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Abstract: The classical uncertainty principle inequalities were imposed as a mathematical constraint
over the general relativity geodesic equation. In this way, the uncertainty principle was reformu-
lated in terms of the proper space-time length element, Planck length and a geodesic-derived scalar,
leading to a geometric expression for the uncertainty principle (GeUP). This re-formulation con-
firmed the necessity for a minimum length for the space-time line element in the geodesic, depend-
ent on a geodesic-derived scalar which made the expression Lorentz-covariant. In agreement with
quantum gravity theories, GeUP required the imposition of a perturbation over the background
Minkowski metric unrelated to classical gravity. When applied to the Schwarzschild metric, a geo-
desic exclusion zone was found around the singularity where uncertainty in space-time diverged to

infinity.
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1. Introduction

General Relativity (GR) describes gravitation as a dynamical space-time geometry in
a pseudo-Riemannian manifold shaped by energy-momentum densities [1]. Its mathemat-
ical framework is highly consistent and valid in any reference frame. However, GR is
largely incompatible with quantum mechanics. One key difficulty for unification is that
GR world-lines for particles can be defined with infinite precision [1], while this is not
allowed in quantum mechanics. The process of measuring position in quantum mechanics
introduces uncertainty in momentum and vice versa [2]. The momentum/position uncer-
tainty originally proposed by Heisenberg is considered a fundamental principle in nature
[3]. This principle is behind many quantum phenomena [4,5]. Other major difficulties in
reconciling general relativity with quantum mechanics are the non-renormalizability of
GR when formulated as a quantum field theory [7] and the quantum-mechanical violation
of the weak equivalence principle [6].

In quantum gravity theories, a limit on the length of the space-time line element is
imposed when energy fluctuations alter the space-time metric [8]. These quantum fluctu-
ations may constitute part of the source of a gravitational background state that imposes
such a length limit [8]. String theory leads naturally to expressions dependent on a funda-
mental length [9], from which a generalized uncertainty principle (GUP) associated to
Planck length is derived [8,10]:

h « 2
AxAp 2 5+ 5 GAp (D

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202107.0646.v3
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2021 d0i:10.20944/preprints202107.0646.v3

Considering GUP in the framework of quantum geometry theory, any accelerating
particle in the absence of gravity experiences a gravitational field [8]. This field is the result
of a perturbation unrelated to classical gravitation applied over the background Minkow-
ski metric. This approach recovers the generalized uncertainty principle in its p-quadratic
form, which depends on the mass of the particle and proper acceleration (A) as a constant
if expressed in terms of Planck mass [8]:

peap st T a2 )
x = = ——me
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However, the necessity for a minimum space-time length in quantum gravity theo-
ries still clashes with relativity, because this fundamental line element must be Lorentz-
invariant. Hence, adapting the uncertainty principle to Lorentz covariance requires correc-
tions over the GUP canonical momentum/position commutator in Minkowski space, de-
scribed by [4,11] and shown below:

[P, X"] = —ih(1 + (¢ — @)Y*PPP,)n" — in(B + 2§)y*P*PY (3)

Where «, §, and ¢ are dimensionless parameters to adapt the equation to the particular
problem.

The uncertainty principle has also been brought up to counteract relativistic singu-
larities. Some GR solutions contain singularities in which space-time adopts infinite cur-
vature, such as in black holes [12-14]. However, the imposition of a minimum allowable
space-time length element would be incompatible with a point singularity. Thus, assum-
ing quantized gravity and space-time, the uncertainty principle would be the source of a
repulsion force that prevents particles from reaching the singularity. The matter repelled
from it would form a “Planck star” [15]. An “equivalent” concept is used in string theory
with the “fuzzball” structure [16]. This is important, because although infinite curvature
is not problematic as a geometry, a black hole singularity could erase the history of any
particle that ends up in it. This irreversible process would contribute to the black hole
information paradox [17,18]. It may be nevertheless argued that particles in a black hole
singularity differ in proper time. However, the space-time length element is not defined
right at the singularity. This is evident at radial coordinate position 0 in the Schwarzschild
solution in spherical coordinates:

R—-R R dR?
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Where R, #and @ stand for radial, polar and azimuthal coordinates, respectively, in a
Lorentzian metric signature {- + + +}, and Rs refers to the Schwarzschild radius. When
approaching the singularity, the time component of the metric (ggo) diverges to infinity
while the radial component (ggg) becomes 0. From Rs to the interior of the black hole, the
signs of these metric components interchange, with the radial-dependent metric behaving
as time rather than space. Despite these considerations, the singularity remains at R posi-
tion 0 where the length of the space-time line element is undefined.

In this manuscript, the classical principle of uncertainty was reformulated in terms
of geometric parameters to impose a mathematical constraint on the geodesic equation.
The requirement for a minimum space-time length element was confirmed in this re-for-
mulation, as well as the need of imposing a perturbation over the background Minkowski
metric to comply with the uncertainty principle. When applied to geodesics in the
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Schwarzschild metric, the presence of an exclusion zone around the singularity was also
confirmed.

2. Derivation of a relativistic tensor expression for the classical uncertainty principle
inequalities

For simplicity, ¢ and the mass of the particle were both set to 1. Tensor notation was
used throughout the paper, which includes representation of generalized contravariant
coordinates as X*. For clarity, the temporal coordinate X’ was represented as t in some
specific cases.

The classical uncertainty principle is represented by two separate inequalities.

i) ol LR
|Ap||Ax| 25 ; |AE||Ax |2§ (5)

Where Ap represents the change in magnitude of non-relativistic momentum para-
metrized by coordinate time, and Ax the change in magnitude of the position 3-vector.
These two inequalities can be written in tensor notation, following these identities:

|4p|18x] = |\/BP™ APy BXBX™| = | AP x™

AE = APy ; |AE||8x°| = |\/APOAP, AxoAx®| = [APoAX”| (6)

In units of ¢ set to 1, energy is identified with the temporal component of the relativ-
istic 4-momentum vector, which is parametrized by proper time “z”. From now on, the
relativistic momentum will be represented by capital P. Inequalities (5) then take the fol-
lowing form in tensor notation:

h h
|Ap,, AX™| > > APyAX®| = 2 (7)

m €{1,2,3}

To parametrize non-relativistic momentum by proper time, the gamma factor (y) is
introduced as defined below. y is also equivalent to the ratio of the total energy of a par-
ticle (E) by its mass energy. The same correction was included in the energy-time inequal-
ity so that both can be merged.

_dt_E
Yoar=m
|1AP Axm| . |1AP AX°| - 8
Adding inequalities (8) we obtain:
h
|AP,AX™| + |APoAX®| > (1 + ) 2 (9)

Y is generally 1 for non-relativistic particles, which will lead to another classical ex-
pression for the non-relativistic uncertainty principle:


https://doi.org/10.20944/preprints202107.0646.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2021 d0i:10.20944/preprints202107.0646.v3

|AP,,AX™| + |[APoAX®| = 1 (10)

Assuming that the uncertainty principle must also apply to differential changes in
momentum and position, the merged inequality can be re-written in terms of changes in
momentum and position 4-vectors as follows:

h
|dP™dX,,| + |dPodX°| > 2 (11)

For simplification, the relativistic correction term (1 +y) shown in inequality (9)
was removed as it can be easily incorporated when needed. We then re-expressed the
inequality in terms of Planck length:

t)Z
|dP™dX,,| + |dPodX°| > ﬁ (12)

The terms in the inequality were re-expressed as rates of change in momentum and
position with proper time as follows:

dP’"d ded | dP"d dXOd % 13
ar a7t [ ae e Y 226 (13)
Which leads to:

apm™ e;
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The uncertainty principle is thus reformulated as an uncertainty relationship be-
tween proper space-time length, 4-momentum change and proper velocity (U,). It has to
be noted that the inequality is undefined for null space-time length.

3. Derivation of a covariant geometric form of the uncertainty principle
The reformulated uncertainty principle in inequality (14) can be imposed over the

geodesic equation. Geodesic trajectories can be identified with proper momentum change
in an interval of space-time length element:

auvr _ rt vk = P 15
dr ap dt (15)

wea pe{0,1,2, 3}

With Christoffel symbols calculated from the pseudo-Riemannian metric tensor (gu»)
that defines the space-time metric as shown below:

1
Tap= —g”’l(aﬁgm +049p1— 039 ap) (16)

wa,pB,1e€{0,1,2, 3}

The geodesic equation (equation 15) can be incorporated in inequality (14) as follows:
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In this way, the uncertainty principle is re-defined as the product of the interval of
the space-time line element with a scalar derived from the geodesic trajectory (geometric
scalar, Ggeo):

— 0
Ggeo = 26G |Umro’j;g Ueuf | +26 |U01“042 UeyP

|G geo dT?| = €2 (18)

This geometric form of the uncertainty principle imposes a Lorentz-covariant mini-
mum length for proper space-time distance through the geodesic scalar. This inequality
also allows a degree of uncertainty in the geodesic trajectory.

4. Geometric uncertainty principle in Minkowski space

GeUP was applied for a particle at rest in classical Minkowski space with a {- + ++}
metric signature. The Minkowski metric tensor will be denoted as 7. As this metric has
null Christoffel connectors, the geodesic scalar is 0. Then, inequality (18) represents a con-
tradiction unless Planck length is considered 0 in the non-quantum limit:

0> ¢27? (19)

To meet the GeUP condition, the Minkowski metric has to deviate from flat space,
for example by introducing a differential perturbation to the metric (classically denoted
as hIlV)' The resulting space-time metric tensor g, will be the sum of both metrics.

Juv = 77”,, + huv (20)
wvef{01,2 3}

In this example, the perturbation will depend only on the temporal coordinate to
fulfil conditions of spatial homogeneity and isometry. For a particle at rest only the tem-
poral component of its proper velocity will be non-zero, and the only relevant component
of the metric tensor for the calculations will correspond to:

Goo = oo + hOO =-1- S(t) (21)

We define &(t) as the time-dependent perturbation function corresponding to hoo,
to avoid confusion with Planck constant. Likewise, for a particle at rest only the X? coor-
dinate (or #) will contribute to proper time. The inequality (18) takes the following form
in terms of Planck constant:

—20,T 3 UOU° (-1 —¢) dt2| > 7 (22)

The calculation of the Christoffel symbol is straightforward because only gqo has a
dependency in the X? coordinate (equation 21).

1 — dpE
T oo = Egoo(aogoo) = mao(—l —&) = 2(1—:_8) (23)
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After calculating the term (23), the inequality (22) can be solved as follows:

608
—2UU°U° —— (-1—¢)dt*|>h
0 e Rl
|-U% 8o dt?| =1 (24)

This inequality can be re-expressed by simplifying the derivative of the perturbation
field by multiplication with dt, and re-introducing the mass of the particle in the temporal
component of the 4-momentum vector which replaces U°:

|P°de dt|>h (25)

The classical expression for the time-energy uncertainty principle is recovered, with
Po corresponding to the energy of the particle. Thus, we can determine the particle’s en-
ergy in a given interval of geodesic time dt to be P°de, with de denoting the accuracy on
the measurement. High-precision determination of P°de implies long intervals of time ac-
cording to inequality (25). Likewise, measurements over increasingly precise intervals of
geodesic time correspond to increased fluctuations (de) in the energy of the particle. These
fluctuations of the & (t) function will alter the background space-time metric (equation 21).
In this expression the relativistic factor omitted in inequality (9) will be re-introduced with
a value of 2 leading to:

|P® de dt|>2n ; |de|>

2h
| (26)

POdt
We can express the inequality as an equation for the lowest value that would agree

with GeUP. For an illustrative example, the differential in the &(t) will be approximated
to an interval.

2h
€=

=& + —PO dt (27)

The initial value for the perturbation field can be chosen as 0 (no correction over the
Minkowski metric). This leads to an expression for the components of the metric with a
minimum allowed perturbation of the metric as follows:

. 2h
POdt

oo = — (28)

m €{1,2,3}

In this case, the metric perturbation over the Minkowski metric background is unre-
lated to classical gravitation, but it is a function of the accuracy in the interval of coordi-
nate time in the geodesic trajectory. Minkowski space-time is recovered at the non-quan-
tum limit (h - 0).

5. Application of the geometric uncertainty principle to the Schwarzschild metric

The GR solution for a gravitational field generated by a point mass corresponds to
the Schwarzschild metric. This solution has spherical symmetry and it is usually expressed
in spherical coordinates (equation 4). The spherical symmetry allows the selection of phys-
ically relevant particle trajectories in proper space-time geodesics with constant polar and
azimuthal coordinates. These conditions ensure the following statements:
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dd=dp=0 - U°=U?=0 ; UyU°+URUR=-1 (29)

These geodesics will have contributions from ¢ and R components of proper velocity.
Inequality (18) can then be expressed as follows:

32
|dR2 +&dt2| > |—2 (30)
9RR 9rrGgeo
Introducing the components of the metric tensor, we have
gz + B R i aez| > | BRI & & (31)
R? - R Gyeo

The geodesic scalar is calculated with the contributions of the temporal and radial
components of the proper velocity:

G goo = 2G|UoT JpUYUP| + 2G|URT S5UUP (32)

The non-zero Christoffel connectors in the Schwarzschild metric relevant for this so-
lution are the following:

R R;,(R —R;)
Thm=-Th=5-— ; Tgo=—r— 33
RO RR = 5R(R—R,) 00 2R3 (33)
Leaving the expression for the geometric scalar as:
G geo = 2G(|UoT RoURU® + UL grU°UR|
+ |URT goU°U° + URT §RURUR|) (34)
It is reduced after several operations to:
GR,UR(2U,U° +1
geo = s ( 0 ) (3 5)
R(R —Ry)
Introducing (35) into (31) and solving for the square of the length element in the R
coordinate:
dR? > 2M (R 1)2 - (1 Rs)z dt? 36
~ [(2U,U° + 1)UR \R; P R (36)

The gravitational constant G was replaced by Rs/2M so that M now represents the
mass generating the gravitational field. In geodesics close to the singularity at R=0, the
uncertainty in the R coordinate (represented by dR?) diverges to infinity. This implies that
a particle getting close to the singularity is highly de-localized. No particle geodesic below
the threshold set by inequality (36) would be allowed, thus defining an exclusion zone
around the singularity as a function of uncertainty in the ¢ coordinate (Figure 1).
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Figure 1. Black hole singularity exclusion zone. The figure represents the function from inequality
36 with relative values for the radial distance and arbitrary coefficients to help visualization. The
relative uncertainty in the R coordinate (represented as dR?) is plotted as a function of R. Close to the
singularity at R=0, the uncertainty for allowed geodesics diverges to infinity. Geodesics with dR?
values below the curve are not allowed, and define a particle exclusion zone in the interior of the
black hole.

Then, we considered a special case in which the t coordinate of a particle in the geo-
desics defined by (36) is known with absolute certainty. Application of this condition pro-
vides the minimum possible uncertainty in the R coordinate when approaching the sin-
gularity. This implies the following:

dt =0 (37)

And the solution to inequality (36) for this condition is:

2M (R \*
Tr (— - 1) %
U* \R

We reach two conclusions. First, it is defined at the singularity (R=0). Second, the
uncertainty in the R coordinate of the geodesic decreases as a function of decreasing R
down to an allowed minimum value right in the singularity:

dR* > (38)

2 M 2
dR*(R = 0) 2 5 £ (39)

Although physically unrealistic, a threshold value for the uncertainty in the R coor-
dinate can be calculated below which no geodesic will ever be allowed. An approximate
calculation of dR for a stellar mass black hole (without adding the appropriate correc-
tions), gives a value within the range of 10> to 10-16 cm.

5. Discussion

Here the principle of uncertainty was reformulated in terms of covariant geometric
parameters. This re-formulation was the result of applying the classical uncertainty prin-
ciple inequalities over the geodesic equation just as a mathematical constraint. No quan-
tization of space-time or quantum gravitational field were introduced. Hence, it has to be
remarked that our current paper does not constitute a theory for quantum gravity, nor it
represents a canonical generalization on quantum gravity. However, the inequalities of
the uncertainty principle presented in this form yield interesting results that can be inter-
preted in light of current well-developed quantum gravity theories.
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First, there is an imposition of a minimum length for the space-time line element.
This is a common feature of current quantum gravity theories such as loop quantum grav-
ity [19,20], string theory [9,18,21,22] and doubly-special relativity [23]. Therefore, although
GeUP is not a quantum gravity theory per se, it introduces ambiguity in the space-time
trajectory for the geodesics. The space-time distance element is expressed as a relationship
with Planck length through a geodesic-derived scalar, which ensures Lorentz covariance.

Secondly, in agreement with results from GUP [8,10], GeUP was incompatible with
Minkowski space. Its mathematical constraint over the geodesics imposed a perturbation
in the metric unrelated to classical gravity. This incompatibility should be expected in any
quantum gravity theory because vacuum energy fluctuations will alter the metric [8]. In
the example derived in this manuscript, the perturbation was a function of the interval of
coordinate time in the geodesic trajectory, and the energy of the particle. GUP and GeUP
enforce a perturbation in the metric of Minkowski space which could be considered part
of a gravitational background state. This perturbation alters the classical uncertainty prin-
ciple in GUP by a factor dependent on the mass-energy and proper acceleration (inequal-
ity 2) [8]. GUP has been applied to multiple scenarios such as corrections to black-hole
entropy and thermodynamics, and thermodynamics of cosmological models, as exten-
sively reviewed in [24]. However, corrections have also been imposed over its canonical
expression to ensure Lorentz invariance [11] (inequality 3). It could be argued whether the
metric perturbations caused by the uncertainty principle formulations constitute a back-
ground state for the gravitational field. Gravitational background states in GR are highly
problematic because of the non-linearity of GR equations. Vacuum energy and dark en-
ergy may contribute to such background states and to the expansion of the universe
through the cosmological constant A. So far, the calculations on the contributions to A by
different sources do not provide a satisfactory explanation to its small positive value [25].

Thirdly, the uncertainty principle has been proposed to be the source of a repulsion
force that avoids black hole singularities. This “uncertainty force” is the basis for the sta-
bility of Planck stars [15]. Application of GeUP over the Schwarzschild solution also un-
covered a region close to the singularity below which geodesics violate the uncertainty
principle. Particles approaching the singularity will have an uncertainty in the R coordi-
nate so large that they would appear to be repelled from the singularity. According to our
constraint and after selection of geodesics with constant coordinate time, we calculated
the minimum possible uncertainty (dR) in the R coordinate for a stellar mass black hole to
be of the order of 10> cm. A rough estimation on the diameter of a Planck star by loop
quantum gravity gives a value of about 10 cm [15,19]. Both calculations provide sizes
larger than Planck length by several orders of magnitude.

Concluding, we have re-formulated the classical uncertainty principle to impose a
mathematical restriction on GR geodesics. Our equations do not represent a true quantum
gravity theory but highlight some of the issues common to all quantum gravity theories:
the necessity for a minimum space-time length element that must keep Lorentz invari-
ance, and the need for background quantum gravity states. However, full answers to the
several drawbacks will have to be constructed from well-founded quantum gravity theo-
ries from canonical principles.

Author Contributions: Conceptualization, D.E. and G.K.; Methodology, D.E; Resources, D.E. and
G.K. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The authors thank Dr Funfelinski for critical insight.
Funding: D.E. is funded by a Miguel Servet Fellowship (ISCIII, Spain, Ref CP12/03114).

Conflicts of Interest: The authors declare no conflict of interest.


https://doi.org/10.20944/preprints202107.0646.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2021 d0i:10.20944/preprints202107.0646.v3

10

References

1. Einstein, A. Grundlage der allgemeinen Relativitatstheorie. Annalen der Physik 1916, 49, 769-822.

2. Werner, RF,; Farrely, T. Uncertainty from Heisenberg to today. arXiv:1904.06139 2019, 10.1007/s10701-019-00265-z,
doi:10.1007/s10701-019-00265-z.

3. Ozawa, M. Heisenberg's original derivation of the uncertainty principle and its universally valid reformulations.
arXiv:1507.02010 215.

4. Das, S.; Vanegas, E.C. Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 2009, 87, 233-
240, doi:10.1139/P08-105.

5. Gine, J. Hawking effect and Unruh effect from the uncertainty principle. EPL 2018, 121, 10001.

6. Quach, ].Q. Fisher information and the weak equivalence principle of a quantum particle in a graviational wave. Eur. Phys.
J. C 2020, 80, 987, d0i:10.1140/epjc/s10052-020-08530-6.

7. Hamber, HW. Quantum gravitation; Springer: 2009.

8. Capozziello, S.; Lambiase, G.; Scarpetta, G. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys.
2000, 39, 15-22.

9. Magueijo, J.; Smolin, L. String theories with deformed energy momentum relations, and a possible non-tachyonic bosonic
string. Phys. Rev. D 2005, 71, 026010, doi:10.1103/PhysRevD.71.026010.

10. Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D
1995, 52, 1108, doi: 10.1103/PhysRevD.52.1108.

11. Todorinov, V.; Bosso, P.; Das, S. Relativistic generalized uncertainty principle. Annals Phys. 2019, 405, 92-100,
doi:10.1016/j.a0p.2019.03.014.

12. Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory.
Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1916, 1916, 189-196.

13. Teukolsky, S.A. The Kerr metric. Class. Quantum Grav. 2015, 32, 124006.

14. Townsend, P.K. Black holes. arXiv:gr-qc/9707012 1997.

15. Rovelli, C.; Vidotto, F. Planck stars. International Journal of Modern Physics D. 2014, 23, 1442026.

16. Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Fortsch.Phys. 2005, 53, 793-827.

17. Dai, X. The Black Hole Paradoxes and Possible Solutions. J. Phys.: Conf. Ser. 2020, 1634, 012088.

18. Susskind, L.; Uglum, J. String physics and black holes. wucl.Phys.Proc.Suppl 1996, 45BC, 115-134, doi:10.1016/0920-
5632(95)00630-3.

19. Rovelli, C. Loop Quantum Gravity. LivingRev.Rel. 1998, 1, doi:10.12942/Irr-1998-1.

20. Casares, P.A.M. A review on Loop Quantum Gravity. arXiv:1808.01252 2018.

21. Gross, D.J.; Mende, P.F. String theory beyond the Planck scale. Nucl. Phys. B. 1988, 303, 407-454.

22. Aharony, O.; Gubser, S.S.; Maldacena, J.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 2000,
323, 183-386, d0i:10.1016/S0370-1573(99)00083-6.

23. Amelino-Camelia, G. Doubly-special relativity: facts, myths and some key open issues. Symmetry 2010, 2, 230.

24. Hossenfelder, S. Minimal length scale scenarios for quantum gravity. LivingRev.Rel. 2013, 16,
doi:https://doi.org/10.12942/1rr-2013-2.

25. Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.].; Barreiro, R.B.; Bartolo, N.;
Basak, S., et al. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, doi:10.1051/0004-
6361/201833910.


https://doi.org/10.20944/preprints202107.0646.v3

