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Abstract: Data sets for medical images are generally imbalanced and limited in sample size1

because of high data collection costs, time-consuming annotations, and patient privacy concerns.2

The training of deep neural network classification models on these data sets to improve the3

generalization ability does not produce the desired results for classifying the medical condition4

accurately and often overfit the data on the majority of class samples. To address the issue,5

we propose a framework for improving the classification performance metrics of deep neural6

network classification models using transfer learning: pre-trained models, such as Xception,7

InceptionResNet, DenseNet along with the Generative Adversarial Network (GAN) – based8

data augmentation. Then, we trained the network by combining traditional data augmentation9

techniques, such as randomly flipping the image left to right and GAN-based data augmentation,10

and then fine-tuned the hyper-parameters of the transfer learning models, such as the learning rate,11

batch size, and the number of epochs. With these configurations, the Xception model outperformed12

all other pre-trained models achieving a test accuracy of 98.7%, the precision of 99%, recall of13

99.3%, f1-score of 99.1%, receiver operating characteristic (ROC) - area under the curve (AUC) of14

98.2%.15

Keywords: Generative Adversarial Networks; Transfer Learning; Medical Imaging; Deep Learning16

Classification; Chest X-ray’s17

1. Introduction18

In general, medical image datasets, such as Chest X-ray images, are usually imbal-19

anced and come with limited samples due to the high costs of obtaining the data and20

time-consuming annotations. Training a deep neural network model on such datasets21

to accurately classify the medical condition does not yield the desired results. Every22

so often over-fits the majority class samples’ data. Usually, transfer learning and data23

augmentation are performed on the training data to improve the deep learning model’s24

classification performance to address the issue.25

First, for classification tasks with limited datasets, transfer learning is adopted. It26

improves learning in a new domain by transferring knowledge from a related domain,27

reducing the neural network’s training time and generalization error. It is a common28

practice in the field of computer vision to use transfer learning for limited datasets29

via pre-trained models. The pre-trained models are those trained on large benchmark30

datasets, where the models have already learned to extract a wide variety of features,31

which can be used as a starting point to learn on a new task in a related domain. To32

enhance the models’ performance, it is not uncommon to overlook the fine-tuning of the33

hyper-parameters of transfer learning models.34

Second, to balance the datasets, there are a few traditional methods. Random35

over-sampling, which produces copies of minority class samples, and Synthetic Minority36

Over-sampling Technique (SMOTE) [1], which generates synthetic data from dataset37
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samples from nearest k-nearest neighbors. These methods of augmentation are not38

guaranteed to be advantageous and are only well suited to low-dimensional data. Deep39

generative models such as Generative Adversarial Networks (GANs) are known to40

augment high-dimensional image data effectively.41

To address the issues of class imbalance and limited sample sizes for classification42

tasks, we propose a framework for improving the classification performance metrics of43

deep neural network classification models using transfer learning: pre-trained models,44

such as Xception, InceptionResNet, DenseNet, and along with the GAN – based data45

augmentation. We show the proposed framework in the Figure 1.46

Data Pre-processing
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Figure 1. Proposed framework.

In one of our previous studies, we explored the GANs in creating artificial instances47

of chest X-ray images [2]. In another study, we investigated transfer learning to classify48

pneumonia from chest X-ray images [3]. In this study, we evaluated the combination of49

GAN - based data augmentation and transfer learning approaches.50

The rest of the paper is structured as follows: In Section 2, we briefly present the51

related work from the literature. We introduce the materials and methods used in the52

study in Section 3. In Sections 4 and 5, we present the results of the proposed framework53

and discuss our findings. Finally, in Section 6, we conclude our study by providing54

directions to future work.55

2. Related Work56

The lack of availability of large, labeled datasets is one of the significant problems57

with deep learning in medical imaging. As mentioned in section 1, Medical images are58

not only annotated expensively but also time-consuming. By producing synthetic sam-59

ples with real images’ appearance, Generative Adversarial Networks (GANs) provide60

a novel way to create additional information from a dataset. In this section, we briefly61

review the literature on the use of transfer learning and GANs in the analysis of medical62

image data.63
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2.1. Transfer Learning in Medical Imaging64

Rajpurkar et al. [4] developed an algorithm CheXNet, a 121-layer Dense convo-65

lutional neural network (DenseNet) that detects Pneumonia from chest X-ray images66

at a level exceeding the practicing radiologists. They trained their network on the67

ChestX-ray14 dataset released by Wang et al. [5] and assessed the performance with four68

practicing radiologists on the f1 score metric. CheXNet achieved an f1 score of 0.435,69

higher than the radiologist’s average of 0.387. They later extended the CheXNet model70

to detect all 14 diseases in the ChestX-ray14 dataset and achieved state-of-the-art results71

on all 14 diseases. Similarly, Antin et al. [6] utilized transfer learning approach from a72

pre-trained model, DenseNet121 to classify Pneumonia from chest X-ray image dataset73

[5]. The only reported metric on the test data is the area under the curve (AUC), which74

they reported to be 60%.75

Ayan and Ünver [7] proposed to use transfer learning approach from two state-76

of-the-art pre-trained architectures, Xception and VGG16, for classifying Pneumonia77

from chest X-ray images. They trained the two networks individually and reported that78

the Vgg16 network outperformed the Xception network by accuracy 87%, specificity79

91%, precision 91%, and f1 score 90% with respect to pneumonia images. In contrast, the80

Xception network outperformed the Vgg16 network by sensitivity 85%, precision 86%81

for normal images, and recall 94% concerning pneumonia images.82

The deep learning framework proposed by Liang et al. [8] incorporates transfer83

learning combined with residual thought and dilated convolution for the classification84

of pediatric pneumonia images. The deep neural network consisted of 49 convolutional85

layers combined with the ReLU activation, followed by a global average pooling layer86

and two dense layers. They used transfer learning by transferring the network weights87

from a pre-trained model on the large-scale dataset: ChestX-ray14 dataset [5] to accelerate88

neural network training and overcome the problem of insufficient data. The network’s89

training is then carried out by introducing dilated convolutions and using the Adam as90

an optimizer to minimize the cross-entropy loss function. They achieved a test recall of91

96.7%, and an f1 score of 92.7% in classifying Pneumonia from the chest X-ray image92

dataset [9].93

Chouhan et al. [10] proposed a deep learning framework combined with the use94

of transfer learning to classify Pneumonia from chest X-ray images by adopting an95

ensemble-based approach to pre-trained architectures, such as AlexNet, InceptionV3,96

DenseNet121, ResNet18, and GoogLeNet. They trained the AlexNet for 200 epochs with97

an initial learning rate of 0.001 and then retrained with a learning rate of 0.00001. To98

prevent overfitting and improving generalization, they trained the DenseNet121 and99

InceptionV3 for 100 epochs and the GoogLeNet for 50 epochs. The network training100

is performed using Adam as an optimizer to minimize the cross-entropy loss function.101

Unfortunately, the authors did not provide details on the metrics/methods used to102

choose the learning rate and the number of epochs used to train the network. The final103

prediction was based on majority voting by combining the results of pre-trained neural104

networks in the Pneumonia classification. Their proposed ensemble model achieved an105

accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women106

and Children’s Medical Center dataset [9].107

Similarly, Hashmi et al. [11] proposed a weighted classifier that optimally combined108

the weighted predictions from the state-of-the-art deep learning models ResNet18,109

Xception, InceptionV3, DenseNet121, and MobileNetV3 for Pneumonia classification110

from chest X-ray images. They achieved a test accuracy of 98.43%, and an AUC score111

of 99.76% on the unseen data from the Guangzhou Women and Children’s Medical112

Center pneumonia dataset [9]. In another study, Rahman et al. [12] used transfer113

learning from pre-trained networks such as AlexNet, ResNet18, DenseNet201, and114

SqueezeNet for classifying Pneumonia from chest X-ray images. The authors did not115

mention any details on the hyper-parameters used for the study. They showed that116
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DenseNet201 outperformed the other three pre-trained networks, achieving a 98%117

accuracy on Pneumonia classification from the chest X-ray image dataset [9].118

2.2. Generative Adversarial Networks in Medical Imaging119

Bowles et al. [13] demonstrated GAN’s feasibility to create synthetic data for120

two brain segmentation tasks. They used Progressive Growing of GANs [14], which121

improved the training stability at large image sizes to generate synthetic data. They122

reported that when synthetic data created using GAN’s combined with the training123

data improved the Dice Similarity Coefficient anywhere from one and five percentage124

points. Similarly, Beers et al. [15] also used Progressive Growing of GANs for generating125

realistic medical images in two different domains. First, they could generate realistic126

fundus photographs exhibiting vascular pathology associated with retinopathy of pre-127

maturity (ROP). Second, they were able to generate synthetic multi-modal magnetic128

resonance images of glioma. In another research, Korkinof et al. [16] explored the129

use of progressively trained generative adversarial networks (GANs) for generating130

highly realistic, high-resolution synthetic Full Field Digital Mammograms (FFDM). They131

reported achieving the highest resolution of 1280x1024 pixels.132

In another study, Sandfort et al. [17] evaluated the CycleGAN [18] for data aug-133

mentation in CT segmentation tasks by first transforming the contrast CT images to134

non-contrast CT images and then generated synthetic non-contrast CT images [19], [20],135

[21]. They trained the network by comparing the segmentation performance of a U-Net136

[22] trained on the original dataset compared to a U-Net trained on the combined dataset137

of original data and synthetic non-contrast images demonstrated substantial improve-138

ment in the segmenting performance of the CT images, with the Dice score increasing139

from 0.09 to 0.66.140

In another research, Welander et al. [23], evaluated two unsupervised GAN models,141

such as CycleGAN [18] and UNIT [24] for image-to-image translation of T1- and T2-142

weighted MR images, by comparing generated synthetic MR images to ground truth143

images. They also evaluated two supervised models; a modification of CycleGAN144

(CycleGAN_s) and a pure generator model (Generator_s), and reported that all the145

GAN models would synthesize visually realistic MR images [25], [26]. Iqbal and Ali146

[27] proposed another Generative Adversarial Network for Medical Imaging, MI-GAN,147

for synthesizing Retinal images. They used the STARE [28], and DRIVE [29] datasets148

for evaluating the MI-GAN model and reported that they achieved a Dice coefficient of149

0.837 on the STARE dataset and a Dice coefficient of 0.832 on the DRIVE dataset.150

Dar et al. [30] demonstrated an end-to-end image synthesis approach for MRI that151

successfully estimated the image in the target contrast given the image in the source152

contrast, by utilizing conditional generative adversarial networks, cGANs [31], with153

pixel-wise and cycle-consistency loss functions. They trained the conditional GAN154

on three datasets, such as MIDAS dataset [32], the IXI dataset [33], and the BRATS155

dataset [34]. In order to generate realistic lung nodule samples, Chuquicusma et al. [35]156

proposed the use of unsupervised learning through the Deep Convolutional Genera-157

tive Adversarial Networks (DCGANs). Likewise, Salehinejad et al. [36] showed an158

improvement in chest pathology classification performance by augmenting the original159

imbalanced data set with DCGAN. Similarly, in another study, the DCGAN was inves-160

tigated by Madani et al. [37] to generate chest X-ray images for the augmentation of161

the original data and trained a convolutional neural network to classify cardiovascular162

abnormalities, showing a higher classification accuracy.163

In another study, Qin et al. [38] investigated data sampling methods such as under-164

sampling the majority class, in which the majority class in the training dataset was ran-165

domly dropped to achieve a 1:1 ratio between classes, and over-sampling/augmentation166

of the minority class, such as affine transformations and GAN-based data augmentation,167

to learn from the imbalanced and limited chest X-ray dataset. They reported achieving168

improved classification metrics with an accuracy of 89.9%, recall of 89.7%, the preci-169
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sion of 93.8%, F1score of 91.7%, and an AUC of 95.4% in detecting pneumonia with170

GAN-based data augmentation when trained with a deep convolutional neural network.171

The combination of fine-tuning the hyper-parameters of transfer learning models172

and GAN-based data augmentation has received very little attention in the literature.173

This study addresses improving the classification performance metrics of an imbalanced174

and limited dataset by fine-tuning the hyper-parameters of the transfer learning models175

and utilizing GAN-based data augmentation.176

3. Materials and Methods177

3.1. Dataset Description and Pre-processing178

We used a chest X-ray image dataset published by Kermany et al. [9] and chest179

X-ray images generated using GANs by Kora Venu et al. [2] for all the experiments180

conducted in this study. The dataset by Kermany et al. comprises 5,856 chest X-ray181

images in total, of which 1583 images labeled as Normal and 4273 images labeled as182

Pneumonia. The dataset was then shuffled and split into training and test sets, of which183

4,684 images in the training set (Normal Images: 1,266 and Pneumonia images: 3,418),184

and 1,172 images in the test set (Normal images: 317, and Pneumonia images: 855) We185

further split the training dataset to have 80% as training data (3,748 images in total, of186

which 1013 are Normal images and 2735 are Pneumonia images) and 20% as validation187

data (936 images in total, of which 253 are Normal images and 683 are Pneumonia188

images). We show a Normal image and Pneumonia image sample in Figure 2.189

(a) Normal Image. (b) Pneumonia Image.

Figure 2. Sample of Normal and Pneumonia Images.

To balance the training dataset, we have combined the Normal chest X-ray images190

generated with GANs [2] to the original training dataset to have an equal proportion191

of Normal and Pneumonia Images. We show a sample of Normal chest X-ray image192

generated using GANs in Figure 3.193

Figure 3. Normal Chest X-ray image generated using GAN

The images are resized to have a shape of 224x224x3, and then we created TFRecords194

of the data to train on Tensor Processing Units (TPUs). Each pre-trained model expects195
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a specific kind of input pre-processing, and they all have the methods to pre-process196

the inputs before passing them to the model. For example, the Xception and Inception-197

ResNetV2 networks expects to have the input pixel values scaled between -1 and 1, the198

DenseNet network expects to have the input pixel values scaled between 0 and 1.199

3.2. Transfer Learning Models200

In the following sub-sections, we will discuss in detail the pre-trained models used201

in this study, such as Xception, DenseNet, and InceptionResNetV2.202

3.2.1. Xception203

Xception network, also known as extreme version of Inception is one of the state-204

of-the-art neural network architectures introduced by Chollet [39], which is based on205

depth-wise separable convolution layers. The detailed architecture of the Xception206

network is shown in the Figure 4.207

Input Image: 224 x 224 x 3

Conv 32, 3 x 3, stride 2, ReLu

Conv 64, 3 x 3, ReLu

SeparableConv 128, 3 x 3

ReLu, SeparableConv 128, 3 x 3

MaxPooling 3 x 3, stride 2

ReLu, SeparableConv 256, 3 x 3

ReLu, SeparableConv 256, 3 x 3

MaxPooling 3 x 3, stride 2

ReLu, SeparableConv 256, 3 x 3

ReLu, SeparableConv 256, 3 x 3

MaxPooling 3 x 3, stride 2

Conv 1 x 1
Stride 2

+

+

+

Conv 1 x 1
Stride 2

Conv 1 x 1
Stride 2

14 x 14 x 728 feature maps

Entry Flow

ReLu, SeparableConv 728, 3 x 3

ReLu, SeparableConv 728, 3 x 3

ReLu, SeparableConv 728, 3 x 3

+

14 x 14 x 728 feature maps

14 x 14 x 728 feature maps

Repeated 8 times

ReLu, SeparableConv 728, 3 x 3

ReLu, SeparableConv 1024, 3 x 3

MaxPooling 3 x 3, stride 2

SeparableConv 1536, 3 x 3, ReLu

SeparableConv 2048, 3 x 3, ReLu

GlobalAveragePooling, 2048

+

Conv 1 x 1
Stride 2

Softmax, 2

Middle Flow

Exit Flow

Figure 4. Xception Architecture.

The entire architecture consists of three flows, namely, the Entry flow, the Middle208

flow, and the Exit flow. The entry flow consists of four blocks, with traditional convo-209

lutional layers in the first block and depth-wise separable convolutional layers in the210

remaining three blocks. There is only one block of depth-wise separable convolution211

layers in the middle flow, repeated eight times. The exit flow has two blocks: the first212

block has the depth-wise separable convolutional layers, and the second block consists213

of depth-wise separable convolutional layers followed by a GlobalAveragePooling layer214

and a dense layer with softmax activation to output the probability of the input image215

being Normal or Pneumonia.216

The Entry flow takes the pre-processed image of size 224x224x3 as an input, fol-217

lowed by two traditional convolutions. to output the representation of size 14x14x728.218

The Middle flow takes the representation of size 14x14x728 as input to output the repre-219

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2021                   doi:10.20944/preprints202107.0636.v1

https://doi.org/10.20944/preprints202107.0636.v1


Version July 26, 2021 submitted to Journal Not Specified 7 of 15

sentation of size 14x14x728. The Exit flow takes the representation of size 14x14x728 as220

input to output the probability of image as Normal or Pneumonia.221

3.2.2. DenseNet222

Huang et al. [40] introduced Densely Connected Convolutional Networks (DenseNet),223

which won the best paper award at the CVPR 2017 conference [41]. The DenseNet archi-224

tecture is shown in Figure 5, which connects each layer of the network in a feed-forward225

manner to every other layer. In other words, all previous layers’ feature maps are used226

as inputs into each layer, and its own feature maps are used as inputs into all subsequent227

layers [40]. With L layers, the DenseNet network has L(L + 1)/2 direct connections228

compared to L connections of a traditional convolutional network, thereby significantly229

reducing the network’s overall learnable parameters.230

Input Image: 224 x 224 x 3

7 x 7 conv, stride 2, 
Output size : 112 x 112 x 64

3 x 3 max pool, Stride 2
Output Size: 56 x 56 x 64

3 x Dense Block (1): [(Conv: 1 x 1),
(Conv: 3 x 3)]

Output Size: 56 x 56 x 256

Transition Layer (1) 
conv: 1 x 1, Output Size: 56 x 56 x 128

Average pool: 2 x 2, Output Size: 28 x 28 x 128

Global Average Pooling
Output: 1920

Softmax
Output: 2

12 x Dense Block (2): [(Conv: 1 x 1),
(Conv: 3 x 3)]

Output Size: 28 x 28 x 512

Transition Layer (2) 
conv: 1 x 1, Output Size: 28 x 28 x 256

Average pool: 2 x 2, Output Size: 14 x 14 x 256

48 x Dense Block (3): [(Conv: 1 x 1),
(Conv: 3 x 3)]

Output Size: 14 x 14 x 1792

Transition Layer (3) 
conv: 1 x 1, Output Size: 14 x 14 x 896

Average pool: 2 x 2, Output Size: 7 x 7 x 896

32 x Dense Block (4): [(Conv: 1 x 1),
(Conv: 3 x 3)]

Output Size: 7 x 7 x 1920

Figure 5. DenseNet201 Architecture.

As shown in Figure 5, the DenseNet network takes an image of size 224x224x3 as231

input. The image then goes through an initial convolutional layer with a kernel size of 7x7232

and a stride of 2 to output a representation of size 112x112x64, followed by a MaxPooling233

operation with a kernel size of 3x3 and a stride of 2, halving the representation size234

to 56x56x64. The 56x56x64 representation is subjected to a series of dense blocks and235

transition layers. Each dense block consists of a 1x1 convolution, followed by a 3x3236

convolution, and each transition block consists of a 1x1 convolution followed by a237

2x2 average pooling operation. The final dense block’s output is a representation of238

size 7x7x1920, which is passed on to the global average pooling layer with a softmax239

activation to output the probability of the image as Normal or Pneumonia.240

3.2.3. InceptionResNet241

Szegedy et al. [42] introduced the InceptionResNet architecture based on the Incep-242

tion Architectures family by replacing the Inception modules with the Inception-ResNet243

hybrid modules. The network training is significantly accelerated due to the presence of244

residual connections in the network. The InceptionResNet network architecture is shown245

in Figure 6a. The InceptionResNet network takes an image of size 224x224x3 as input,246

followed by a Stem module where the input image undergoes a series of convolutions247

as shown in Figure 6b. The output of final convolution in the stem module is followed248

by a Max-Pooling layer to output a representation of size 25x25x192. The output from249
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the stem module is passed on to the Inception - A block as shown in Figure A1 to250

output a representation of size 25x25x320. The output from the Inception - A block is251

subjected to a series of hybrid Inception-ResNet modules and Reduction modules, such252

as Inception-ResNet-A (see Figure A2) followed by a Reduction-A module (see Figure253

A5), Inception-ResNet-B (see Figure A3) followed by a Reduction-B module (see Figure254

A6), and Inception-ResNet-C (see Figure A4). The detailed architectures of the hybrid255

Inception-ResNet modules and the corresponding Reduction modules are shown in the256

Appendix. The final hybrid Inception-ResNet module’s output (Inception-ResNet-C) is257

fed to the average pooling layer, followed by a softmax layer to output the predictions.258

Input Image 224 x 224 x 3

Stem
Output: 25 x 25 x 192

10 x Inception-ResNet-A
Output: 25 x 25 x 320

Reduction-A
Output: 12 x 12 x 1088

20 x Inception-ResNet-B
Output: 12 x 12 x 1088

Reduction-B
Output: 5 x 5 x 2080

10 x Inception-ResNet-C
Output: 5 x 5 x 2080

Final Convolution Block 
Output: 5 x 5 x 1536

Average Pooling - Output: 1536

Softmax - Output: 2

Inception – A Block
Output: 25 x 25 x 320

(a) Large scale schema structure.

Input: 224 x 224 x 3

Convolution 2D
filters = 32, kernel size = 3, Stride = 2,

padding = valid
BatchNormalization + ReLU

Convolution 2D
filters = 32, kernel size = 3, 

padding = valid
BatchNormalization + ReLU

Convolution 2D
filters = 64, kernel size = 3

BatchNormalization + ReLU

MaxPooling
pool_size = 3, stride = 2

Convolution 2D
filters = 80, kernel size = 1,

padding = valid
BatchNormalization + ReLU

Convolution 2D
filters = 192, kernel size = 3,

padding = valid
BatchNormalization + ReLU

MaxPooling
pool_size = 3, stride = 2

(b) Schema for Stem module.

Figure 6. InceptionResNet Architecture and Stem Module.

3.3. Generative Adversarial Networks (GAN)259

GANs are gaining traction as effective tools for dealing with data imbalance, which260

is quite common in the domain of medical imaging. The core principle behind GAN is261

to produce plausible synthetic data that is as realistic as to the original data from the262

training dataset. The architecture of the GAN is shown in the Figure 7. The generator263

network (G) and the discriminator network (D) are the two main building blocks of the264

GAN architecture, with the generator network learning to produce images as realistic265

as the original training data by taking random noise (Z) as input and the discriminator266

network randomly guessing at 50% probability that the image is from the generator267

distribution or the original training data. In this study, we use data generated by GAN268

from one of our previous studies [2], in which we discussed the individual architectures269

of the generator network and discriminator network, and the training process in detail.270

4. Results271

As per the proposed framework, we over-sampled the minority class samples using272

GAN’s and trained the deep neural network by fine-tuning the hyper-parameters of the273

transfer learning models, such as the learning rate, batch size and the number of epochs274

to train the model. We trained the network using three pre-trained models, such as275
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Convolution

Convolution

Discriminator (D)

Augmented Dataset

Figure 7. GAN Architecture.

Xception, DenseNet201, and InceptionResNetV2 individually. We show the classification276

metrics, such as accuracy, precision, recall, and F1-score in Table 1.277

Model Accuracy Precision Recall F1-Score
Xception 98.7% 99% 99.3% 99.1%

DenseNet201 98.4% 98.5% 99.3% 98.9%
InceptionResNetV2 98.5% 98.7% 99.2% 99%

Table 1: Classification performance metrics.

We also show the confusion matrix and Receiver Operating Characteristics metrics278

in Tables 2 and 3.279

Model True Negative False Positive False Negative True Positive
Xception 308 9 6 849

DenseNet201 304 13 6 849
InceptionResNetV2 306 11 7 848

Table 2: Confusion Matrix.

Model False Positive Rate True Positive Rate Area Under the Curve
Xception 0.028 0.993 99.3%

DenseNet201 0.041 0.993 99.6%
InceptionResNetV2 0.035 0.992 99.5%

Table 3: Receiver Operating Characteristics.

The Xception model showed superior performance than the other two pre-trained280

models, acheiving an accuracy of 98.7%, precision of 99%, recall of 99.3%, F1-score of281

99.1%, and AUC of 99.3%. To support our findings, we also plotted the ROC curve of the282

models as shown in Figure 8. The ROC curve graph confirms that the Xception model283

performed better than the DenseNet201 and InceptionResNetV2 models.284

4.1. Comparison of results with other recent similar works285

We compare the results of this study with other recent similar works in this section -286

see Table 4. The proposed model results, i.e., over-sampling of the minority class samples287
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(a) ROC Curve. (b) ROC Curve - Zoomed in at top left.

Figure 8. Receiver Operating Characteristics Curve.

using GAN’s and training the neural network by fine-tuning the transfer learning288

models’ hyper-parameters, outperformed all the previous studies in the majority of the289

classification metrics. As discussed in the Section 4, the Xception architecture achieved290

the best classification metrics with an accuracy of 98.7%, precision of 99%, recall of 99.3%,291

F1-score of 99.1% and ROC-AUC of 99.3%.292

Accuracy Precision Recall F1 Score AUC
Kermany et al. [9] 92.80 87.20 93.20 90.10 96.80
Nahid et al. [43] 97.92 98.38 97.47 97.97 -

Stephen et al. [44] 93.73 - - - -
Qin et al.[38] 89.90 93.80 89.70 91.70 95.40

Chouhan et al. [10] 96.39 93.28 99.62 96.35 99.34
Rajaraman et al. [45] 96.20 97.00 99.50 - 99.00

Hashmi et al. [11] 98.43 98.26 99.00 98.63 99.76
Mittal et al. [46] 96.36 - - - -

Rahman et al. [12] 98.00 97.00 99.00 98.10 98.00
Kora Venu [3] 98.46 98.38 99.53 98.96 99.60

Kora Venu et al. [2] 95.50 96.20 97.70 97.00 93.60
Current work 98.70 99.00 99.30 99.10 99.30

Table 4: Comparison of results with other recent similar works

5. Discussion293

Medical image datasets generally come by limited samples and are often imbal-294

anced on majority class samples. Transfer learning from pre-trained models, i.e., the295

models trained on a large-scale benchmark datasets like Imagenet, is commonly used296

for classification tasks when encountered with small datasets, which is more common297

in the medical imaging domain. Often over-sampling of minority class samples or298

under-sampling of majority class samples, or augmentation of minority class samples299

using traditional data augmentation techniques, such as position or color augmentation,300

is carried out to balance the dataset before training the model to This makes sure that301

the trained model’s classification performance is not biased against the majority class302

samples. In this study, we proposed a framework where we over-sampled the minority303

class samples using Generative Adversarial Networks and then fine-tuned the hyper-304

parameters of transfer learning models to improve the classification performance of the305

trained model. Using Generative Adversarial Networks for data augmentation has two306

significant advantages, i.e., 1. Diversity - GAN’s can generate more varied images than307

the sampling or traditional data augmentation techniques, and 2. Fidelity - GAN’s im-308

prove the quality of generated images. Before training the models on TPU’s, the models309
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were fine-tuned and compiled. The results show that the combination of GAN-based310

data augmentation and fine-tuning of the transfer learning models’ hyper-parameters311

demonstrates a significant improvement in classification metrics.312

6. Conclusions and Future Work313

The lack of availability of large, labeled datasets is one of the significant problems314

with deep learning classification tasks in the domain of medical imaging. We demon-315

strated the ability to generate synthetic samples of chest X-ray images using Generative316

Adversarial Networks in one of our previous studies [2], and we demonstrated that317

fine-tuning the hyper-parameters of the transfer learning models improves classification318

performance metrics in another study [3]. These studies gave confidence and motivation319

in conducting the present research by combining the GAN-based data augmentation320

for over-sampling the minority class samples to balance the dataset and fine-tuning the321

hyper-parameters of the transfer learning models. We later trained the deep neural net-322

work classification models on three pre-trained state-of-the-art transfer learning models,323

such as Xception, DenseNet201, and InceptionResNetV2. The Xception model outper-324

formed the other two models achieving the test accuracy of 98.7%, the precision of 99%,325

recall of 99.3%, f1-score of 99.1%, receiver operating characteristic (ROC) - area under326

the curve (AUC) of 98.2%. Future work may include the investigation of other GAN327

methods for generating synthetic data, such as Wasserstein GAN with a gradient penalty,328

and the investigation of the generalization of the proposed framework to improve the329

classification performance metrics of other common medical conditions.330
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Appendix A335

Input: 25 x 25 x 192

Convolution 2D
filters = 96, kernel size = 1 

BatchNormalization +
ReLU

Convolution 2D
filters = 48, kernel size = 1

BatchNormalization +
ReLU

Convolution 2D
filters = 64, kernel size = 1 

BatchNormalization +
ReLU

MaxPooling
pool_size = 3, stride = 1, 

padding = same

Convolution 2D
filters = 64, kernel size = 5

BatchNormalization +
ReLU

Convolution 2D
filters = 96, kernel size = 3 

BatchNormalization +
ReLU

Convolution 2D
filters = 96, kernel size = 3 

BatchNormalization +
ReLU

Concatenate
Output: 25 x 25 x 320

Figure A1. Inception - A Block.
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Input: 25 x 25 x 320

Convolution 2D
filters = 32, kernel size = 1 

BatchNormalization +
ReLU

Convolution 2D
filters = 32, kernel size = 1

BatchNormalization +
ReLU

Convolution 2D
filters = 32, kernel size = 1 

BatchNormalization +
ReLU

Convolution 2D
filters = 32, kernel size = 3

BatchNormalization +
ReLU

Convolution 2D
filters = 48, kernel size = 3 

BatchNormalization +
ReLU

Convolution 2D
filters = 64, kernel size = 3 

BatchNormalization +
ReLU

Concatenate
Convolution 2D

filters = 320, kernel size = 1
Lambda: scale = 0.17
Output: 25 x 25 x 320

Figure A2. InceptionResNet - A Block.

Input: 12 x 12 x 1088

Convolution 2D
filters = 192, kernel size = 1 
BatchNormalization + ReLU

Convolution 2D
filters = 128, kernel size = 1 
BatchNormalization + ReLU

Convolution 2D
filters = 160, kernel size = 1, 

stride = 7 
BatchNormalization + ReLU

Convolution 2D
filters = 192, kernel size = 7, 

stride = 1 
BatchNormalization + ReLU

Concatenate
Convolution 2D

filters = 1088, kernel size = 1
Lambda: scale = 0.1

Output: 12 x 12 x 1088

Figure A3. InceptionResNet - B Block.
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Input: 5 x 5 x 2080

Convolution 2D
filters = 192, kernel size = 1 
BatchNormalization + ReLU

Convolution 2D
filters = 192, kernel size = 1 
BatchNormalization + ReLU

Convolution 2D
filters = 224, kernel size = 1, 

stride = 3 
BatchNormalization + ReLU

Convolution 2D
filters = 256, kernel size = 3, 

stride = 1 
BatchNormalization + ReLU

Concatenate
Convolution 2D

filters = 2080, kernel size = 1
Lambda: scale = 0.2
Output: 5 x 5 x 2080

Figure A4. InceptionResNet - C Block.

Input: 25 x 25 x 320

Convolution 2D
filters = 384, kernel size = 

3, stride = 2, 
padding = valid

BatchNormalization +
ReLU

Convolution 2D
filters = 256, kernel size = 1 
BatchNormalization + ReLU

MaxPooling
pool_size = 3, stride = 2, 

padding = valid

Convolution 2D
filters = 256, kernel size = 3 
BatchNormalization + ReLU

Convolution 2D
filters = 384, kernel size = 3, 
stride = 2, padding = valid
BatchNormalization + ReLU

Concatenate
Output: 12 x 12 x 1088

Figure A5. Reduction - A Block.
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Input: 12 x 12 x 1088

Convolution 2D
filters = 384, kernel size = 3, 

strides=2, padding=valid
BatchNormalization + ReLU

Convolution 2D
filters = 256, kernel size = 1
BatchNormalization + ReLU

Convolution 2D
filters = 256, kernel size = 1 
BatchNormalization + ReLU

MaxPooling
pool_size = 3, stride = 2, 

padding = valid

Convolution 2D
filters = 288, kernel size = 3, 

strides=2, padding=valid
BatchNormalization + ReLU

Convolution 2D
filters = 288, kernel size = 3 
BatchNormalization + ReLU

Convolution 2D
filters = 320, kernel size = 3,

strides=2, padding=valid
BatchNormalization + ReLU

Concatenate
Output: 5 x 5 x 2080

Convolution 2D
filters = 256, kernel size = 1
BatchNormalization + ReLU

Figure A6. Reduction - B Block.
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