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Abstract: The main result of this work is the estimation of the entropy mode accompanying1

a wave disturbance, observed at the atmosphere heights range of 90-120km. The study is the2

direct continuation and development of recent results on diagnosis of the acoustic wave with the3

separation on direction of propagation. The estimation of the entropy mode contribution relies upon4

the measurements of the three dynamic variables (the temperature, density and vertical velocity5

perturbations) of the neutral atmosphere measured by the method of the resonant scattering of6

radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement7

of the atmosphere dynamic parameters has been carried out on the SURA heating facility. The8

mathematical foundation of the mode separation algorithm is based on the dynamic projecting9

operator technique. The operators are constructed via the eigenvectors of the coordinate evolution10

operator of the transformed system of balance equations of the hydro-thermodynamics.11

Keywords: exponential atmosphere; acoustic wave; diagnostics; projection operators; artificial12

periodic irregularities; neutral temperature; density13

1. Introduction14

The idea of a fluid perturbation decomposition goes up to the celebrated paper [1] related to15

a turbulent flow and studies of the nonlinear viscous and heat conducting compressible gas were16

formulated in [2], where the wave and non-wave components notions and a perturbation were17

formulated. Interaction of the components was also introduced.18

A general description of a fluid perturbation in respect to equilibrium is naturally divided by19

projections to linear evolution operator subspaces to be identified as the perturbations modes. Its20

mathematical formulation is given in [3] for the classic (1,2,3 kinds) boundary conditions, see also21

recent book [4]. Its spectral content is determined by a kind of Fourier transform [5]. There are22

wave nonzero frequency ω and non-wave (ω = 0) components [6]. The significance of the non-wave23

(entropy) component of a gas disturbance relates directly to the atmosphere warming phenomenon,24

for sudden stratosphere events [7] and for warming compendium look [8].25

Appearance of the entropy mode is connected either with a heating phenomenon when energy26

transfer from waves of a large amplitude is implied [4] or when such mode is transported by wind or27

large scale (e.g. planetary) waves [9,10].28

Such problem in plasma physics is more complicated due to the basic field components29

abundance with applications to the sun atmosphere physics [11,12]. A direct theory of the heating30
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phenomenon at plasma with mechanical and thermal losses and electrical resistivity is presented at31

[13]. The magnetoacoustic heating of plasma caused by periodic magnetosound perturbations with32

discontinuities is studied in a quasi-isentropic magnetic gas [14].33

In algorithmic approach to mode definition [15,16] the method is formulated via projecting34

operators, that are defined for each evolution operator subspace. The projecting operators and their35

energy weight calculation are realised by means of an auxiliary norm introduction. The whole36

algorithm stages of a disturbance mode content diagnosis would outline below for the case of37

exponential atmosphere.38

1.There are two possible classes of evolution operators that may be a base for the projecting
procedure construction. One of them is evolution in time, say - t−evolution, for its applications
[17]. The second is the z-evolution operator, both acting in the vector state. In our 1D case it is
three-component one ψT = (U, p, ρ) with the gas velocity (U), pressure (p) and density (ρ). The
z-evolution equation reads

ψz = Lψ, (1)

namely such form, that is derived in Sec. 3 defines the evolution operator L. The notations of the39

section differ because the dimensionless coordinates and entropy perturbation (instead of temperature)40

are introduced for further convenience.41

2. Let consider now the eigen value task for the t-Fourier transform L̃ of the evolution operator L
having the matrix form

L̃ψ̃ = kψ̃,

where ψ→ ψ̃ is the Fourier transform of the state vector.42

3. For each eigenspace ψ̃i, i = 1, 2, 3 it is convenient to introduce the matrix projecting operators
PI by means of the 3x3 eigen matrix Φαβ = φ1

αφ2
β, α, β = 1, 2, 3 so that the matrix elements [4]

Pi
αγ = ΦαβΦ−1

βγ ,

that are the functions of the frequency ω.43

4. After the inverse Fourier transformation one can to apply the projecting technique to the44

observation data, otherwise, we transform the data by the discrete Fourier transformation, at the next45

step, we use the corresponding discretized projecting matrices Pi
γδ to extract the data for the three46

modes (directed waves and entropy mode)47

5. The energies of the directed and the entropy mode are estimated via discretized form of the48

general expression for energy of a gas perturbation. Its expression follow basic equations of the49

conservation law.50

A role of the zero frequency mode is specific, because its propagation is determined by the51

simultaneous action of the nonlinearity and dissipation. Hence the mode (entropy mode) diagnostics52

by local measurements is a challenge as from theoretical point of view (asymmetry of derivatives53

entrance in basic equations) as from observations, due to its slow evolution [4].54

While entropy mode account enters the main mechanism for some physical processes, such55

as non-linear heating, in other contexts it can be safely dropped out. And, because difficulty of its56

measurement and estimation, majority of models do just that. Generally, it is expected that it should57

be relatively insignificant in this case of the heights range under investigation. But we still want to58

obtain the value of it and to check those expectations. Proposed method could also be applied to other59

problems where its contribution is more pronounced. Even in the situation we examine, the mode60

growth with altitude may, potentially, lead to the essential change of the content of the atmosphere61

perturbation.62

To solve this problem we rearrange equations of the basic system so as it to be a z-evolution one63

(Sec. 1 and [10]). This will allow us to find a projection operators for all three modes by the mentioned64
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algorithm. Also we will derive formula for an energy of the mode in the ω-space. Such results open65

the way to the local space diagnostics of acoustics and entropy modes.66

For a source of observation data we take measurements of the velocity, temperature and the67

density of the neutral atmosphere in the height range 90-120 km by API (artificial periodic irregularities)68

technique. The technique is based on the resonant scattering of radio waves by induced periodic69

irregularities of the ionospheric plasma emerging in the field of a standing wave arising from the70

interference of the incident and reflected waves from the ionosphere [18,19].The details of the physical71

base of the API is described in Sec. 2. The mathematical statement of the problem is given in the Sec.72

3. Its reformulation as z-evolution problem is derived in Sec. 4. An expression for energy density is73

given at Sec. 6. The errors of measurements is given at Sec. 7 and the error of the whole estimation74

algorithm is described at the Sec. 8.75

The main idea of this work is to prove, that the data on atmosphere parameters extracted from the76

SURA facility allow to estimate contributions of three mode (two waves and entropy). Other sources77

do not give such an opportunity.78

Note, that in the paper [15] it was presented an alternative approach based on discrete projection79

operators. Also results in this paper were not applied to experimental data. The problem which80

was described there had only two wave modes without taking the entropy mode into account. The81

approach used to calculate energy in the article [15] was also more complex, we were able to find the82

means to greatly simplify this task.83

Paper [16] also described two mode model, and do not contains ways to calculate an error84

estimation. This paper, while it is a logical continuation of the work done in [16] describes more precise85

three mode model, which allows to analyze entropy mode that is usually very hard task to do with86

real experimental data. It also includes an error estimations, both from experimental errors and ones87

from numerical method errors.88

The book [17] describes basis of mathematics used in projection operators methods in several89

different fields of physics and do not contains specific projection operators or their application to the90

problem we study.91

2. Experimental background92

The estimation of the entropy mode contribution relies upon the measurements of three dynamic93

variables (the temperature, density and vertical velocity perturbations) of the neutral atmosphere94

obtained by the method of the resonant scattering of radio waves on the artificial periodic irregularities95

(APIs) of the ionospheric plasma [18–20]. The measurement of the atmosphere dynamic parameters96

has been carried out on the SURA heating facility (56.11o N; 46.1oE) which is situated near Nizhny97

Novgorod, Russian Federation. The facility creates artificial disturbances in the ionosphere influenced98

on a radio wave propagation. Powerful radio waves radiated into the ionosphere disturb the99

temperature and electron density. This causes many different “heating” effects in the ionospheric100

plasma, which are described in detail in reviews [21,22]. The creation of artificial periodic irregularities101

in the field of a powerful standing radio wave is among them. The API technique is described in detail102

in [18]. The scattering of probe radio waves by these irregularities has resonant properties, that is, the103

signal received from the API has significant amplitude when the frequencies and polarizations of the104

powerful and probe radio waves are same. After the end of the artificial impact on the ionosphere,105

APIs disappear during the relaxation time. A large level of scattered signal with a signal-to-noise106

ratio of the order of 10-100 allows one to determine atmospheric parameters with high accuracy. The107

altitude-time resolution is 1 km in altitude and 15 s in time and makes it possible to study short-term108

and long-term processes in the ionosphere and in neutral atmosphere.109

The method for determining the temperature and density of the neutral atmosphere based on
the analysis of the height dependence of the relaxation time of the API scattered signal is described
in detail in [18,19]. At altitudes of 90–120 km, the API relaxation occurs under the influence of the
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ambipolar diffusion [18,22]. The amplitude and phase of the scattered signal at the stage of relaxation
of inhomogeneities are measured. The relaxation time is determined by the expression

τ∗ =
1

K2D
=

Miνim
KB(Te0 + Ti0)K2 =

Miνim
2KBTK2 (2)

where KB is the Boltzmann constant, K = 4π/λ is the wavenumber of the standing wave, λ = λ0/n110

is the wavelength in the propagation environment, n is the refractive index, D is the ambipolar111

diffusion coefficient, Mi is the molecular mass of the ion, Te0 and Te0 are the unperturbed electron112

and ion temperatures, and νim is the frequency of collisions between ions and neutral molecules. It is113

considered that in the mid-latitude at mesosphere and the lower thermosphere heights Te0 = Ti0 = T114

up to the height 120–130 km, where T is the temperature of the neutral component. The expression115

for τ∗ underlies the determination of many parameters of the lower ionosphere and the neutral116

atmosphere, including its temperature and density [18,19]. The atmospheric temperature and density117

are determined from the API relaxation time, which is inversely proportional to the ambipolar diffusion118

coefficient. Many results of studying the altitude–temporal variations of temperature and density in119

different geo- and helio-physical conditions are presented in [23–28]. To learn more about the API120

technique and in detail the methodology for determining the atmospheric temperature and density, we121

recommend reading [18,19]. The velocity of the vertical motion of the plasma is determined from the122

dependence of the phase on time. This velocity in the mesosphere and lower thermosphere is equal to123

the velocity of the neutral component, since the plasma at these altitudes is a passive admixture and124

moves with the neutrals.125

The measured phase φ of the scattered signal can be written as dφ/dt = 2πFd = 4πV/λ where Fd
is the Doppler velocity and V is the velocity of the vertical movement of the neutral medium. Then the
vertical velocity can be determined by the formula,

V =
λ

4π
· dφ

dt
=

c
4πn f

· dφ

dt
(3)

where f is the frequency of the powerful and probing waves. Positive velocity values correspond126

to downward movement. To eliminate random errors associated with a change in the phase of the127

scattered signal due to the influence of natural noise on the scattered signal, the linear part of the128

approximation of the φ(t) dependence is used for the velocity calculation.129

3. Mathematical statement of the problem formulation130

Following [6] we start from the linearized conservation equations describing one-dimensional
flow along the vertical axis z in terms of the deviations of pressure p′, density ρ′ and velocity U′, from
corresponding equilibrium stationary values p, ρ, U. In the exponentially stratified atmosphere they
take the form,

p(z) = p0 exp(−z/H) = ρ0gH exp(−z/H), ρ(z) = ρ0 exp(−z/H), U = 0,

where H is the height scale of stratification, p0 and ρ0 are the values of pressure and density at the zero
z level, g - gravity acceleration. This system can be written in form

∂U′

∂t
= −1

ρ

∂p′

∂z
− ρ′

ρ
g (4)

∂p′

∂t
= −U′

dp
dz
− γp

∂U′

∂z
(5)

∂ρ′

∂t
= −U′

dρ

dz
− ρ

∂U′

∂z
(6)
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In one-dimensional exponentially stratified model presented in this paper the external force is
described as the constant gravity acceleration g which is directed opposite to axis z, though it can be
generalised to other mass forces including non-inertial ones. The flow of an ideal gas is considered,
whose internal energy ε in terms of pressure and density takes the form

ε =
p

(γ− 1)ρ
, (7)

where p = p + p′, ρ = ρ + ρ′ i.e. full value is the sum of unperturbed value plus perturbation and
γ = Cp/Cv denotes specific heat ratio. The relation between the equilibrium pressure and density
follows from the zero order stationary equality

dp
dz

= −gρ(z). (8)

This linearized 1D equations for perturbations of pressure p′, density ρ′ and gas velocity U′ now
can be simplified by introducing the new variable φ′ = p′ − γ

p
ρ ρ′ and then we can switch to this

variables, conventionally used for the exponentially stratified atmosphere model:

P = p′ez/2H ,
Φ = φ′ez/2H ,

U = U′e−z/2H ,
$ = ρ′ez/2H ,

Tp = Te−z/2H

(9)

where z is vertical coordinate and H is the height of the stationary atmosphere. That transforms the
system (4-6) to the form

∂U
∂t

=
1
ρ0

(
γ− 2
2γH

− ∂

∂z

)
P +

Φ
γHρ0

, (10)

∂P
∂t

= −γgHρ0

(
∂U
∂z

)
− gρ0

γ− 2
2

U, (11)

∂Φ
∂t

= − (γ− 1) ρ0gU. (12)

where ρ0 denotes the density at the model lower boundary z = 0.131

System (10-12) describes three-mode problem with two wave modes and one stationary entropy132

mode.133

We can rewrite system (10-12) using the variable which are measured by API technique using
relations

Φ = P− γ
p0

ρ0
$

since p0
ρ0

= p
ρ in exponentially stratified atmosphere and Mendeleev-Clapeyron’s law (V∗ is the gas

volume)

p′ =
R
µ

(
ρT + ρ′T

)
(13)

since p = R
µ Tρ in Mendeleev-Clapeyron’s law for nonpertubed atmosphere and after dropping out

non-linear terms we get

P =
R
µ

(
ρ0Tp + $T

)
(14)

It is convenient to rewrite system (10-12) in the terms of dimensionless functions and variables.
To do this we shall use the uniform atmosphere height H and the velocity of sound c =

√
γgH as

dimension parameters which gives time scale H/c =
√

H
γg so that the new dimensionless variables are
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z = Hξ, t = τ · H/c = τ
√

H
γg . Functions are redefined as U = cV = V

√
γgH, P = p0 p̂ and, since the

Φ too has the pressure as dimension (because φ′ = p′ − γ
p
ρ ρ′ and Φ = φ′ · ez/2H) and Φ = p0φ̂. After

isolation of terms with ∂
∂τ and taking into account that p0 = gHρ0 we’ll get

∂V
∂τ

=
1

γ2

[(
γ

2
− 1− γ

∂

∂ξ

)
p̂ + φ̂

]
, (15)

∂ p̂
∂τ

= −
(

γ

2
− 1 + γ

∂

∂ξ

)
V, (16)

∂φ̂

∂τ
= − (γ− 1)V. (17)

4. Atmosphere gas disturbance initiation by a boundary regime134

Let’s transform our task into the boundary mode z-propagation form. It is easy to isolate spatial
differentials for p̂ and V:

∂

∂ξ
p̂ =

γ− 2
2γ

p̂− γ
∂V
∂τ

+
1
γ

φ̂, (18)

and
∂

∂ξ
V = −γ− 2

2γ
V − 1

γ

∂ p̂
∂τ

, (19)

but initial equation for ∂φ̂
∂τ , (17) does not contain ∂

∂ξ φ̂. We can obtain it from the third equation in the
form

∂2φ̂

∂τ∂ξ
= − (γ− 1)

∂V
∂ξ

. (20)

∂φ̂

∂ξ
=

(γ− 1)(γ− 2)
2γ

∫
Vdτ +

γ− 1
γ

p̂. (21)

Integral should not be a problem since it has rather simple form after Fourier transformation.135

Finally, the system (18)-(19) and (21) takes the form

∂

∂ξ

 V
p̂
φ̂

 = L

 V
p̂
φ̂

 (22)

where L is the z-propagation matrix operator, that gains the form

L =

 − γ−2
2γ − 1

γ
∂

∂τ 0
−γ ∂

∂τ
γ−2
2γ

1
γ

(γ−1)(γ−2)
2γ Iτ

γ−1
γ p̂ 0

 =
1

2γ

 −(γ− 2) −2 ∂
∂τ 0

−2γ2 ∂
∂τ (γ− 2) 2

(γ− 1)(γ− 2)Iτ 2(γ− 1) 0

 , (23)

where Iτκ =
∫

κdτ. To obtain the mode projection operators we need to transform (22) into Fourier
space. At the domain the propagation matrix takes the form

L̃ =
1

2γ

 −(γ− 2) −2Iω 0
−2γ2 Iω (γ− 2) 2
(γ−1)(γ−2)

Iω 2(γ− 1) 0

 . (24)
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5. Projection operators136

Propagation matrix L̃ (24) has the eigenvalues

0, 1
2

√
1− 4ω2, − 1

2

√
1− 4ω2 (25)

which are consistent with expected two directed waves, with up- and downward directions, and one
stationary entropy mode. We can calculate projection operators using standard method Pk

ij = EikE−1
kj

where E is a matrix constructed from eigenvectors. They take the form

P1 =
1

γ2(4ω2 − 1)

 −4(γ− 1) 0 −4Iω
2I
ω (γ− 1)(γ− 2) 0 2(γ− 2)

I
ω (γ− 1)

(
4ω2γ2 − (γ− 2)2) 0 4ω2γ2 − (γ− 2)2

 , (26)

P2 =
1

4γ2ω3K3

 ω(1− K)Z+ −4Iω4γK 2Iω2(K3 − K)

−IX+Z+ −X+ω3γK2

K−1 2X+(K + K2)ω

I(γ− 1)(K− 1)Z+ 4(γ− 1)γω3K2 −2(K3 − K)(γ− 1)ω

 , (27)

P3 =
1

4γ2ω3K3

 −ω(1 + K)Z− 4Iω4γK −2Iω2(K3 − K)

IX−Z−
X−ω3γK2

K+1 −2X−(K + K2)ω

−I(γ− 1)(K− 1)Z− −4(γ− 1)γω3K2 2(K3 − K)(γ− 1)ω

 , (28)

where K =
√

1− 4ω2, Z± = (2ω2(∓4γ2ω2 ± γ2 ∓ 2γ± 4 + 2kγ) + (γ− 2)(k + 1)), X± = ±2γω2 +137

k± 1. Variables K, Z± and X± were introduced only to shorten notation of projection operators.138

6. The mode energy density at omega-domain139

Following [6] we get the formula for the energy density

ε(z, t) = ρ0U(z, t)2 +
P(z, t)2

γgHρ0
+

Φ(z, t)2

γ(γ− 1)gHρ0
, (29)

in the three-mode case. This formula is written using variables from (z, t)-space, so we need to
rewrite it, using Fourier-images of these variables from (ω, τ)-space. Firstly, we must transform it into
dimensionless form. To do it we will use the same formulas that we used for main system: z = Hξ,

t = τ · H/c = τ
√

H
γg ,P = p0 p̂ = ρ0gHp̂, U = cV = V

√
γgH and Φ = p0φ̂ = ρ0gHφ̂. We get the

expression

ε(ξ, τ) = ρ0γgHV(ξ, τ)2 +
(ρ0gHp̂(ξ, τ))2

γgHρ0
+

(
ρ0gHφ̂(ξ, τ)

)2

γ(γ− 1)gHρ0
. (30)

A transition to the ω-space variables by the conventional Fourier transformations

φ̂(ξ, τ) =
1√
2π

∫ ∞

−∞
eIωτ φ̃(ξ, ω)dω, (31)

Ṽ(ξ, τ) =
1√
2π

∫ ∞

−∞
eIωτV(ξ, ω)dω, (32)

and
q(ξ, τ) =

1√
2π

∫ ∞

−∞
eIωτ q̃(ξ, ω)dω. (33)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2021                   



Version July 26, 2021 submitted to Atmosphere 8 of 14

We plug it in the expression for energy density (30) and get

ε(ξ, τ) = ρ0gH
[
γ 1√

2π

∫ ∞
−∞ eIωτṼ(ξ, ω)dω · 1√

2π

∫ ∞
−∞ eIω′τṼ(ξ, ω′)dω′+

+ 1
γ

1√
2π

∫ ∞
−∞ eIωτ p̃(ξ, ω)dω · 1√

2π

∫ ∞
−∞ eIω′τ p̃(ξ, ω′)dω′+

+ 1
γ(γ−1)

1√
2π

∫ ∞
−∞ eIωτ φ̃(ξ, ω)dω · 1√

2π

∫ ∞
−∞ eIω′τ φ̃(ξ, ω′)dω′

]
.

(34)

Hence, the energy ξ−profile is obtained by the integration over dimensionless time

E(ξ) =
∫ ∞

−∞
ε(ξ, τ)dτ. (35)

It depends on ξ instead of τ since we are solving boundary mode ξ-propagation problem. But by
definition ∫ ∞

−∞
eIω′τeIωτdτ = 2πδ(ω + ω′), (36)

hence

E(ξ) =
∫ ∞

−∞

[
γṼ2(ξ, ω)ω2 +

1
γ

p̃2(ξ, ω) +
1

γ(γ− 1)
φ̃2(ξ, ω)

]
dω. (37)

7. Neutral atmosphere parameters obtained using API technique140

As well as in work [16] we used the results of determining atmospheric temperature and density141

on 26 September 2017 from 12:00 to 16:20 local time (Moscow time) at the height at 100 km, adding to142

them the results of simultaneous measurements of the vertical velocity. Experimental data take the143

form of measurements of temperature, density and vertical gas velocity. Our projection operators are144

formulated in the terms of V, p̂ and φ̂. Vertical gas velocity can be used after calculating difference from145

average, transforming into dimensionless variables using formula U = V
√

γgH. Then the discrete146

Fourier transformation was applied.147

For the wave entropy variable φ̃ we have φ̂ = p̂− γ
ρ0

ρ where ρ is perturbations of density, it can148

be calculated as deviation from average too.149

So, the only question is how to go over from temperature to p̂ which is perturbation of pressure.
To do that we calculate pressure in each point using Mendeleev-Clapeyron law

P =
R
µ

ρT

and then calculate difference with averaged value over all points to get perturbations values.150

Experimental data are presented in the table151

Time Velocity; m/s Temperature; K Density; kg/m3

12:00:00 -6.84E-01 2.19E+02 6.52E-07
12:05:00 -1.05E+00 1.82E+02 5.72E-07
12:10:00 -1.42E+00 1.45E+02 4.91E-07
12:15:00 -1.78E+00 1.08E+02 4.11E-07
12:20:00 -2.30E+00 2.14E+02 7.22E-07
12:25:00 -9.87E-01 1.29E+02 4.18E-07
12:30:00 -1.12E+00 1.50E+02 4.47E-07
12:35:00 -1.24E+00 1.71E+02 4.76E-07
12:40:00 -1.28E+00 1.29E+02 4.18E-07
12:45:00 -1.32E+00 1.36E+02 4.44E-07
12:50:00 3.80E-01 1.83E+02 4.70E-07
12:55:00 5.09E-01 2.09E+02 5.90E-07
13:00:00 6.37E-01 2.36E+02 7.09E-07
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Time Velocity; m/s Temperature; K Density; kg/m3

13:05:00 -2.89E+00 1.69E+02 5.17E-07
13:10:00 -1.46E+00 2.32E+02 7.65E-07
13:15:00 -9.16E-01 1.39E+02 4.60E-07
13:20:00 -6.51E-01 1.54E+02 4.86E-07
13:25:00 -3.87E-01 1.68E+02 5.13E-07
13:30:00 -1.22E-01 1.83E+02 5.39E-07
13:35:00 1.43E-01 1.97E+02 5.65E-07
13:40:00 -3.56E+00 1.20E+02 3.74E-07
13:45:00 -7.34E-01 1.34E+02 3.80E-07
13:50:00 -6.30E-02 1.55E+02 3.28E-07
13:55:00 -9.07E-01 1.16E+02 3.01E-07
14:00:00 7.90E-02 6.92E+01 1.55E-07
14:05:00 3.85E-01 1.76E+02 5.04E-07
14:10:00 1.28E+00 9.90E+01 2.22E-07
14:15:00 1.15E+00 2.08E+02 5.12E-07
14:20:00 -1.39E+00 1.50E+02 3.71E-07
14:25:00 5.09E-01 2.12E+02 5.45E-07
14:30:00 -4.72E-01 1.60E+02 3.57E-07
14:35:00 -5.59E-01 2.16E+02 4.51E-07
14:40:00 5.23E-01 2.86E+02 6.36E-07
14:45:00 -8.27E-02 1.68E+02 6.28E-07
14:50:00 -2.19E+00 1.89E+02 5.11E-07
14:55:00 -8.93E-01 1.66E+02 6.72E-07
15:00:00 -7.24E-01 1.72E+02 5.88E-07
15:05:00 1.21E+00 1.98E+02 6.92E-07
15:10:00 -1.13E+00 1.49E+02 5.04E-07
15:15:00 -2.17E+00 1.82E+02 7.72E-07
15:20:00 -2.02E+00 2.14E+02 1.04E-06
15:25:00 -3.40E-01 8.96E+01 4.41E-07
15:30:00 4.87E+00 9.32E+01 4.46E-07
15:35:00 -1.09E+00 1.09E+02 4.53E-07
15:40:00 -1.71E+00 8.76E+01 2.78E-07
15:45:00 -2.33E+00 1.86E+02 6.93E-07
15:50:00 8.68E-01 1.30E+02 4.19E-07
15:55:00 -2.37E+00 1.96E+02 7.12E-07
16:00:00 -9.78E-01 2.01E+02 2.82E-07
16:05:00 1.97E-01 1.76E+02 4.59E-07
16:10:00 -2.35E+00 1.51E+02 6.36E-07
16:15:00 -2.04E+00 1.53E+02 4.50E-07
16:20:00 -1.73E+00 1.55E+02 2.64E-07

Now it is possible to apply out projection operators (26,27,28) and then to calculate separately
energies for each mode using formula (37) which need to be rewritten in the discrete form by
replacement of integrals with sums i.e. using midpoint rule. Since points are spaced and we are
interested in relative values only, simple sums can be used. It gives us relative values. For entropy
mode we obtain

E1 ≈ 0.000024E (38)

and for the wave modes we have
E2 ≈ 0.501E, (39)
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E3 ≈ 0.499E, (40)

where E = E1 + E2 + E3 is the total energy of all modes.152

In contrast to the work [16], we used the data of determination of three atmospheric quantities; we153

use a set that allows us to find the contribution of the entropy mode. An important fact is that it turned154

out to be small. In addition, we have demonstrated the procedure for measuring this contribution.155

Recall that the origin of the entropy mode is heating by waves, and which is proportional to the156

dissipation and the square of the amplitude of this mode. At these altitudes, both are few.157

8. Error estimation158

8.1. The vertical velocity measurement error159

Our analysis has been carried out with a certain degree of accuracy. The error in the E estimates is160

the sum of the errors in measuring the the parameters of the neutral component (temperature, density,161

and vertical velocity) by the API technique and the error in the algorithm for calculating the entropy162

and wave modes.163

As can be seen from the formula for the vertical velocity, the absolute error ∆V of a single
measurement of the speed is determined by the error of the time derivative of the signal phase. If we
find ∆φ/∆t from two dimensions, then the variance of this derivative is expressed by the formula

σ2
∆φ/∆t =

1
t1
(σ2

φ1
+ σ2

φ2
) (41)

where the time measurement error is neglected, and σ2
φ1

and σ2
φ2

are the variances of the first and164

second measurements, t1 is the measurement time.165

To reduce the error, it is necessary to increase the measurement time interval t1, but this is166

prevented by the exponential decrease in the signal amplitude during the API relaxation period, which167

leads to a decrease in the signal-to-noise ratio (A/Anoise) and an increase in the variance σ2
φ2

. According168

to [29], for A/Anoise > 3 the value of σ2
φ is σ2

φ2
≈ (A/Anoise)

2 therefore σ2
∆φ/∆t = σ2

φ1

1+exp(t1/τ∗)
t1

This169

value reaches a minimum at t1 = 0.86τ∗ and gives the value σ2
∆φ/∆t = 3σφ1 .170

A more accurate estimate of the derivative can be obtained by taking into account all measured
values of the phase φ. It was shown in [20] that the optimal procedure for finding ∆φ/∆t is a linear
approximation of φ(t) by the least squares method with the weight function exp(−t1/τ∗) while

σ2
∆φ/∆t →

2σφ

τ∗

√
2∆t
τ∗

(42)

at t1 � τ∗. Ultimately, the error in determining the vertical speed is expressed by the formula

∆V =
λ

4π

Anoise

A
1

τ∗

√
2∆t
τ∗

(43)

Assuming the relaxation time of the scattered signal equal to τ∗ = 1 s the time between two171

measurements ∆t = 20 ms and A/Anoise = 20, which corresponds to the API experiments, we find172

the value ∆V = 0.08 = 0.08 m/s. Thus, the random error of a single measurement does not exceed 0.1173

m/s. There is a small systematic error due to the heating of the electron gas by a powerful radio wave.174

This issue is considered in detail in [18]. It was shown there that for typical experimental conditions at175

an altitude of 100 km, the systematic error in measuring the velocity does not exceed ∆V = 0.05 m/s176

for the extraordinary component of a powerful wave. The total relative velocity error does not exceed177

2%.178
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8.2. Errors in determining neutral temperature and density179

In [18,19] a method for determining the temperature and density of the neutral component based
on measurements of the height-time dependencies of the amplitude of the signal scattered by the
API technique is considered in detail. Let us to explain briefly how the errors in determining the
atmospheric parameters were calculated. Based on the expression of the barometric dependence of
pressure on altitude in an isothermal ρ(H) = ρ0 exp [−(h− h0)/H], H = KBT/mg, where H is the
height of a homogeneous atmosphere, KB is the Boltzmann constant, and measuring the relaxation
time τ∗ at two close (to satisfy the isothermal condition) heights h1 and h2, taking into account the
dependence of the wave vector k on the height h through the refractive index n of a powerful wave in
plasma k = k0n(h), we obtain for H the expression

H =
h2 − h1

ln (n2τ∗1 (h1))− ln (n2τ∗2 (h2))
(44)

The values of the relaxation time τ∗ are determined by the decay of the amplitude of the scattered180

signal by a factor of e with a step in height of 1 km.181

The neutral temperature T is determined from the relation T = mgh/KB, respectively, the absolute182

error in determining the temperature is ∆T = mg∆h/KB and the relative error is δT = δH. To find183

the value of H, a linear approximation of the function ln (n2τ∗) = b0h + b1 over several values of the184

relaxation time is used. Coefficients b0 and b1 are determined by the least squares method by applying185

the linear regression method to the dependence ln (n2τ∗) In this case, the standard (root-mean-square)186

approximation error is calculated in the usual way [30]. For most measurements by the API method,187

the relative error δT = δH does not exceed 5%. The error in determining the density ρ is of the same188

order of magnitude and does not exceed 10% [19,20]. As the long-term measurements of atmospheric189

parameters by the API method show, only in some cases can these errors reach 20%.190

8.3. Algorithm error191

Algorithm, described in this paper inevitably also introduce additional error. It is impossible192

to definitely restore function by the limited set of points without making some propositions about193

function, which are not always possible to do. We will try to evaluate which error are introduced by194

this process of restoration. This error appears even for pure waves.195

To estimate it we used a method based on Runge’s approach - we recalculated all our energies
using only subset of our data points. The resulting relative error was the estimated as

δ1E =

∣∣∣∣EN − EN/2

EN

∣∣∣∣ (45)

There EN denotes value of energy calculated using N data points. EN/2 - using only odd numbered196

points. Error do not noticeable change if we use complimentary subset of points (i.e. even numbered197

points) which confirm correctness of such method of error estimation.198

Resulting error was around 49% for entropy mode and around 0.9% for wave modes. Therefore

E1 ≈ (0.000024± 49%)E, (46)

and for wave modes
E2 ≈ (0.501± 0.9%)E, (47)

E3 ≈ (0.499± 0.9%)E. (48)

We have used the results of the energy density estimation at the heights within the nearest vicinity of199

the experimental conditions (about z = 100km). The estimation is performed in the frequency domain,200
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that we consider as upper boundary of the error because of the minimum contribution of white noise201

while the Fourier transformation is performed.202

9. Conclusion203

The main purpose of this work is the estimation of the entropy mode accompanying a wave204

disturbance, observed at the atmosphere heights range of 90-120km. The study is the direct205

continuation and development of recent results on diagnosis of the acoustic wave with the separation206

on direction of propagation. The estimation of the entropy mode contribution relies upon the207

measurements of the three dynamic variables (the temperature, density and vertical velocity208

perturbations) of the neutral atmosphere measured by the method of the resonant scattering of209

radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement of the210

atmosphere dynamic parameters have been carried out on the SURA heating facility. The mathematical211

foundation of the mode separation algorithm is based on the dynamic projecting operator technique.212

The operators are constructed via the eigenvectors of the evolution operator of the transformed system213

of balance equations of the hydro-thermodynamics.214

The main result is the algorithmic extraction of the modes of an atmosphere gas disturbance,215

specifically: the entropy mode from three-component data of atmospheric parameters. Having in216

mind the vertical movements of the atmosphere gas within rather small height interval, we apply217

the 1D exponential model of the atmosphere that results in relatively simple algorithm of the mode218

contribution extraction. The entropy mode energy estimation, as it is calculated at the Sec. 7 give219

values, small, compared to ones of wave modes. We consider it as important result, expecting however220

the mode contribution growth, that may be an important reason for the background temperature and221

density slow dynamics, which, as mentioned, should be taken into account in thermosphere heating222

or cooling during strong atmosphere storms. A reason for such growth may be a presence of wave223

perturbation of high enough amplitude. It is important as for atmosphere perturbations modeling as224

for prognosis.225
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