of Korea

2Department of Electro-Functionality Materials Engineering, University of Science and Technology (UST), Daejeon, Republic of Korea

3Next Generation Battery Research Center, Electrical Materials Research Division, Korea
Electrotechnology Research Institute, Changwon 51543, Republic of Korea.

*Corresponding author: kdh0121@keri.re.kr
Fig. S1(a) XRD results of amorphous and crystalline TNTs. The diffraction peak notations Ti respond to titanium. (b) XPS spectra for O 1s of Fe-S doped TNTs.
Fig. S2 (a), (b), (c) and (d) Cyclic voltammetry curves at a scan rate 0.5mVs$^{-1}$ for Fe-S, Fe, S doped TNTs and bare TNTs (thickness of 12μm), respectively.
Fig. S3 Gravimetric and areal capacity retention with cycling of bare and Fe-S doped TNT anodes discharged at current density of 0.3mAcm$^{-2}$.
Fig. S4 (a) EIS spectrum of before and after cycling for Fe-S doped TNTs. (b) Diffusion coefficient values as calculated using Randles–Sevcik equation for doped and elongated TNTs, respectively.
Table S1†. Calculated lattice parameters and crystallite sizes of TNTs.

<table>
<thead>
<tr>
<th>Material</th>
<th>Lattice constant (d_{011})<sup>a</sup></th>
<th>Avg. crystallite size<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare</td>
<td>0.350 nm</td>
<td>45.930 nm</td>
</tr>
<tr>
<td>Fe doped</td>
<td>0.454 nm</td>
<td>39.636 nm</td>
</tr>
<tr>
<td>S doped</td>
<td>0.452 nm</td>
<td>30.319 nm</td>
</tr>
<tr>
<td>Fe-S doped</td>
<td>0.455 nm</td>
<td>32.380 nm</td>
</tr>
</tbody>
</table>

^a calculated via Bragg’s equation. ^b calculated via Scherrer equation