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Abstract: The classical uncertainty principle inequalities were imposed as a mathematical constraint 
over the general relativity geodesic equation. In this way, the uncertainty principle was reformu-
lated in terms of the proper space-time length element, Planck length and a geodesic-derived scalar, 
leading to a geometric expression for the uncertainty principle (GeUP). This re-formulation con-
firmed the necessity for a minimum length for the space-time line element in the geodesic, depend-
ent on a geodesic-derived scalar which made the expression Lorentz-covariant. In agreement with 
quantum gravity theories, GeUP required the imposition of a perturbation over the background 
Minkowski metric unrelated to classical gravity. When applied to the Schwarzschild metric, a geo-
desic exclusion zone was found around the singularity where uncertainty in space-time diverged to 
infinity.  
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1. Introduction 

General Relativity (GR) describes gravitation as a dynamical space-time geometry in 
a pseudo-Riemannian manifold shaped by energy-momentum densities [1]. Its mathemat-
ical framework is highly consistent and valid in any reference frame. However, GR is 
largely incompatible with quantum mechanics. One key difficulty for unification is that 
GR world-lines for particles can be defined with infinite precision [1], while this is not 
allowed in quantum mechanics. The process of measuring position in quantum mechanics 
introduces uncertainty in momentum and vice versa [2]. The momentum/position uncer-
tainty originally proposed by Heisenberg is considered a fundamental principle in nature 
[3]. This principle is behind many quantum phenomena [4,5]. Other major difficulties in 
reconciling general relativity with quantum mechanics are the non-renormalizability of 
GR when formulated as a quantum field theory [7] and the quantum-mechanical violation 
of the weak equivalence principle [6]. 

In quantum gravity theories, a limit on the length of the space-time line element is 
imposed when energy fluctuations alter the space-time metric [8]. These quantum fluctu-
ations may constitute part of the source of a gravitational background state that imposes 
such a length limit [8]. String theory leads naturally to expressions dependent on a funda-
mental length [9], from which a generalized uncertainty principle (GUP) associated to 
Planck length is derived [8,10]: 

              ∆𝒙∆𝒑 ≥
ℏ

𝟐
+

𝜶

𝒄𝟑
𝑮∆𝒑𝟐                                                                          (𝟏) 
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Considering GUP in the framework of quantum geometry theory, any accelerating 
particle in the absence of gravity experiences a gravitational field [8]. This field is the result 
of a perturbation unrelated to classical gravitation applied over the background Minkow-
ski metric. This approach recovers the generalized uncertainty principle in its p-quadratic 
form, which depends on the mass of the particle and proper acceleration (A) as a constant 
if expressed in terms of Planck mass [8]: 

∆𝒙∆𝒑 ≥
ℏ

𝟐
+

ℏ𝒄𝟐

𝒎𝟐𝑨𝟐𝜹𝒔𝟐
∆𝒑𝟐                                                                          (𝟐) 

However, the necessity for a minimum space-time length in quantum gravity theo-
ries still clashes with relativity, because this fundamental line element must be Lorentz-
invariant. Hence, adapting the uncertainty principle to Lorentz covariance requires correc-
tions over the GUP canonical momentum/position commutator in Minkowski space, de-
scribed by [4,11] and shown below: 

[𝑷𝝁, 𝑿𝝂] = −𝒊ℏ൫𝟏 + (𝜺 − 𝜶)𝜸𝟐𝑷𝝆𝑷𝝆൯𝜼𝝁𝝂 − 𝒊ℏ(𝜷 + 𝟐𝝃)𝜸𝟐𝑷𝝁𝑷𝝂 (3) 

Where 𝛼, 𝛽, and 𝜉 are dimensionless parameters to adapt the equation to the particular 
problem. 

The uncertainty principle has also been brought up to counteract relativistic singu-
larities. Some GR solutions contain singularities in which space-time adopts infinite cur-
vature, such as in black holes [12-14]. However, the imposition of a minimum allowable 
space-time length element would be incompatible with a point singularity. Thus, assum-
ing quantized gravity and space-time, the uncertainty principle would be the source of a 
repulsion force that prevents particles from reaching the singularity. The matter repelled 
from it would form a “Planck star” [15]. An “equivalent” concept is used in string theory 
with the “fuzzball” structure [16]. This is important, because although infinite curvature 
is not problematic as a geometry, a black hole singularity could erase the history of any 
particle that ends up in it. This irreversible process would contribute to the black hole 
information paradox [17,18]. It may be nevertheless argued that particles in a black hole 
singularity differ in proper time. However, the space-time length element is not defined 
right at the singularity. This is evident at radial coordinate position 0 in the Schwarzschild 
solution in spherical coordinates:  

𝒅𝝉𝟐 = − ൬
𝑹 − 𝑹𝒔

𝑹
൰ 𝒅𝒕𝟐 +

𝑹 𝒅𝑹𝟐

𝑹 − 𝑹𝒔
+ 𝑹𝟐𝒅𝜽𝟐 + 𝑹𝟐𝒔𝒊𝒏𝟐𝜽𝒅𝝋𝟐   (𝟒) 

Where R,  and 𝜑 stand for radial, polar and azimuthal coordinates, respectively, in a 
Lorentzian metric signature - + + +, and Rs refers to the Schwarzschild radius. When 
approaching the singularity, the time component of the metric (𝒈𝟎𝟎) diverges to infinity 
while the radial component (𝒈𝑹𝑹) becomes 0. From Rs to the interior of the black hole, the 
signs of these metric components interchange, with the radial-dependent metric behaving 
as time rather than space. Despite these considerations, the singularity remains at R posi-
tion 0 where the length of the space-time line element is undefined.  

In this manuscript, the classical principle of uncertainty was reformulated in terms 
of geometric parameters to impose a mathematical constraint on the geodesic equation. 
The requirement for a minimum space-time length element was confirmed in this re-for-
mulation, as well as the need of imposing a perturbation over the background Minkowski 
metric to comply with the uncertainty principle. When applied to geodesics in the 
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Schwarzschild metric, the presence of an exclusion zone around the singularity was also 
confirmed. 

2. Derivation of a relativistic tensor expression for the classical uncertainty principle 
inequalities  

For simplicity, c and the mass of the particle were both set to 1. Tensor notation was 
used throughout the paper, which includes representation of generalized contravariant 
coordinates as X. For clarity, the temporal coordinate X0 was represented as t in some 
specific cases. 

The classical uncertainty principle is represented by two separate inequalities. 

|∆𝒑||∆𝒙| ≥
ℏ

𝟐
    ;  |∆𝑬|ห∆𝒙𝟎ห ≥

ℏ

𝟐
                                                    (𝟓) 

Where ∆𝒑 represents the change in magnitude of non-relativistic momentum para-
metrized by coordinate time, and ∆𝒙 the change in magnitude of the position 3-vector. 
These two inequalities can be written in tensor notation, following these identities: 

|∆𝒑||∆𝒙| = หඥ∆𝒑𝒎∆𝒑𝒎 ∆𝒙𝒎∆𝒙𝒎ห = |∆𝒑𝒎∆𝒙𝒎|    

 ∆𝑬 ≡ ∆𝑷𝟎   ;  |∆𝑬|ห∆𝒙𝟎ห = ቚඥ∆𝑷𝟎∆𝑷𝟎 ∆𝒙𝟎∆𝒙𝟎ቚ = ห∆𝑷𝟎∆𝒙𝟎ห             (𝟔)    

In units of c set to 1, energy is identified with the temporal component of the relativ-
istic 4-momentum vector, which is parametrized by proper time “𝝉”. From now on, the 
relativistic momentum will be represented by capital P. Inequalities (5) then take the fol-
lowing form in tensor notation: 

|∆𝒑𝒎∆𝑿𝒎| ≥
ℏ

𝟐
    ;  ห∆𝑷𝟎∆𝑿𝟎ห ≥

ℏ

𝟐
                                            (𝟕) 

         m1, 2, 3 

To parametrize non-relativistic momentum by proper time, the gamma factor (𝜸) is 
introduced as defined below. 𝜸 is also equivalent to the ratio of the total energy of a par-
ticle (E) by its mass energy. The same correction was included in the energy-time inequal-
ity so that both can be merged. 

𝜸 =
𝒅𝒕

𝒅𝝉
≡

𝑬

𝒎
                                                                                 

ฬ
𝟏

𝜸
∆𝑷𝒎∆𝑿𝒎ฬ ≥

ℏ

𝟐
     ;    ฬ

𝟏

𝜸
∆𝑷𝟎∆𝑿𝟎ฬ ≥

ℏ

𝟐𝜸
                        (𝟖) 

Adding inequalities (8) we obtain: 

|∆𝑷𝒎∆𝑿𝒎| + ห∆𝑷𝟎∆𝑿𝟎ห ≥ (𝟏 + 𝜸)
ℏ

𝟐
                                 (𝟗) 

𝜸 is generally 1 for non-relativistic particles, which will lead to another classical ex-
pression for the non-relativistic uncertainty principle: 
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|∆𝑷𝒎∆𝑿𝒎| + ห∆𝑷𝟎∆𝑿𝟎ห ≥ ℏ                                                (𝟏𝟎) 

Assuming that the uncertainty principle must also apply to differential changes in 
momentum and position, the merged inequality can be re-written in terms of changes in 
momentum and position 4-vectors as follows:  

|𝒅𝑷𝒎𝒅𝑿𝒎| + ห𝒅𝑷𝟎𝒅𝑿𝟎ห ≥
ℏ

𝟐
                                                             (𝟏𝟏) 

For simplification, the relativistic correction term (𝟏 + 𝜸) shown in inequality (9) 
was removed as it can be easily incorporated when needed. We then re-expressed the 
inequality in terms of Planck length: 

|𝒅𝑷𝒎𝒅𝑿𝒎| + ห𝒅𝑷𝟎𝒅𝑿𝟎ห ≥
 𝓵𝒑 

𝟐

𝟐𝑮
                                                         (𝟏𝟐) 

The terms in the inequality were re-expressed as rates of change in momentum and 
position with proper time as follows: 

ฬ
𝒅𝑷𝒎

𝒅𝝉
𝒅𝝉 

𝒅𝑿𝒎

𝒅𝝉
𝒅𝝉ฬ + ቤ

𝒅𝑷𝟎

𝒅𝝉
𝒅𝝉 

𝒅𝑿𝟎

𝒅𝝉
𝒅𝝉ቤ ≥

𝓵𝒑 
𝟐

𝟐𝑮
                               (𝟏𝟑) 

Which leads to: 

ฬ
𝒅𝑷𝒎

𝒅𝝉  
𝑼𝒎 𝒅𝝉𝟐ฬ + ቤ

𝒅𝑷𝟎

𝒅𝝉  
𝑼𝟎 𝒅𝝉𝟐ቤ ≥

𝓵𝒑 
𝟐

𝟐𝑮
                                           (𝟏𝟒) 

The uncertainty principle is thus reformulated as an uncertainty relationship be-
tween proper space-time length, 4-momentum change and proper velocity (𝑼𝝁). It has to 
be noted that the inequality is undefined for null space-time length.  

3. Derivation of a covariant geometric form of the uncertainty principle  

The reformulated uncertainty principle in inequality (14) can be imposed over the 
geodesic equation. Geodesic trajectories can be identified with proper momentum change 
in an interval of space-time length element: 

𝒅𝑼𝝁

𝒅𝝉
= − 𝜶𝜷

  𝝁

 
𝑼𝜶𝑼𝜷

 ≡
𝒅𝑷𝝁

𝒅𝝉
                                                           (𝟏𝟓) 

       , 𝛼, 𝛽0, 1, 2, 3 

With Christoffel symbols calculated from the pseudo-Riemannian metric tensor (g𝜈) 
that defines the space-time metric as shown below: 

 

 𝜶𝜷
  𝝁

=
𝟏

𝟐
𝒈𝝁𝝀൫𝝏𝜷𝒈𝝀𝜶 + 𝝏𝜶𝒈𝜷𝝀 − 𝝏𝝀𝒈𝜶𝜷൯                                    (𝟏𝟔) 

  , 𝛼, 𝛽, 𝜆0, 1, 2, 3 

The geodesic equation (equation 15) can be incorporated in inequality (14) as follows:   
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ቚ𝑼𝒎 𝜶𝜷
  𝒎

 
𝑼𝜶𝑼𝜷

  𝒅𝝉𝟐ቚ + ቚ𝑼𝟎 𝜶𝜷
  𝟎

 
𝑼 𝜶𝑼𝜷

  𝒅𝝉𝟐ቚ ≥
𝓵𝒑 

𝟐

𝟐𝑮
                          (𝟏𝟕)           

In this way, the uncertainty principle is re-defined as the product of the interval of 
the space-time line element with a scalar derived from the geodesic trajectory (geometric 
scalar, Ggeo): 

𝑮𝒈𝒆𝒐 ≡ 𝟐𝑮 ቚ𝑼𝒎 𝜶𝜷
  𝒎

 
𝑼𝜶𝑼𝜷

 ቚ + 𝟐𝑮 ቚ𝑼𝟎 𝜶𝜷
  𝟎

 
𝑼𝜶𝑼𝜷

 ቚ                                     

ห𝑮𝒈𝒆𝒐
  𝒅𝝉𝟐ห ≥ 𝓵𝒑  

𝟐                                                                                           (𝟏𝟖)  

This geometric form of the uncertainty principle imposes a Lorentz-covariant mini-
mum length for proper space-time distance through the geodesic scalar. This inequality 
also allows a degree of uncertainty in the geodesic trajectory. 

4. Geometric uncertainty principle in Minkowski space  

GeUP was applied for a particle at rest in classical Minkowski space with a - + + + 
metric signature. The Minkowski metric tensor will be denoted as 𝜼𝜈. As this metric has 
null Christoffel connectors, the geodesic scalar is 0. Then, inequality (18) represents a con-
tradiction unless Planck length is considered 0 in the non-quantum limit: 

𝟎 ≥ 𝓵𝒑  
𝟐 ?                                                                                                        (𝟏𝟗)  

To meet the GeUP condition, the Minkowski metric has to deviate from flat space, 
for example by introducing a differential perturbation to the metric (classically denoted 
as 𝒉𝝁). The resulting space-time metric tensor 𝒈𝝁 will be the sum of both metrics. 

𝒈𝝁 = 
𝝁 + 𝒉𝝁                                                                                         (𝟐𝟎) 

    , 𝜈0, 1, 2, 3 

In this example, the perturbation will depend only on the temporal coordinate to 
fulfil conditions of spatial homogeneity and isometry. For a particle at rest only the tem-
poral component of its proper velocity will be non-zero, and the only relevant component 
of the metric tensor for the calculations will correspond to: 

𝒈𝟎𝟎 = 
𝟎𝟎

+ 𝒉𝟎𝟎 = −𝟏 − 𝜺(𝒕)                                                                (𝟐𝟏)           

We define 𝜺(𝒕) as the time-dependent perturbation function corresponding to h00, 
to avoid confusion with Planck constant. Likewise, for a particle at rest only the X0 coor-
dinate (or t) will contribute to proper time. The inequality (18) takes the following form 
in terms of Planck constant: 

ቚ−𝟐𝑼𝟎 𝟎𝟎
  𝟎

 
𝑼𝟎𝑼𝟎

  (−𝟏 − 𝜺) 𝒅𝒕𝟐ቚ ≥ ℏ                                                     (𝟐𝟐)  

The calculation of the Christoffel symbol is straightforward because only 𝒈𝟎𝟎 has a 
dependency in the X0 coordinate (equation 21). 

 𝟎𝟎
  𝟎 =

𝟏

𝟐
𝒈𝟎𝟎(𝝏𝟎𝒈𝟎𝟎) =

−𝟏

𝟐(𝟏 + 𝜺)
𝝏𝟎(−𝟏 − 𝜺) =

𝝏𝟎𝜺

𝟐(𝟏 + 𝜺)
           (𝟐𝟑) 
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After calculating the term (23), the inequality (22) can be solved as follows: 

           ቤ−𝟐𝑼𝟎𝑼𝟎
 

 
𝑼𝟎

 

𝝏𝟎𝜺

𝟐(𝟏 + 𝜺)
 

 (−𝟏 − 𝜺) 𝒅𝒕𝟐ቤ ≥ ℏ    

       ห−𝑼𝟎
 𝝏𝟎𝜺   𝒅𝒕𝟐ห ≥ ℏ                                                                               (𝟐𝟒)  

This inequality can be re-expressed by simplifying the derivative of the perturbation 
field by multiplication with dt, and re-introducing the mass of the particle in the temporal 
component of the 4-momentum vector which replaces 𝑼𝟎:  

ห𝑷𝟎
 𝒅 𝜺   𝒅𝒕 ห ≥ ℏ                                                                                    (𝟐𝟓) 

The classical expression for the time-energy uncertainty principle is recovered, with 
P0 corresponding to the energy of the particle. Thus, we can determine the particle´s en-
ergy in a given interval of geodesic time dt to be P0d𝜀, with d𝜀 denoting the accuracy on 
the measurement. High-precision determination of P0d𝜀 implies long intervals of time ac-
cording to inequality (25). Likewise, measurements over increasingly precise intervals of 
geodesic time correspond to increased fluctuations (d𝜀) in the energy of the particle. These 
fluctuations of the 𝜀 (t) function will alter the background space-time metric (equation 21). 
In this expression the relativistic factor omitted in inequality (9) will be re-introduced with 
a value of 2 leading to: 

  ห𝑷𝟎
  𝒅 𝜺   𝒅𝒕 ห ≥ 𝟐ℏ    ;   |𝒅𝜺 | ≥ ฬ

𝟐ℏ

 𝑷𝟎
 𝒅𝒕 ฬ                                           (𝟐𝟔)    

We can express the inequality as an equation for the lowest value that would agree 
with GeUP. For an illustrative example, the differential in the 𝜺(𝒕) will be approximated 
to an interval. 

𝜺 = 𝜺𝟎 +
𝟐ℏ

𝑷𝟎
 𝒅𝒕

                                                                                 (𝟐𝟕) 

The initial value for the perturbation field can be chosen as 0 (no correction over the 
Minkowski metric). This leads to an expression for the components of the metric with a 
minimum allowed perturbation of the metric as follows: 

𝒈𝟎𝟎 = −𝟏 −
𝟐ℏ

𝑷𝟎𝒅𝒕
                                                                       (𝟐𝟖) 

         m1, 2, 3 

In this case, the metric perturbation over the Minkowski metric background is unre-
lated to classical gravitation, but it is a function of the accuracy in the interval of coordi-
nate time in the geodesic trajectory. Minkowski space-time is recovered at the non-quan-
tum limit (ℏ → 𝟎).  

5. Application of the geometric uncertainty principle to the Schwarzschild metric  
The GR solution for a gravitational field generated by a point mass corresponds to 

the Schwarzschild metric. This solution has spherical symmetry and it is usually expressed 
in spherical coordinates (equation 4). The spherical symmetry allows the selection of phys-
ically relevant particle trajectories in proper space-time geodesics with constant polar and 
azimuthal coordinates. These conditions ensure the following statements: 
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𝒅𝜽 = 𝒅𝝋 = 𝟎  →   𝑼𝜽 = 𝑼𝝋 = 𝟎    ;    𝑼𝟎𝑼𝟎 + 𝑼𝑹𝑼𝑹 = −𝟏   (𝟐𝟗)  
 
These geodesics will have contributions from t and R components of proper velocity. 

Inequality (18) can then be expressed as follows: 
 

ฬ𝒅𝑹𝟐 +
𝒈𝟎𝟎

𝒈𝑹𝑹
𝒅𝒕𝟐ฬ ≥ ቤ

𝓵𝒑 
𝟐

𝒈𝑹𝑹𝑮𝒈𝒆𝒐
ቤ                                                      (𝟑𝟎) 

 
Introducing the components of the metric tensor, we have 
 

ቤ𝒅𝑹𝟐 +
(𝑹 − 𝑹𝒔)𝟐

𝑹𝟐
𝒅𝒕𝟐ቤ ≥ ቤ

(𝑹 − 𝑹𝒔) 𝓵𝒑 
𝟐

𝑹 𝑮𝒈𝒆𝒐
ቤ                                      (𝟑𝟏)     

 
The geodesic scalar is calculated with the contributions of the temporal and radial 

components of the proper velocity: 
 
𝑮𝒈𝒆𝒐 = 𝟐𝑮ห𝑼𝟎 𝜶𝜷

  𝟎 𝑼𝜶𝑼𝜷ห + 𝟐𝑮ห𝑼𝑹 𝜶𝜷
  𝑹 𝑼𝜶𝑼𝜷ห                             (𝟑𝟐)     

 
The non-zero Christoffel connectors in the Schwarzschild metric relevant for this so-

lution are the following: 
 

 𝑹𝟎
  𝟎 = − 𝑹𝑹

  𝑹 =
𝑹𝒔

𝟐𝑹(𝑹 − 𝑹𝒔)
     ;       𝟎𝟎

  𝑹 =
𝑹𝒔(𝑹 − 𝑹𝒔)

𝟐𝑹𝟑
              (𝟑𝟑)     

 
Leaving the expression for the geometric scalar as: 
 

          𝑮𝒈𝒆𝒐 = 𝟐𝑮൫ห𝑼𝟎 𝑹𝟎
  𝟎 𝑼𝑹𝑼𝟎 + 𝑼𝟎 𝟎𝑹

  𝟎 𝑼𝟎𝑼𝑹ห

+ ห𝑼𝑹 𝟎𝟎
  𝑹 𝑼𝟎𝑼𝟎 + 𝑼𝑹 𝑹𝑹

  𝑹 𝑼𝑹𝑼𝑹ห൯                                    (𝟑𝟒) 
 
It is reduced after several operations to: 
 

𝑮𝒈𝒆𝒐 =
𝑮𝑹𝒔𝑼𝑹(𝟐𝑼𝟎𝑼𝟎 + 𝟏)

𝑹(𝑹 − 𝑹𝒔)
                                                          (𝟑𝟓) 

 
Introducing (35) into (31) and solving for the square of the length element in the R 

coordinate: 
 

𝒅𝑹𝟐 ≥ ቤ
𝟐𝑴 

 

(𝟐𝑼𝟎𝑼𝟎 + 𝟏)𝑼𝑹 ൬
𝑹

𝑹𝒔
− 𝟏൰

𝟐

𝓵𝒑 
𝟐 −  ൬𝟏 −

𝑹𝒔

𝑹
൰

𝟐

𝒅𝒕𝟐ቤ             (𝟑𝟔) 

 
The gravitational constant G was replaced by Rs/2M so that M now represents the 

mass generating the gravitational field. In geodesics close to the singularity at R=0, the 
uncertainty in the R coordinate (represented by dR2) diverges to infinity. This implies that 
a particle getting close to the singularity is highly de-localized. No particle geodesic below 
the threshold set by inequality (36) would be allowed, thus defining an exclusion zone 
around the singularity as a function of uncertainty in the t coordinate (Figure 1). 
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Figure 1. Black hole singularity exclusion zone. The figure represents the function from inequality 

36 with relative values for the radial distance and arbitrary coefficients to help visualization. The 
relative uncertainty in the R coordinate (represented as dR2) is plotted as a function of R. Close to the 
singularity at R=0, the uncertainty for allowed geodesics diverges to infinity. Geodesics with dR2 
values below the curve are not allowed, and define a particle exclusion zone in the interior of the 
black hole. 

Then, we considered a special case in which the t coordinate of a particle in the geo-
desics defined by (36) is known with absolute certainty. Application of this condition pro-
vides the minimum possible uncertainty in the R coordinate when approaching the sin-
gularity. This implies the following: 

 
𝒅𝒕 = 𝟎                                                                                         (𝟑𝟕)   

And the solution to inequality (36) for this condition is: 

𝒅𝑹𝟐 ≥ ቤ
𝟐𝑴 

 

𝑼𝑹
൬

𝑹

𝑹𝒔
− 𝟏൰

𝟐

𝓵𝒑 
𝟐  ቤ                                                (𝟑𝟖) 

We reach two conclusions. First, it is defined at the singularity (R=0). Second, the 
uncertainty in the R coordinate of the geodesic decreases as a function of decreasing R 
down to an allowed minimum value right in the singularity: 

𝒅𝑹𝟐(𝑹 = 𝟎) ≥
𝟐𝑴 

 

𝑼𝑹
𝓵𝒑 

𝟐                                                          (𝟑𝟗) 

Although physically unrealistic, a threshold value for the uncertainty in the R coor-
dinate can be calculated below which no geodesic will ever be allowed. An approximate 
calculation of dR for a stellar mass black hole (without adding the appropriate correc-
tions), gives a value within the range of 10-15 to 10-16 cm. 

 

5. Discussion 

Here the principle of uncertainty was reformulated in terms of covariant geometric 
parameters. This re-formulation was the result of applying the classical uncertainty prin-
ciple inequalities over the geodesic equation just as a mathematical constraint. No quan-
tization of space-time or quantum gravitational field were introduced. Hence, it has to be 
remarked that our current paper does not constitute a theory for quantum gravity, nor it 
represents a canonical generalization on quantum gravity. However, the inequalities of 
the uncertainty principle presented in this form yield interesting results that can be inter-
preted in light of current well-developed quantum gravity theories.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2021                   doi:10.20944/preprints202107.0646.v3

https://doi.org/10.20944/preprints202107.0646.v3


 9 
 

a 

First, there is an imposition of a minimum length for the space-time line element. 
This is a common feature of current quantum gravity theories such as loop quantum grav-
ity [19,20], string theory [9,18,21,22] and doubly-special relativity [23]. Therefore, although 
GeUP is not a quantum gravity theory per se, it introduces ambiguity in the space-time 
trajectory for the geodesics. The space-time distance element is expressed as a relationship 
with Planck length through a geodesic-derived scalar, which ensures Lorentz covariance.  

Secondly, in agreement with results from GUP [8,10], GeUP was incompatible with 
Minkowski space. Its mathematical constraint over the geodesics imposed a perturbation 
in the metric unrelated to classical gravity. This incompatibility should be expected in any 
quantum gravity theory because vacuum energy fluctuations will alter the metric [8]. In 
the example derived in this manuscript, the perturbation was a function of the interval of 
coordinate time in the geodesic trajectory, and the energy of the particle. GUP and GeUP 
enforce a perturbation in the metric of Minkowski space which could be considered part 
of a gravitational background state. This perturbation alters the classical uncertainty prin-
ciple in GUP by a factor dependent on the mass-energy and proper acceleration (inequal-
ity 2) [8]. GUP has been applied to multiple scenarios such as corrections to black-hole 
entropy and thermodynamics, and thermodynamics of cosmological models, as exten-
sively reviewed in [24]. However, corrections have also been imposed over its canonical 
expression to ensure Lorentz invariance [11] (inequality 3). It could be argued whether the 
metric perturbations caused by the uncertainty principle formulations constitute a back-
ground state for the gravitational field. Gravitational background states in GR are highly 
problematic because of the non-linearity of GR equations. Vacuum energy and dark en-
ergy may contribute to such background states and to the expansion of the universe 
through the cosmological constant Λ. So far, the calculations on the contributions to Λ by 
different sources do not provide a satisfactory explanation to its small positive value [25].   

Thirdly, the uncertainty principle has been proposed to be the source of a repulsion 
force that avoids black hole singularities. This “uncertainty force” is the basis for the sta-
bility of Planck stars [15]. Application of GeUP over the Schwarzschild solution also un-
covered a region close to the singularity below which geodesics violate the uncertainty 
principle. Particles approaching the singularity will have an uncertainty in the R coordi-
nate so large that they would appear to be repelled from the singularity. According to our 
constraint and after selection of geodesics with constant coordinate time, we calculated 
the minimum possible uncertainty (dR) in the R coordinate for a stellar mass black hole to 
be of the order of 10-15 cm. A rough estimation on the diameter of a Planck star by loop 
quantum gravity gives a value of about 10-10 cm [15,19]. Both calculations provide sizes 
larger than Planck length by several orders of magnitude.  

Concluding, we have re-formulated the classical uncertainty principle to impose a 
mathematical restriction on GR geodesics. Our equations do not represent a true quantum 
gravity theory but highlight some of the issues common to all quantum gravity theories: 
the necessity for a minimum space-time length element that must keep Lorentz invari-
ance, and the need for background quantum gravity states. However, full answers to the 
several drawbacks will have to be constructed from well-founded quantum gravity theo-
ries from canonical principles. 
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