Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Sustained-Release and pH-Adjusted Alginate Microspheres-Encapsulated Doxorubicin Inhibit the Viabilities in Hepatocellular Carcinoma-Derived Cells

Version 1 : Received: 28 July 2021 / Approved: 29 July 2021 / Online: 29 July 2021 (14:07:33 CEST)

A peer-reviewed article of this Preprint also exists.

Pan, C.-T.; Yu, R.-S.; Yang, C.-J.; Chen, L.-R.; Wen, Z.-H.; Chen, N.-Y.; Ou, H.-Y.; Yu, C.-Y.; Shiue, Y.-L. Sustained-Release and pH-Adjusted Alginate Microspheres-Encapsulated Doxorubicin Inhibit the Viabilities in Hepatocellular Carcinoma-Derived Cells. Pharmaceutics 2021, 13, 1417. Pan, C.-T.; Yu, R.-S.; Yang, C.-J.; Chen, L.-R.; Wen, Z.-H.; Chen, N.-Y.; Ou, H.-Y.; Yu, C.-Y.; Shiue, Y.-L. Sustained-Release and pH-Adjusted Alginate Microspheres-Encapsulated Doxorubicin Inhibit the Viabilities in Hepatocellular Carcinoma-Derived Cells. Pharmaceutics 2021, 13, 1417.

Abstract

The objective of this study aimed to develop biodegradable calcium alginate microspheres carrying doxorubicin (Dox) at the micrometer-scale for sustained-release and the capacity of pH regulatory for transarterial chemoembolization. Ultrasonic atomization and CaCl2 cross-linking technologies were used to prepare the microspheres. A 4 by 5 experiment was first designed to identify imperative parameters. The concentration of CaCl2 and the flow rate of the pump were found to be critical to generate microspheres with a constant volume median diameter (~ 39 m) across 5 groups with different alginate:NaHCO3 ratios using each corresponding flow rate. In each group, the encapsulation efficiency was positively correlated to the Dox-loaded efficiency. Fourier-transform infrared spectroscopy showed that NaHCO3 and Dox were step-by-step incorporated into the calcium alginate microspheres successfully. Microspheres containing alginate:NaHCO3 = 1 exhibited rough and porous surfaces, high Young’s modulus and hardness. In each group with the same alginate:NaHCO3 ratio, the swelling rates of microspheres were higher in PBS containing 10% FBS compared to those in PBS alone. Microspheres with relative high NaHCO3 concentrations in PBS containing 10% FBS maintained better physiological pH and higher accumulated Dox release ratios. In two distinct hepatocellular carcinoma-derived cell lines, treatments with microspheres carrying Dox demonstrated that the cell viabilities decreased in groups with relative high NaHCO3 ratios in time- and dose-dependent manners. Our results suggested that biodegradable alginate microspheres containing relative high NaHCO3 concentrations improved the cytotoxicity effects in vitro.

Keywords

sodium alginate; microsphere; ultrasonic atomization; Dox; pH-adjusted

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.