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1. Animation of the eigenvalue evolution under nonlinear action 

To substantiate the relevant discussion in the main text about the nonlinearity-induced beating 

oscillation between the corner and edge modes in higher-order topological insulators (HOTIs), 

under low self-focusing and -defocusing nonlinearities, we provide two AVI videos as 

supplementary material to show the full nonlinear band structure dynamics. Movie 1 is for a low 

self-focusing nonlinearity, where the four corner states (red spots) “dance” together and undergo 

periodic “touching” with the lower miniband to couple with the edge modes. Likewise, Movie 2 is 

for a low self-defocusing nonlinearity, where the four corner states (red spots) do the same and 

undergo periodic “touching” with the upper miniband of the edge modes. 

 

2. Calculation of the band structure and nonlinear tuning of HOTI under a self-defocusing 

nonlinearity - the discrete model 

In this section, we discuss nonlinear dynamics for the nontrivial 2D SSH lattice in the presence 

of a saturable self-defocusing nonlinearity, complementary to the self-focusing case whose results 

are presented in the main text of this manuscript. Fig. S1(a) illustrates the calculated nonlinear 

eigenvalue spectrum, superimposed on the corresponding linear band structure (see transparent 

dots) for direct comparisons. Numerical simulations are performed via the discrete NLSE model 

of Eq. (2) in the main text. In the linear regime (𝐸𝐸0′  = 0), the nontrivial band structure is stationary 

(i.e., independent of the dimensionless propagation distance Z) and exhibits three main bands 

associated with extended bulk modes, plus two sets of edge modes residing in the mini-gaps. 

Additionally, it also displays four corner modes with zero eigenvalues (see red dots in Fig. S1(a)), 

which are embedded in the middle continuum bulk band. For this reason, they are topological 

bound states in the continuum (BICs), as discussed in the main text. Without loss of generality, the 

leftmost corner mode of the linear band structure is excited initially for testing the effect of 

nonlinearity. In the nonlinear regime ( 𝐸𝐸0′ ≠ 0), the spectrum evolves dynamically during 

propagation due to the action of the defocusing nonlinearity. The edge modes remain close to their 

linear positions. In contradistinction, the nonlinear corner modes move away from the middle band 

by experiencing an upward shift, eventually leading to interaction and beating with the upper-band 

edge modes at a low nonlinearity. As an example, a snapshot of the nonlinear spectral evolution is 

retrieved at the distance 𝑍𝑍=50 for a low self-defocusing nonlinearity (𝐸𝐸0′  = −5, 𝛾𝛾 = 1.1), showing 



the whole spectrum up-shifted from its linear position and the corner modes approaching the upper 

edge modes. The beating and the energy exchange taking place between the edge and corner modes 

can be unveiled by looking at the transversal and longitudinal intensity distributions of the output 

beam (see Figs. S1(b2, b4)), which significantly deviates from the stable output profile of the 

corresponding linear corner mode (Fig. S1(b1)). Counterintuitively, the robustness of these corner-

localized BICs is also preserved for the defocusing nonlinearity: similar to the self-focusing case, 

they do not couple with the bulk modes when moving in and out of the central bulk band. 

 

 

Figure S1. Calculated nonlinear band structure and corner mode tuning under a self-defocusing 

nonlinearity. (a) Calculated nonlinear eigenvalues 𝛽𝛽𝑁𝑁𝑁𝑁 for the nontrivial 2D SSH lattice using the discrete 

model taken at 𝑍𝑍 = 50; the transparent dots are linear mode eigenvalues plotted here for direct comparison. The 

black arrow points out that four corner states (red dots) undergo coupling and beating with the upper edge states 

under a low nonlinearity. The red arrow marks the initially excited corner mode, which possesses the topological 

features in the linear case, without any light distribution in the nearest neighboring sites as shown in (b1). Under 

a low self-defocusing nonlinearity, the corner mode couples with the edge modes (b2) so beating oscillations 

occur, as can be clearly seen from the side-view propagation in (b4), where we plot the intensity profile of the 

upper-left edge marked by a dashed line in (b2). Under a high defocusing nonlinearity, a corner-localized soliton-

like pattern emerges (b3), which is quite different from the linear topological corner state shown in (b1). This 

can be inferred by looking at the nearest neighboring sites: the localization in this case is driven by nonlinearity, 

rather than topology.  

For a sufficiently high defocusing nonlinearity (𝐸𝐸0′ = −5, 𝛾𝛾 = 3.5), the corner modes are 

driven away from the continuum band, forming soliton-like nonlinear mode patterns, as calculated 



from the discrete model. A typical example is shown in Fig. S1(b3). These results calculated using 

the discrete model under a self-defocusing nonlinearity are nearly identical to those obtained under 

a self-focusing nonlinearity (presented in Fig. 2 of the main text), which might be related to the 

chiral symmetry of the underlying linear system. However, it is worth mentioning that, in general, 

the results obtained from the discrete and the continuous models tend to deviate in the highly 

nonlinear defocusing regime as discussed in the main text.  

We note that here the convention we used for calculating the eigenvalues is such that self-

focusing pushes the eigenvalues downwards (see Fig. 2 of the main text), whereas defocusing 

moves them upwards (Fig. S1), to keep the analogy with condensed matter systems. In optics, this 

nonlinearity-driven up and down shifting directions could be reversed depending on how we define 

the propagation constant and plot the eigenvalue spectrum. More specifically, Eq. (2) from the 

main text reads 𝑖𝑖𝑖𝑖𝑖𝑖/𝑖𝑖𝑍𝑍 + 𝐻𝐻𝑁𝑁𝑁𝑁𝑖𝑖 = 0. By using the condensed matter sign convention in the phase 

exponent 𝑖𝑖 = 𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑖𝑖𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛𝑍𝑍) , we obtain  𝐻𝐻𝑁𝑁𝑁𝑁𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛 = −𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛 . Because 𝐻𝐻𝑁𝑁𝑁𝑁  is 𝑍𝑍 -

dependent, so are 𝛽𝛽𝑁𝑁𝑁𝑁,𝑛𝑛 and 𝜑𝜑𝑁𝑁𝑁𝑁,𝑛𝑛. The convention used here does not change the physical content 

or any conclusions of the manuscript. 
 

3. Simulation of nonlinear tuning of HOTI corner states - the continuous model 

To further corroborate the experimental observations related to nonlinear control of the HOTIs 

presented in Fig. 4 of the main text, we perform numerical simulations via the split-step Fourier 

transform method, applied to the continuous paraxial nonlinear Schrödinger-like equation (NLSE): 
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where the periodic potential is included in the nonlinear term. Equation (S1) is the same as Eq. (1) 

in the main text, where 𝑖𝑖(𝑒𝑒,𝑦𝑦, 𝑧𝑧) denotes the electric field envelope of the probe beam, whose 

intensity is PI ,  and  𝐼𝐼𝑁𝑁(𝑒𝑒,𝑦𝑦) represents the intensity of the linear 2D SSH lattice. Here x and y are 

the transversal coordinates, while z is the propagation distance. Furthermore, k is the wavenumber 

of the light in the medium, while ∆𝑛𝑛 is the linear refractive index change determined by the bias 

field 𝐸𝐸0 through  ∆𝑛𝑛 =  𝑘𝑘𝑛𝑛𝑒𝑒2𝑟𝑟33𝐸𝐸0/2 , where  𝑛𝑛𝑒𝑒 = 2.35 and 𝑟𝑟33 = 280 pm V−1 are, respectively, 

the bulk refractive index and the electro-optics coefficient for extraordinarily polarized light in the 

photorefractive SBN:61 crystal. In principle, the overall index potential depends on the intensities 



of both lattice-writing and probing beams, as well as the bias field 𝐸𝐸0. Here we assume that the 

lattice index potential is set only by 𝐸𝐸0 , and simply let PI =  𝜂𝜂|𝑖𝑖(𝑒𝑒,𝑦𝑦, 𝑧𝑧)|2  to control the 

nonlinearity induced by the probe beam. Therefore, for the linear case, 𝜂𝜂 = 0, while for a positive 

(negative) value of  𝜂𝜂, the nonlinearity is self-focusing (-defocusing). This can properly simulate 

the experimental situation in the low saturation regime.  

 

 

Figure S2. Numerical simulation of nonlinear control of a photonic higher-order topological insulator. 

(a) 3D-view of a linear corner state after 20 mm-long propagation through a nontrivial 2D SSH lattice. (b, c) 

Nonlinear self-focusing leads to (b) coupling of the corner mode to the edges (non-zero intensity in the edge sites 

compared with the linear case) when the nonlinearity is low, and (c) a highly localized corner soliton when the 

nonlinearity is high. (d) Transversal intensity distribution of the 2D SSH photonic lattice used in simulations. (e, 

f) Nonlinear output under a self-defocusing nonlinearity, corresponding to (b, c), showing strong energy 

spreading into both edge and bulk sites at a high nonlinearity strength. These results are in good agreement with 

the experimental results presented in Fig. 4 of the main text. 

Numerical results for a 20 mm-long propagation (i.e., the crystal length used in the 

experiments) obtained from simulations with Eq. (S1) are presented in Fig. S2 for different 



conditions, corresponding to the experimental results presented in Fig. 4 of the main text. Here, 

Fig. S2 also illustrates the output intensity profiles of the probe beam under a single corner 

excitation for a 2D SSH nontrivial lattice. Parameters in simulations are taken corresponding to our 

experimental setup. The 2D SSH lattice structure is defined with 𝐼𝐼𝑁𝑁 in Eq. (3) of the main text. For 

the nontrivial lattice, the intra- and inter-cell distances are taken as 𝑎𝑎 = 31 μm and 𝑏𝑏 = 23 μm, the 

linear potential depth is 𝐼𝐼𝑁𝑁0 = 0.5, and the scaling factor is 𝑤𝑤0 = 15.75 μm. The intensity pattern 

of such a nontrivial lattice is illustrated in Fig. S2(d). The probe beam is a Gaussian profile with 

dimensions comparable to that of a lattice site. For simulations, we take ∆𝑛𝑛 = 2.36 × 10−4𝑘𝑘/

𝑛𝑛𝑒𝑒  for both the linear and defocusing cases and ∆𝑛𝑛 = 2.9 × 10−4𝑘𝑘/𝑛𝑛𝑒𝑒   for the focusing case. 

Figure S2(a) illustrates the output probe beam with the characteristic features of the topological 

corner state under linear condition ( 𝜂𝜂 = 0) . For low focusing (𝜂𝜂 = 0.03 ) and defocusing                  

(𝜂𝜂 = −0.05) nonlinearities, the localized corner state differs from that of the topological linear 

system because the beam energy spreads in the nearest neighbor sites along two edges (see 

Figs. S2(b) and S2(e)). This is due to the nonlinearity-induced coupling between the corner and 

edge modes. However, at a high self-focusing nonlinearity (𝜂𝜂 = 0.15), the probe beam localizes 

again at the corner site of the lattice, but its intensity pattern does not have the features of a 

topological corner mode. In fact, it forms a self-trapped semi-infinite gap corner soliton (Fig. S2(c)). 

In contrast, at a high defocusing nonlinearity (𝜂𝜂 = −0.65), the corner excitation leads to strong 

spreading of the energy into both bulk and edges, as shown in Fig. S2(f). These numerical results 

are in good agreement with the experimental observations shown in Fig. 4 of the main text.  

 

4. Characterization of corner BICs in logarithmic scale and their long-range propagation  

In this section, we present the intensity plots of corner modes in both direct and logarithmic 

scales to substantiate our claims of topological BICs in the linear regime and their beating with the 

edge modes in the nonlinear regime. The example of the linear BIC profile shown in Fig. 1(d1) is 

performed using the discrete model, where there seems to be some background distribution inside 

the topological structure for the corner state. This is because the lattice structure is not large enough 

and as such, the “tails” of the corner modes seem to extend over the lattice structure. To show that 

this is not due to coupling with the bulk modes, that should not occur for true BICs, we recalculated 

the corner mode and plotted its profile in Figs. S3(a1-a3) with a doubled lattice size (20x20 sites). 



The linear envelope in the logarithmic scale (Fig. S3(a3)) proves clearly its exponential localization. 

For the nonlinearity-induced beating oscillation described in Fig. 2 of the main text, we also 

performed the calculation for the nonlinear corner modes within a larger lattice. Snapshots are 

plotted in Fig. S3(b) (at Z = 23) and Fig. S3(c) (at Z = 50). At Z = 23, the corner mode couples with 

an edge mode (as seen from Movie 1), so as the intensity does not exhibit an exponential decay 

along the edges, yet there is no radiation into the bulk. At Z = 50, the corner mode tends to restore 

its topological BIC feature, as clearly seen from the intensity plots in Fig. S3(c3). This beating 

process goes back and forth periodically in the nonlinear regime, as described in the main text. It 

occurs for both self-focusing and -defocusing nonlinearities, but it cannot occur in the topological 

trivial structure. Strictly speaking, the nonlinear corner modes are no longer stationary BICs as in 

the linear regime, but they undergo periodic coupling with the edge modes without dissipating into 

the bulk, indicating the inherited topological nature of the corner states, even under nonlinear action. 

In Fig. S4, we show numerical simulation results for long-distance propagation of the modes 

in the 2D SSH lattice using the continuous model.  In the linear regime, the corner mode remains 

localized without coupling to the edge and bulk modes. To match our experimental condition, we 

launch a single beam into the corner waveguide, so we cannot say that the whole corner mode is 

excited, but rather a large portion of it. Clearly, even for long-distance propagation, most energy of 

the probe beam remains localized in the excited corner site. The weak oscillation of the intensity 

happens because we do not excite the exact corner mode, but rather one corner. In the right panel 

of Fig. S4, a weak self-focusing nonlinearity is applied, where the corner mode undergoes periodic 

intensity oscillation due to beating with the edge mode. The period of such beating oscillation is 

nearly 20 cm, much longer than the crystal length used in our experiments (which is only 20 mm). 

Interestingly, this kind of beating oscillation occurs even under a weak self-defocusing nonlinearity, 

although the defocusing nonlinearity speeds up the oscillation due to enhanced diffraction and 

coupling to the edge modes. 

 

 



 

Figure S3. Intensity plots of a corner mode in both linear (a) and weakly nonlinear (b, c) regimes. The 

results were obtained using parameters corresponding to Fig. 1(d1) and Fig. 2(b2) in the main text, but with 

a double-sized 2D SSH lattice structure. In the nonlinear regime, the corner mode undergoes periodic 

oscillation between a mixed corner/edge state (b1) and an isolated corner state (c1), with no radiation into 

the bulk. Top panels are transverse intensity patterns, while the bottom panels are corresponding intensity 

profiles in direct and logarithmic scales. The linear envelope in the logarithmic scale proves clearly the 

exponential localization of the corner modes. 

 

 

 

Figure S4. Numerical simulation of long-distance propagation of the modes in a photonic HOTI. Left: 

linear regime, where the corner mode remains localized without coupling with the edge and bulk modes. 

Right: weakly (self-focusing) nonlinear regime, where the average power in the corner sites undergoes a 

periodic oscillation due to beating with the edge mode, but not with the bulk mode. 

 



5. Polarization as a function of nonlinearity 

     In this section, we discuss in more detail the nonlinear polarization which is presented in 

Fig. 4(d) of the main text. For linear systems the polarization of the 2D SSH model is quantized, 

such that 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 1
2
 in the topological nontrivial regime (𝑐𝑐 < 0), and 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0 in the trivial 

regime (𝑐𝑐 > 0). As already elaborated in the main text, this simple picture is no longer valid when 

we introduce the nonlinearity 𝛾𝛾𝑘𝑘, which breaks the symmetry protection of two distinct topological 

phases. However, we can still use polarization calculations to quantify the notion that the weakly 

nonlinear system can inherit topological properties from the linear system. More specifically, in 

Fig. S5 we plot the nonlinear polarization as a function of the nonlinearity 𝛾𝛾𝑘𝑘 for several values of 

the parameter c (which are chosen in both trivial and nontrivial regimes). We observe that the 

polarization slightly deviates from the linear case (𝛾𝛾𝑘𝑘 = 0), i.e., from 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 1/2 when 𝑐𝑐 < 0, 

and from 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0 for 𝑐𝑐 > 0. However, we also notice that the deviation is such that for weak 

nonlinearities (i.e., small  |𝛾𝛾𝑘𝑘|) it grows only linearly with the nonlinearity parameter 𝛾𝛾𝑘𝑘. In other 

words, if we imagine nonlinearity as a small perturbation of the corresponding linear system, we 

see that the characteristic topological features of the linear system (for example, a sudden jump in 

polarization) will be inherited in the nonlinear system as well. 

 
Figure S5. Polarization of the nonlinear 2D SSH system as a function of nonlinearity. The 

polarization 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 of the nonlinear system depends on the strength of the nonlinearity parameter 𝛾𝛾𝑘𝑘. For the 

linear systems (𝛾𝛾𝑘𝑘 = 0), we know that 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 1/2 in the nontrivial regime (𝑐𝑐 < 0), and 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 0 in the 

trivial regime (𝑐𝑐 > 0). For weak nonlinearities, the deviation of the nonlinear polarization from this result grows  

linearly with the strength of the nonlinearity parameter 𝛾𝛾𝑘𝑘 . 



Supplementary Movie 1: Dynamic eigenvalue evolution under low self-focusing nonlinearity. 

Supplementary Movie 2: Dynamic eigenvalue evolution under low self-defocusing nonlinearity. 


