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Abstract: Industrial discrete event dynamic systems (DEDSs) are commonly modeled by means of1

Petri nets (PNs). PNs have the capability to model behaviours such as concurrency, synchroniza-2

tion, and resource sharing, compared to a step transition function chart or GRAphe Fonctionnel3

de Commande Etape Transition (GRAFCET) which is a particular case of a PN. However, there4

is not an effective systematic way to implement a PN in a programmable logic controller (PLC),5

and so it is very common the implementation of such a controller outside a PLC, in some external6

software that will communicate with the PLC. There have been some attempts to implement PNs7

within a PLC, but they are dependent on how the logic of places and transitions is programmed for8

each application. This work proposes a novel application-independent and platform-independent9

PN implementation methodology. This methodology is a systematic way to implement a PN10

controller within industrial PLCs. A great portion of the code will be validated automatically prior11

to PLC implementation. Net structure and marking evolution will be checked on the basis of PN12

model structural analysis, and only net interpretation will be manually coded and error-prone.13

Thus, this methodology represents a systematic and semi-compiled PN implementation method.14

A use case supported by a digital twin (DT) is shown where the automated solution required by a15

manufacturing system is carried out and executed in two different devices for portability testing,16

and the scan cycle periods are compared for both approaches.17

Keywords: Petri nets; programmable logic controllers; process modeling; digital twin18

1. Introduction19

Discrete event dynamic systems (DEDSs) are widely present in industrial manufac-20

turing processes. A DEDS is a dynamic, asynchronous system, where state transitions are21

initiated by events that occur at discrete instants of time [1]. They are usually modeled22

by finite state automata with partially observable events together with a mechanism for23

enabling and disabling a subset of state transitions [2]. The following are some examples:24

• Clients arriving or leaving a waiting queue to be attended at a desk.25

• A waiter serving two customers, noting requests and serving them in any order.26

• Synchronization of traffic lights in road intersections, after expiration of each state27

temporization (Figure 1).28

• Flexible and/or discrete part manufacturing systems, those concerning with robots29

and programmable machines behaving with concurrent evolution, synchronization30

and/or shared resources features. In the frame of this set a use case is analyzed in31

Section 3.32

1.1. PN-based DEDSs modeling33

Petri nets (PNs) are a powerful method to model and control such DEDSs as they34

have the capability to represent systems characterized as being concurrent, asynchronous,35

distributed, parallel, nondeterministic, and/or stochastic [3]. A PN is a graphical tool36
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Figure 1. Emulated traffic lights synchronization.
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Figure 2. PN structure for traffic lights synchronization.

Table 1. Interpretation to be added to the PN structure shown in Figure 2.

Place Action Description

p0 oCR Red light for vehicles.
p1 oCG Green light for vehicles (and timer activation).
p2 oCY Yellow light for vehicles (and timer activation).
p3 oPR Red light for pedestrians.
p4 oPG Green light for pedestrians (and timer activation).
p5 - Pedestrian green light activation token.
p6 - Vehicle green light activation token.

Transition Condition Description

t0 tVY Vehicle yellow light timer expiration.
t1 - Direct.
t2 tVG Vehicle green light timer expiration.
t3 - Direct.
t4 tPG Pedestrian green light timer expiration.
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because it combines visual comunication aid (block diagram) to which tokens are added37

to simulate the dynamics and concurrent activities of systems. It is also a mathematical38

tool because of algebraic models related to its behavior. [4] considers PNs as suitable39

formalism to model and visualize the behavior of DEDSs, noting that they have been40

applied successfully to several problems in different sectors, such as manufacturing.41

Thus, a PN represents an effective method [5] for both the design and implementation42

of this type of systems [6]. However, there is not a widely adopted and effective43

systematic way to implement a PN in a programmable logic controller (PLC), and so it is44

very common the implementation of such a controller outside a PLC, in some external45

software that will communicate with the PLC.46

A PN is composed by its structure and interpretation [7], and its dynamics. In47

terms of net structure, [4] describes a PN graph as a bipartite graph that contains two48

types of nodes: places (identified by p ∈ P and represented by circles) and transitions49

(t ∈ T, bars). These two types of nodes are connected through directed and weighted50

arcs (Figure 2). [7] denotes a Place/Transition (P/T) net as N = <P,T,Pre,Post>, where P51

and T are the sets of places and transitions, and Pre and Post are the |P| x |T| sized,52

natural valued, incidence matrices. For instance, Post[p,t] = w means that there is an arc53

from t to p with weight (or multiplicity) w. When all weights are one the net is ordinary.54

A marking is a |P| sized and natural valued vector. A marked net, P/T system or PN is55

a pair <N,m0>, where m0 is the initial marking. A transition t is enabled at marking m if56

m ≥ Pre [P,t]; its firing yields a new marking m’ = m + C[P,t], where C = Post - Pre is the57

token - flow matrix of the net. The set of all reachable markings, or reachability graph58

(RG), from m, is denoted by RG(N,m). C and m0 corresponding to the example are as59

follows:60

C =

t0 t1 t2 t3 t4



1 −1 0 0 0 p0
0 1 −1 0 0 p1
−1 0 1 0 0 p2
0 0 0 −1 1 p3
0 0 0 1 −1 p4
1 0 0 −1 0 p5
0 −1 0 0 1 p6

mt
0 =

p0 p1 p2 p3 p4 p5 p6
( )1 0 0 1 0 0 1

PN dynamics is characterized by the marking, i.e. tokens (dots) distribution among61

places, and its evolution. Marking progress depends on the controlled firing of transitions62

i.e. their enabling and the compliance of their associated firing conditions.63

In terms of structural validation, [3] defines basic properties to be fulfilled by a PN,64

such as its liveness, cyclicity, and boundedness. The existence of the aforementioned65

formal mathematical definition (C, m0), as well as formal validation methods [3] [8]66

[9], make it possible to detect, in the modeling phase, (i) blocking states (markings), (ii)67

bounded marking, and (iii) initial marking reachability. Software tools are available68

on the market with capabilities such as graphical edition of the net, marking evolution69

simulation, property analysis, and PN formal definition generation through matrix70

representation.71

Finally, PN interpretation is defined by events modeled in transitions, which lead72

to marking changes, and actions associated to places. It can consist of: (i) time (constant,73

random) for performance evaluation; (ii) condition action for control. Table 1 shows the74

interpretation corresponding to the example.75
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Figure 3. SFC-based programming in PLC development environment.

1.2. PN implementation in PLC76

The PLC is the most widely used controller in industrial environment. It is a control77

device for DEDSs based on information from process and operator [10]. Its use is due78

to several characteristics that differentiate it from a conventional computer [11]: (i)79

cyclic execution of the control program, (ii) reliability, (iii) adaptation to an industrial80

environment with electrical noise, vibrations, extreme temperatures and humidity, and81

(iv) easy maintenance.82

PN implementations in PLCs depend on how the logic of places and transitions83

is programmed. There is not any broadly used systematic method of implementation.84

Therefore, there may be as many PN implementation methods as programmers, and any85

improvement in the PN involves code regeneration. There have been some attempts86

towards a systematic PN implementation method, however, although these attempts87

propose an ordered method to program the logic of places and transitions, they have not88

been widely adopted.89

1.3. GRAFCET: a particular case of PN90

A step transition function chart or GRAphe Fonctionnel de Commande Etape Tran-91

sition (GRAFCET) diagram is a widely used graphical tool for PLC programming [10].92

GRAFCET is a safe PN [12], i.e. the limitation property is guaranteed being the possible93

marking of any place in the net 0 or 1. That is, ∀p ∈ P, m(p) ≤ 1. Its implementation in94

PLC has traditionally been done by means of a boolean variable for each step [13] [14],95

with its status evaluated at every scan cycle of the device. Currently, many development96

environments include sequential function chart (SFC), a graphic modeling and descrip-97

tion method for sequential automation systems, suitable for GRAFCET and standardised98

in IEC 61131-3 (Figure 3).99

1.4. PN vs. GRAFCET comparison100

It is worth noting the suitability of using a PN based approcah to control a DEDS101

compared to a GRAFCET. Thus, PNs offer capacity to model behaviors such as con-102

currency, synchronization, and resource sharing, among other advantages [4]. There103

are certain functionalities that, being implicit in a PN structure, should be coded for a104

GRAFCET. First, for managing non boolean marking of a PN, counters must be incorpo-105

rated into GRAFCET, since it is intended for single marking of steps, just binary places106

in PN (marking vector includes only 0 or 1 values). Next, while features such as shared107

resources or synchronization are integrated into a PN structure and can be validated108
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directly, their GRAFCET modeling requires a development based on internal variables.109

Finally, the existence of a formal mathematical definition (C, m0) and subsequent formal110

validation methods for a PN structure, enable the detection of possible net deadlocks.111

Model validation abilities are much more powerful than those proposed for GRAFCET,112

mainly related with divergence-convergence managing [15].113

1.5. Related works and proposal114

Several works introduce PN implementation methodologies into standard PLC115

languages and in an interpreted basis, i.e. with structure and marking management116

integrated into the code itself. [16] presents a method for generating ladder diagrams117

(LDs), which are widely used for discrete event control, that enables faster development,118

debugging and reengineering. It is based on PN models that are valid for formal system119

analysis, as well as their ability to verify liveness and cyclicity. It also addresses the need120

of building PNs in a simple way, as well as to be able to evaluate their properties and121

simulate token evolution. [17] points out the limitation of LD-based implementations122

in a context in which systems are of increasing complexity, and the need for tools for123

control, analysis, evaluation and simulation of systems, presenting PN as an integrated124

solution and making a survey about approaches for its conversion to LD. [4] defines a125

set of rules for implementing LDs and overcomes merely intuitive ad hoc developments.126

The review by [18] references these PN to LD conversions, among other implementations127

of logic controllers. In addition, literature shows the use of other PLC programming128

languages as well. References evolve from the mentioned LDs [19] [20] [21] [22] and/or129

instruction lists [23] [24] to more recent proposals in standard programming languages130

[25] or structured text (ST) [26], for portability to different PLCs. In a recent paper, [27]131

proposes editing both net structure and its interpretation in a proprietary graphical132

environment and automatically converting them into PLC code.133

Existing PN implementations in PLCs present some weaknesses. Thus, they are fully134

interpreted developments, totally dependent on the application and the programmer.135

The coding workload is significant and error-prone. Moreover, any modification in136

net structure or interpretation involves code rewriting/regenerating. In terms of PN137

validation, it is conventionally performed at the end of development, on the equipment138

already assembled, on a digital twin (DT) that emulates it, or by forcing input values139

and observing output behaviors in the PLC development environment itself.140

This paper proposes a methodology to implement a PN within a PLC in a simple141

way, making use of the mentioned formal mathematical definition of a PN, that makes142

possible to automatically validate part of the PLC program, minimizing coding workload143

and, consequently, error-prone points. Thus, a previously validated PN matrix represen-144

tation will be directly copied into a PLC device data memory. A fixed program blocks145

will manage the marking of the PN and the programming workload will be limited to146

PN interpretation, i.e.: assigning conditions (inputs queries) to transitions and actions147

(outputs writing) to places. In this way, projects can be carried out and commissioned in148

a very efficient way. This represents a semi-compiled PN implementation instead of an149

exclusively interpreted one.150

The proposed PN implementation approach can contribute to the state-of-the-art in151

several aspects (Figure 4):152

• The PN model is constructed, evaluated and simulated in a simple way, which is153

demanded by authors such as [16]. A visual and intuitive software tool is used to154

code, generating structural data that are managed by fixed program blocks, and155

validate part of the implementation. While the tool presented in [27] is exclusively156

for PN structure and interpretation editing, in this work it is proposed the use of a157

commercial software that provides structure editing, simulation and validation.158

• Coding workload is reduced to net interpretation: assignment of actions to places159

and conditions to transitions of the net, thus to process outputs and inputs, respec-160
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Figure 4. Proposed PN implementation in PLC.

tively. Exclusively the mentioned program section remains to be manually coded161

and validated.162

• Any change in net structure or initial marking is direct and impacts only the con-163

troller’s data area, never the program, which remains unmodified. In contrast,164

literature shows code generation methodologies, transforming complete PNs (struc-165

ture and interpretation) to PLC standard programming languages. [28], for instance,166

automates and accelerates PN to LD conversion supported by characteristic matri-167

ces, but without automatically generating them or using validation rules, and any168

change involves all code to be generated and manually validated.169

In the context of this work, simple PNs are used, with event/action interpreta-170

tion. We limit ourselves to basic structural analysis without any previous performance171

evaluation by means of other temporal and/or stochastic interpretation.172

2. Methodology173

This section shows the proposed algorithm and its implementation methodology.174

2.1. Algorithm for PN marking management175

The basis of the proposal is a PN-based algorithm with compliance with the follow-176

ing specifications:177

• An appropriate program block structure, with a fixed part (related to PN struc-178

ture and marking evolution) and a customizable or to be programmed part (PN179

interpretation) properly differentiated.180

• Apply PN marking evolution rules.181

• Coding in ST, due to (i) simple portability regardless of target device vendor, (ii)182

operating matricially element by element.183

• Variables required for algorithm proper operation already pre-declared, and PN184

structure matrix representation not declared, for its direct transfer by a parser185

application.186

Note that the only task related to PN structure is transferring its matrix represen-187

tation (C, m0) to PLC data memory. PN interpretation has to be coded, differing upon188

particular application.189

In compliance with the specifications described above, the algorithm kernel imple-190

ments the transition firing and marking updating rules for a general PN, as detailed191

in Algorithm 1. Provided with any particular PN pre-incidence and post-incidence192

matrices and initial marking vector contained in a PLC data block, this algorithm allows193

token movements among places managing, thus allowing transition enabling, firing and194

resulting marking computation. It is coded in ST, in order to operate more simply with195
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Algorithm 1: Transition firing and marking updating for a general PN
i = 1, ..., m; where m is the cardinality of P; ∧ j = 1, ..., n; where n is that of T.
marking initialization: x(pi) := x0(pi);
incidence matrix initialization: Inc(pi, tj) := Post(pi, tj)− Pre(pi, tj);
while TRUE do

create list of enabled transitions E(tj):
a transition is enabled⇐⇒ x(pi) ≥ Pre(pi, tj), ∀pi ∈ I(tj);
I(tj) is the set of input places of a transition tj ∈ T.

compute conditions list: Cond(tj), ∀tj ∈ E(tj);
create list of firable transitions F(tj):

a transition is firable⇐⇒ Cond(tj) = TRUE, ∀tj ∈ E(tj);
if ∃tj/F(tj) 6= 0 then

decide on which transition tj ∈ F(tj), if any, should be fired;
if it is decided to fire tj ∈ F(tj) then

compute new marking reached: x′(pi) := x(pi) + Inc(pi, tj);
update marking: x(pi) := x′(pi);
update actions: ∀pi/x(pi) > 0 =⇒ Acc(pi) := TRUE;

end
end

end

matrices and for an easier portability to other manufacturers’ devices. The program196

block execution flow is described below.197

Startup198

Only once, and before the continuous scan cycle execution, initial marking value is199

given to the current one, and incidence matrix is calculated from the pre-incidence and200

post-incidence ones.201

Enabling202

This program block determines transitions enabled by current marking. Marking203

vector is compared with each of the columns of the pre-incidence matrix to determine204

whether the marking enables the corresponding transition. If so, it is annotated in an205

array of enabled transitions. This function will not be executed again until some change206

has occurred in current marking, that is, until some transition has already been fired.207

Firable208

It is checked whether currently enabled transitions are likely to be fired. According209

to net interpretation, it evaluates fulfillment of transitions corresponding firing condi-210

tions, listing them in an array. Subsequently, it is evaluated if they are liable to be fired,211

reflecting it in another array.212

Make a decision213

A rule is implemented in this block. Note that a firable transition does not have to214

be fired at that instant. Firing could be postponed. It may not even occur, if the firing of215

another transition causes it to become no longer enabled and firable. This property of216

PNs is particularly important and interesting in the modeling of sequencing problems:217

order control in the sequence of transitions firing. A function is introduced for the218

decision of the transition to be fired among the liable to be fired ones, maybe being219

in conflict. In this implementation a simple decision rule is applied: the last of those220

present in the list of firable is fired. Once the selection has been made, it is possible to221

update the net marking after the transition is fired.222
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Marking update223

This is a calculation operation. As a consequence of the firing of previously selected224

transition among firable ones, new net marking is computed. It implies updating it225

by adding to marking vector the incidence matrix column corresponding to the fired226

transition.227

Actions228

This block updates actions related with places, as net interpretation determines,229

according to achieved new marking.230

2.2. Implementation procedure231

The proposed procedure for implementing a PN from an algorithm that meets the232

specifications described, suitable for any process and PLC, consists of the following233

phases, as shown in Figure 5. It contains the phases of the implementation, only one of234

them being a source of errors in the code: that of net interpretation programming. The235

code reaches this phase mostly fixed and validated, pending manual addition/validation236

of the mentioned code lines.237

Note that specifications definition, characterizing the desired operation and iden-238

tifying key signals, is a previous work to be done, as in any automation project, and239

independent of the proposed methodology. It involves project creation in the develop-240

ment environment, hardware definition, program block addition and transfer of those241

that are fixed and application independent, and declaration and initialization of vari-242

ables (internal and I/O). Furthermore, if virtual commissioning (VC) of the automated243

solution is planned, a process DT must be designed and developed.244

2.2.1. PN design245

Once specifications are defined, the PN structural design is carried out for its246

subsequent analysis. Interpretation is added, associating conditions and actions with247

PN structure transitions and places, respectively.248

2.2.2. Structural validation249

There are software tools available on the market which provide PN editing capabili-250

ties and token moving among places simulation [29]. Platform Independent Petri net251

Editor 2 (PIPE2) [30] [31], for example, owns also validation and performance analysis252

features. Net invariants computing allows testing structural properties as boundness,253

liveness and deadlock freeness. Finally, a file in HTML format with PN structure’s matrix254

representation can be generated, as well as validation process results.255

Note that a 100% automatic validation is not possible. For example, a necessary256

condition is tested for liveness, but it does not fully guarantee this PN property. PIPE2257

includes the capability to generate a RG (see Figure 6 as an example). Liveness can be258
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Figure 6. Detail of a RG generated by PIPE2.

fully verified by detecting a unique strongly connected component in the RG which259

includes the whole set of transitions T.260

2.2.3. Structural data transfer to PLC261

From the file created in the previous step, the matrix representation is transferred to262

a data block in PLC memory. A parser can be used to adequate the information provided263

by the PN editing, analysis and simulation tool to the PLC’s syntax.264

2.2.4. Interpretation coding265

The corresponding code for each case has to be developed. Conditions and actions266

are edited in program memory, according to particular net interpretation.267

2.2.5. System commissioning268

This step implies verifying the correct behavior of the automated process, according269

to specifications.270

3. Use case271

This section describes the use case in which the experimentation was carried out.272

The required resources are listed, the process to be automated is described, and the273

implementations performed are explained.274

3.1. Manufacturing process under study275

3.1.1. Description276

The system under study is the one shown in Figure 7. It has two machines (M1277

and M2), in which parts have to be worked consecutively. A temporary buffer with278

limited (7) capacity and a robot (R) complete the manufacturing cell. M1 and M2 can279

be in one of the following five states: waiting to be loaded with a part, being loaded,280

operating, waiting to be unloaded, being unloaded. The purpose of R is to load/unload281

parts to/from the stations before/after the operations they perform. Being single and282

shared, it can be in one of these states: waiting for servicing, or executing one of four283

movements: M1 station loading with a part from input; M1 unloading, a part is driven284

to intermediate buffer; M2 station loading with a part from the buffer; M2 unloading, a285

part is driven to system output.286

It was considered to be an interesting case for a PN-based implementation, due to287

the use of a limited-capacity intermediate buffer, and the existence of a shared resource,288

R, that executes one movement each time.289

3.1.2. Emulation through a DT290

As the process under analysis was not available, two possibilities for software291

validation were considered, the conventional one in the development environment itself,292
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and the VC. In the first case, since all the signals coming from the process have to293

be reproduced, a good knowledge of the system to be automated is required. Some294

scenarios may remain unreproduced, leaving the control software not fully validated.295

Faced with this situation, it was decided to use emulation for VC. Consequently, a DT296

of the process to be automated was designed, as shown in Figure 8, in which only the297

part controlled by the PLC is emulated, that is the one to be analyzed in this work. It298

was connected in a hardware-in-the-loop (HIL) setup and by means of Object Linking299

and Embedding (OLE) for Process Control Unified Architecture (OPC UA) [32] to the300

physical PLC, configured DT as a client and controller as a server. Note that the devices301

used include, as most of the latest generation ones, OPC UA server capability.302

3.2. Resources303

For each of the necessary resources, it is specified what was employed in this304

particular use case.305

• An industrial system and process emulation tool or DT. It can support the whole306

process of development, simulation and validation, connected to the emulated PLC307

in a software-in-the-loop (SIL) configuration or to the physical controller in HIL.308

For this study Simumatik3D V1.0.3 (S3D) [33] was used for VC, connected to a309

physical PLC.310

• A PLC programming environment, as well as the device itself and its emulation311

tool.312

Two control devices from different vendors were required, with their respective313

development platforms:314

– SIMATIC S7-1500 CPU 1512C-1 PN of Siemens, with TIA Portal V15.1 for315

coding and PLCSIM Advanced V2.0 SP1 for emulation. The algorithm was316

available for these tools.317

– CPU NX102-1020 of Omron, with Sysmac Studio 1.25 for coding and emulation.318

• A PN modeling and analysis tool.319

The above-mentioned PIPE2 tool was used for (i) PN structure edition, (ii) PN live-320

ness and/or boundedness properties necessary conditions fullfilment verification,321

and (iii) PN representative matrices generation.322

• In addition, an application was developed for converting the data generated by323

PIPE2 (HTML format) into a text format suitable for insertion in the variable324
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Figure 8. Emulation of the PLC-controlled part of the process.

declaration modules of various development environments, including TIA Portal325

and Sysmac Studio.326

3.3. Manufacturing system automation327

The automated solution for the robotic cell under study was implemented by means328

of PN-based approach for two PLCs from different vendors. In addition, each of the329

controllers was programmed following other similar, fully interpreted solutions, in330

order to compare the scan cycle time required: two PN-based, using LDs and ST, and331

a GRAFCET-based one, exclusively for Siemens, by means of SFC. This subsection332

describes the work performed.333

3.3.1. PN implementation by means of the proposed approach334

For both implementations carried out on PLCs from different vendors, the proce-335

dure described in 2.2 was applied and the following starting points were assumed:336

• Project created in the development environment, and the PLC hardware used337

properly configured.338

• In device program memory:339

– Created program block structure.340

– Coded the content of fixed blocks, corresponding to PN marking evolution341

management. In Siemens environment, as a result of the first algorithm de-342

velopment and subsequent testing. For Omron, as a result of code transfer. It343

should be noted that, for a first implementation in a new development environ-344

ment, compilation errors may occur as a result of the platform-specific editing345

procedure. Often, PLC program editing task needs variable name recognition,346

thus it should be written literally at its very first appearance in a programming347

module. In that case, simple copy-paste does not work properly.348

– Blocks related to PN interpretation, empty.349

• In device data memory:350

– Variables corresponding to inputs and outputs, and specific to algorithm,351

declared.352

– Variables associated with PN structure were not declared, as they were trans-353

ferred from the design and simulation package through proprietary software.354
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Figure 9. PN structure modeling manufacturing cell behavior.

Table 2. Interpretation to be added to the PN structure shown in Figure 9.

Place Action Description

H - Buffer free positions.
M - Robot, shared use.
O - Buffer occupied positions.
p10 - Wait until station 1 (M1) can be loaded.
p11 CM1 M1 loading signal.
p12 PM1 M1 processing signal.
p13 - Wait until M1 can be unloaded.
p14 DM1 M1 unloading signal.
p20 - Wait until station 2 (M2) can be loaded.
p21 CM2 M2 loading signal.
p22 PM2 M2 processing signal.
p23 - Wait until M2 can be unloaded.
p24 DM2 M2 unloading signal.

Transition Condition Description

t10 PE Part at input point.
t11 PCM1 Part loaded in M1.
t12 - Direct.
t13 - There are resources for unloading M1.
t14 EB Part in buffer input.
t20 SB Part in buffer output.
t21 PCM2 Part loaded in M2.
t22 - Direct.
t23 - There are resources for unloading M2.
t24 PS Part at output point.
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Defined the specifications already outlined in the process description, the PN model355

development (2.2.1) resulted in the one shown in Figure 9. It consists of 13 places356

and 10 transitions. It has two branches, left and right, corresponding to M1 and M2357

machines, respectively, with places representing their loading, processing and unloading.358

The model is completed with M place, the shared-use robot, and two places, H and359

O, representing free and occupied positions, respectively, of the intermediate buffer,360

conveniently initially marked. It was decided initially being three occupied positions361

(number or tokens at O place) and four free positions (initial marking of place H).362

PN interpretation to be added to the net structure is contained in Table 2. Actions363

(command signals through PLC digital outputs) were associated to places and conditions364

(sensor status queries) to transitions. Note that processing tasks were simulated by means365

of timers, so conditions FPM1 and FPM2 correspond to their endings. Places p13 and366

p23 do not have associated actions, as they correspond to waiting places for the necessary367

resources to face the respective machines unloading.368

Figure 10. Matrix representation detail: PIPE2-generated C and mt
0.

After PN structural analysis (2.2.2) and matrix generation (Figure 10), structural369

data transfer was carried out (2.2.3) previously converted to the syntax of the target370

development environment using a proprietary application. Both the characteristic arrays371

declaration and their contents were transferred, i.e. there was no need to declare them in372

the environment. Other necessary variables were stored in data memory.373

The only non-fixed part of the algorithm was coded (Figure 11), the one correspond-374

ing to PN interpretation (2.2.4). For each boolean data that indicated whether or not the375

conditions associated with each transition had been met, the result of the corresponding376

combination of logical queries was assigned. Outputs status was managed according to377

current marking. Note that this coding can be performed in any language supported by378

the development environment used.379

VC of the automated system (2.2.5) was supported by the DT already described.380

The operation validation was carried out by observing, in the DT, PLC controlled signals,381

and PN marking evolution in the development environment itself. A test protocol was382

followed starting from initial conditions, i.e. temporary buffer provided with three parts:383

• Temporary buffer output sensor forced failure, so that no parts were supplied to384

M2. Periodic entry of parts into the process. Buffer filling, with a part waiting to be385

unloaded from M1, and a part at process input.386

• Sensor repair. Periodic entry of parts into the process. Full emptying of temporary387

buffer.388

• Continuous verification that at most only one command is given to the transport389

system.390
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Figure 11. PN interpretation coding detail: editing of conditions associated with each transition.

3.3.2. Implementation of other approaches391

In addition to the proposal of this paper, and referred to as PN in Section 4, the392

following interpreted approaches were implemented:393

• ST: algorithm that processes both net structure and interpretation, by means of IF394

THEN structures in ST.395

• LD: algorithm that processes both net structure and interpretation, by means of set396

and reset of variables, in LDs.397

• SFC: graphic modeling and description method, suitable for GRAFCET and avail-398

able in TIA Portal.399

For each of the developments and control devices, scan cycle time measurements400

were performed, based on the connection of the physical PLC with the process DT,401

according to a HIL setup.402

4. Results403

The purpose of carrying out several implementations on controllers from different404

vendors was, on the one hand, to compare the scan cycle time required by each approach,405

and on the other hand, testing algorithm portability between development platforms.406

This section presents the results obtained.407

4.1. Results related to scan cycle time408

Table 3. Measured scan cycle periods.

Implementation CPU: Siemens 1521C-1PN CPU: Omron NX102-1020

PN 1.029 ms 0.285 ms
ST 1.035 ms 0.276 ms
LD 1.130 ms 0.283 ms
SFC 1.361 ms -

The scan cycle time for each of the implementations has been measured for each409

of the PLCs used, in order to determine whether or not the algorithm presented in410

this work consumes more resources than other approaches. Table 3 summarizes the411

results obtained. More than 100000 scan cycles have been executed in all tests. Note that412

Omron´s Sysmac Studio provides the average value of the scan cycle period. Siemens’413

TIA Portal, on the other hand, gives the current value. In the latter case, 10 samples414
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were observed with a 10 second interval between them. The value shown is the resulting415

average. Beyond the different levels of processing power offered by the CPUs used, and416

if relative terms are considered, implementations in ST are the fastest and in SFC the417

slowest. The scan cycle period required by the proposed approach is fairly similar to418

that of other comparable implementations.419

4.2. Results related to portability420

After a first implementation in a Siemens PLC (see 3.3.1), the algorithm has been421

transferred into an Omron device. The algorithm, developed in ST, is easily portable to422

other platforms, although specific variable adaptations may be necessary.423

5. Conclusions and future work424

It has been shown a novel application-independent and platform-independent425

methodology for implementing PNs in PLCs in which most of the code is validated426

according to PN model structural analysis prior to implementation. Only net interpreta-427

tion is manually coded and error-prone in the proposed approach, making it possible to428

generate PN-based code for PLC in a simple way. In comparison with previous work in429

the area of interest of this paper, analyzed in Section 1, the implementation (Section 3) of430

the proposed algorithm (Section 2) reveals the following:431

• A PN is designed and formally analyzed, and the matrices representing its structure432

are obtained through a free license software tool, and these matrices are transferred433

to data memory of devices from different vendors. Thus, net structure is validated434

automatically before net implementation.435

• Fixed program blocks, independent of both PLC and PN, manage net marking436

evolution, using the above-mentioned data structure. This is why the approach can437

be considered semi-compiled. ST programming makes this part standard.438

• Consequently, the workload in terms of coding is reduced to associating conditions439

to transitions and actions to places, i.e., PN interpretation. It can be added in any440

language supported by the corresponding environment.441

These points are based on the results achieved and already shown in Section 4:442

• The scan cycle time required by the algorithm does not differ from that of similar,443

fully interpreted approaches, i.e. with both net marking and net interpretation444

management integrated into the code itself.445

• The portability to the desired PLC is simple and not time-consuming. As far as the446

code is concerned, fixed program block contents are directly transferred. Regarding447

variables in data memory, it is necessary to declare and initialize those required448

for the algorithm to work. Arrays representing net structure are generated in a PN449

design and simulation software, and adapted by a proprietary parser software to450

PLC particular variables definition and initialization.451

It is considered that the contribution of the work presented in this paper may have452

these implications:453

• PN-based automated industrial systems are implemented in a simple way, with a454

reduced programming workload and, consequently, fewer potential errors in the455

control device code. The inclusion or modification of a PN is simple, requiring456

editing, validation, and transfer of new data into the PLC.457

• The way to manage several nets (associated with respective subsystems) is to do it458

as a single one (as a single system), in which some arcs are considered to be zero459

weight. User-defined data types can be used if larger matrices are required than the460

limit set by the development tool.461

• For technicians used to working with GRAFCET, the paradigm shift to a PN-based462

approach is not a handicap. Similar modeling skills are needed.463
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Note that the system under study has made it possible to test the algorithm by464

applying it in a case present in literature as suitable for the application of PNs. Shared re-465

sources and multiple marking make it more demanding for a GRAFCET-based approach.466

The existence of tokens (N = {0, 1, 2, ...}) in a place in a PN versus states (bool) of steps467

in a GRAFCET, gives the former the capability to integrate the system’s characterization468

into the model’s structure, against further coding work in the latter. The use of a DT of469

the process has allowed the testing of the algorithm without availability of the necessary470

equipment, reproducing scenes difficult to assemble or reproduce.471

The following may be some limitations of the approach presented:472

• Net interpretation programming, the only part to be properly coded, is done ac-473

cording to the user’s choice; no user-friendly or visual tool is available, yet.474

• The algorithm involves an entire project in the development environment, is not475

parameterizable. Its portability between platforms can be simplified.476

• PNs have as elements of their matrix representation natural numbers, often 0 or477

1 for ordinary PNs. Extending this approach to high-level PNs, such as Predi-478

cate/Transition nets (PrT-nets) [34] or Coloured Petri nets (CPNs) [35], in which479

information is attached to each token, would increase the description capacity480

(making the validation process more difficult) and lead to significantly smaller nets.481

Finally, and aligned with the above, the following future research directions have482

been identified:483

• Further reduction of the coding workload by making it more systematic to add484

interpretation to the PN may be an interesting challenge. There is significant485

research on automatic code generation.486

• The parameterization of a program block encapsulating the algorithm can make487

its handling an easier task. It can also be interesting to implement the model in488

MatLab, Java and/or ADA, in order to compare both the cost of development and489

their performance.490

• A high-level PN-based approach, applying object oriented techniques and/or fea-491

turing attributes to tokens, places (actions) and transitions (conditions), reducing the492

size of the model. User defined data types (UDTs) could help in PLC programming.493

• Distributed PNs, in which the management of a master net is used to operate over494

the others, through open communication protocols such as OPC UA or message495

queue telemetry transport (MQTT).496
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CPN Coloured Petri net
DEDS Discrete event dynamic system
DT Digital twin
GRAFCET Step transition function chart or

GRAphe Fonctionnel de Commande Etape Transition
HIL Hardware-in-the-loop
LD Ladder diagram
MQTT Message queue telemetry transport
OLE Object Linking and Embedding
OPC UA OLE for Process Control Unified Architecture
P/T Place/Transition
PIPE2 Platform Independent Petri net Editor 2
PLC Programmable logic controller
PN Petri net
PrT-net Predicate/Transition net
RG Reachability graph
SFC Sequential function chart
SIL Software-in-the-loop
ST Structured text
VC Virtual commissioning

509
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