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Abstract: The main result of this work is the estimation of the entropy mode accompanying
a wave disturbance, observed at the atmosphere heights range of 90-120km. The study is the
direct continuation and development of recent results on diagnosis of the acoustic wave with the
separation on direction of propagation. The estimation of the entropy mode contribution relies upon
the measurements of the three dynamic variables (the temperature, density and vertical velocity
perturbations) of the neutral atmosphere measured by the method of the resonant scattering of
radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement
of the atmosphere dynamic parameters has been carried out on the SURA heating facility. The
mathematical foundation of the mode separation algorithm is based on the dynamic projecting
operator technique. The operators are constructed via the eigenvectors of the coordinate evolution
operator of the transformed system of balance equations of the hydro-thermodynamics.
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1. Introduction

The idea of a fluid perturbation decomposition goes up to the celebrated paper [1] related to
a turbulent flow and studies of the nonlinear viscous and heat conducting compressible gas were
formulated in [2], where the wave and non-wave components notions and a perturbation were
formulated. Interaction of the components was also introduced.

A general description of a fluid perturbation in respect to equilibrium is naturally divided by
projections to linear evolution operator subspaces to be identified as the perturbations modes. Its
mathematical formulation is given in [3] for the classic (1,2,3 kinds) boundary conditions, see also
recent book [4]. Its spectral content is determined by a kind of Fourier transform [5]. There are
wave nonzero frequency w and non-wave (w = 0) components [6]. The significance of the non-wave
(entropy) component of a gas disturbance relates directly to the atmosphere warming phenomenon,
for sudden stratosphere events [7] and for warming compendium look [8].

Appearance of the entropy mode is connected either with a heating phenomenon when energy
transfer from waves of a large amplitude is implied [4] or when such mode is transported by wind or
large scale (e.g. planetary) waves [9,10].

Such problem in plasma physics is more complicated due to the basic field components
abundance with applications to the sun atmosphere physics [11,12]. A direct theory of the heating
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phenomenon at plasma with mechanical and thermal losses and electrical resistivity is presented at
[13]. The magnetoacoustic heating of plasma caused by periodic magnetosound perturbations with
discontinuities is studied in a quasi-isentropic magnetic gas [14].

In algorithmic approach to mode definition [15,16] the method is formulated via projecting
operators, that are defined for each evolution operator subspace. The projecting operators and their
energy weight calculation are realised by means of an auxiliary norm introduction. The whole
algorithm stages of a disturbance mode content diagnosis would outline below for the case of
exponential atmosphere.

1.There are two possible classes of evolution operators that may be a base for the projecting
procedure construction. One of them is evolution in time, say - t—evolution, for its applications
[17]. The second is the z-evolution operator, both acting in the vector state. In our 1D case it is
three-component one ¢! = (U, p,p) with the gas velocity (U), pressure (p) and density (o). The
z-evolution equation reads

¥z = Ly, M

namely such form, that is derived in Sec. 3 defines the evolution operator L. The notations of the
section differ because the dimensionless coordinates and entropy perturbation (instead of temperature)
are introduced for further convenience.

2. Let consider now the eigen value task for the t-Fourier transform L of the evolution operator L
having the matrix form

Ly = ky,

where i — ¢ is the Fourier transform of the state vector.

3. For each eigenspace ¢, i = 1,2,3 it is convenient to introduce the matrix projecting operators
P! by means of the 3x3 eigen matrix Dyp = gb,}cgbé, «, p =1,2,3 so that the matrix elements [4]

P, ;c'y = ¢txﬂq)‘g,3 ’
that are the functions of the frequency w.

4. After the inverse Fourier transformation one can to apply the projecting technique to the
observation data, otherwise, we transform the data by the discrete Fourier transformation, at the next
step, we use the corresponding discretized projecting matrices Pfy s to extract the data for the three
modes (directed waves and entropy mode)

5. The energies of the directed and the entropy mode are estimated via discretized form of the
general expression for energy of a gas perturbation. Its expression follow basic equations of the
conservation law.

A role of the zero frequency mode is specific, because its propagation is determined by the
simultaneous action of the nonlinearity and dissipation. Hence the mode (entropy mode) diagnostics
by local measurements is a challenge as from theoretical point of view (asymmetry of derivatives
entrance in basic equations) as from observations, due to its slow evolution [4].

While entropy mode account enters the main mechanism for some physical processes, such
as non-linear heating, in other contexts it can be safely dropped out. And, because difficulty of its
measurement and estimation, majority of models do just that. Generally, it is expected that it should
be relatively insignificant in this case of the heights range under investigation. But we still want to
obtain the value of it and to check those expectations. Proposed method could also be applied to other
problems where its contribution is more pronounced. Even in the situation we examine, the mode
growth with altitude may, potentially, lead to the essential change of the content of the atmosphere
perturbation.

To solve this problem we rearrange equations of the basic system so as it to be a z-evolution one
(Sec. 1 and [10]). This will allow us to find a projection operators for all three modes by the mentioned
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algorithm. Also we will derive formula for an energy of the mode in the w-space. Such results open
the way to the local space diagnostics of acoustics and entropy modes.

For a source of observation data we take measurements of the velocity, temperature and the
density of the neutral atmosphere in the height range 90-120 km by API (artificial periodic irregularities)
technique. The technique is based on the resonant scattering of radio waves by induced periodic
irregularities of the ionospheric plasma emerging in the field of a standing wave arising from the
interference of the incident and reflected waves from the ionosphere [18,19].The details of the physical
base of the API is described in Sec. 2. The mathematical statement of the problem is given in the Sec.
3. Its reformulation as z-evolution problem is derived in Sec. 4. An expression for energy density is
given at Sec. 6. The errors of measurements is given at Sec. 7 and the error of the whole estimation
algorithm is described at the Sec. 8.

The main idea of this work is to prove, that the data on atmosphere parameters extracted from the
SURA facility allow to estimate contributions of three mode (two waves and entropy). Other sources
do not give such an opportunity.

Note, that in the paper [15] it was presented an alternative approach based on discrete projection
operators. Also results in this paper were not applied to experimental data. The problem which
was described there had only two wave modes without taking the entropy mode into account. The
approach used to calculate energy in the article [15] was also more complex, we were able to find the
means to greatly simplify this task.

Paper [16] also described two mode model, and do not contains ways to calculate an error
estimation. This paper, while it is a logical continuation of the work done in [16] describes more precise
three mode model, which allows to analyze entropy mode that is usually very hard task to do with
real experimental data. It also includes an error estimations, both from experimental errors and ones
from numerical method errors.

The book [17] describes basis of mathematics used in projection operators methods in several
different fields of physics and do not contains specific projection operators or their application to the
problem we study.

2. Experimental background

The estimation of the entropy mode contribution relies upon the measurements of three dynamic
variables (the temperature, density and vertical velocity perturbations) of the neutral atmosphere
obtained by the method of the resonant scattering of radio waves on the artificial periodic irregularities
(APIs) of the ionospheric plasma [18-20]. The measurement of the atmosphere dynamic parameters
has been carried out on the SURA heating facility (56.11°N;46.1°E) which is situated near Nizhny
Novgorod, Russian Federation. The facility creates artificial disturbances in the ionosphere influenced
on a radio wave propagation. Powerful radio waves radiated into the ionosphere disturb the
temperature and electron density. This causes many different “heating” effects in the ionospheric
plasma, which are described in detail in reviews [21,22]. The creation of artificial periodic irregularities
in the field of a powerful standing radio wave is among them. The API technique is described in detail
in [18]. The scattering of probe radio waves by these irregularities has resonant properties, that is, the
signal received from the API has significant amplitude when the frequencies and polarizations of the
powerful and probe radio waves are same. After the end of the artificial impact on the ionosphere,
APIs disappear during the relaxation time. A large level of scattered signal with a signal-to-noise
ratio of the order of 10-100 allows one to determine atmospheric parameters with high accuracy. The
altitude-time resolution is 1 km in altitude and 15 s in time and makes it possible to study short-term
and long-term processes in the ionosphere and in neutral atmosphere.

The method for determining the temperature and density of the neutral atmosphere based on
the analysis of the height dependence of the relaxation time of the API scattered signal is described
in detail in [18,19]. At altitudes of 90-120 km, the API relaxation occurs under the influence of the
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ambipolar diffusion [18,22]. The amplitude and phase of the scattered signal at the stage of relaxation
of inhomogeneities are measured. The relaxation time is determined by the expression
1 M, M;viy,

*
pr— = = 2
U T KD T KT + T)K2  2K5TK? @

where Kp is the Boltzmann constant, K = 471/ is the wavenumber of the standing wave, A = Ay/n
is the wavelength in the propagation environment, 7 is the refractive index, D is the ambipolar
diffusion coefficient, M; is the molecular mass of the ion, T,y and T, are the unperturbed electron
and ion temperatures, and v;,, is the frequency of collisions between ions and neutral molecules. It is
considered that in the mid-latitude at mesosphere and the lower thermosphere heights T,g = Tjp = T
up to the height 120-130 km, where T is the temperature of the neutral component. The expression
for 7* underlies the determination of many parameters of the lower ionosphere and the neutral
atmosphere, including its temperature and density [18,19]. The atmospheric temperature and density
are determined from the API relaxation time, which is inversely proportional to the ambipolar diffusion
coefficient. Many results of studying the altitude-temporal variations of temperature and density in
different geo- and helio-physical conditions are presented in [23—-28]. To learn more about the API
technique and in detail the methodology for determining the atmospheric temperature and density, we
recommend reading [18,19]. The velocity of the vertical motion of the plasma is determined from the
dependence of the phase on time. This velocity in the mesosphere and lower thermosphere is equal to
the velocity of the neutral component, since the plasma at these altitudes is a passive admixture and
moves with the neutrals.

The measured phase ¢ of the scattered signal can be written as d¢/dt = 2wF; = 4tV /A where F;
is the Doppler velocity and V is the velocity of the vertical movement of the neutral medium. Then the
vertical velocity can be determined by the formula,

A odp ¢ do

T4z dt  4dmaf dt

®)

where f is the frequency of the powerful and probing waves. Positive velocity values correspond
to downward movement. To eliminate random errors associated with a change in the phase of the
scattered signal due to the influence of natural noise on the scattered signal, the linear part of the
approximation of the ¢(t) dependence is used for the velocity calculation.

3. Mathematical statement of the problem formulation

Following [6] we start from the linearized conservation equations describing one-dimensional
flow along the vertical axis z in terms of the deviations of pressure p’, density p’ and velocity U’, from
corresponding equilibrium stationary values 7, p, U. In the exponentially stratified atmosphere they
take the form,

P(z) = poexp(—z/H) = pogH exp(—z/H), p(z) = poexp(—z/H), U =0,

where H is the height scale of stratification, pg and pg are the values of pressure and density at the zero
z level, g - gravity acceleration. This system can be written in form

©)

(6)
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In one-dimensional exponentially stratified model presented in this paper the external force is
described as the constant gravity acceleration ¢ which is directed opposite to axis z, though it can be
generalised to other mass forces including non-inertial ones. The flow of an ideal gas is considered,
whose internal energy € in terms of pressure and density takes the form

p
€= ——1v, (7)
(v =1
where p = p+p/, p = p+ p ie. full value is the sum of unperturbed value plus perturbation and
v = C,/Cy denotes specific heat ratio. The relation between the equilibrium pressure and density
follows from the zero order stationary equality

dp _

2z = —8p(). ®)
This linearized 1D equations for perturbations of pressure p’, density p’ and gas velocity U’ now

can be simplified by introducing the new variable ¢’ = p’ — 'y%p’ and then we can switch to this

variables, conventionally used for the exponentially stratified atmosphere model:

P — p/eZ/ZH,

q) — (PIEZ/ZH,
Uu=ue=/?H, ©)
0= p/ez/ZHl

Tp — Te—2/2H

where z is vertical coordinate and H is the height of the stationary atmosphere. That transforms the
system (4-6) to the form

U _ 1 (y-2 3 @
8t_Po<2'rH _BZ>P+7Hpo’ {10)
oP ou v—2
5 = ~8Hpo (82) —8po——U, (11)
oD
5 =~ (r=1) pogl. (12)

where p( denotes the density at the model lower boundary z = 0.
System (10-12) describes three-mode problem with two wave modes and one stationary entropy

mode.
We can rewrite system (10-12) using the variable which are measured by API technique using
relations p
0
=P—y—
Y 00 Q
since % = % in exponentially stratified atmosphere and Mendeleev-Clapeyron’s law (V* is the gas
volume)

R . _
p = m (pT +p'T) (13)

since p = %Tf) in Mendeleev-Clapeyron’s law for nonpertubed atmosphere and after dropping out
non-linear terms we get

R _
pP= b (00Ty + oT) (14)

It is convenient to rewrite system (10-12) in the terms of dimensionless functions and variables.
To do this we shall use the uniform atmosphere height H and the velocity of sound ¢ = /ygH as

dimension parameters which gives time scale H/c = % so that the new dimensionless variables are
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z=H¢ t=1-H/c=1,/ % Functions are redefined as lf =cV =V./vgH, P = pgp and, since the
& too has the pressure as dimension (because ¢’ = p’ — 'y%p' and ® = ¢’ - ¢*/?H) and ® = p. After

isolation of terms with % and taking into account that pg = gHpo we’ll get

v 1 [(y o\ . .
e = (31 ) 0] a3
op % 0
£ (2 1 +fya§> v, (16)
0P _
3. = (r=DV. (17)

4. Atmosphere gas disturbance initiation by a boundary regime

Let’s transform our task into the boundary mode z-propagation form. It is easy to isolate spatial

differentials for p and V:
d ry—-2, 8V 1.

~p="_"= 1
A R (18)
and 2 2 19
Oy __T= op
3 V= 7y —V - Yt (19)
but initial equation for g—‘f, (17) does not contain a%(f) We can obtain it from the third equation in the
form ) s
o 1%
—=—(r-1) = 2
aroc ~ =D 5z (20)
9% _ (r—1)(r—2) 1 7 2)
= / vir+ 1= @1)
Integral should not be a problem since it has rather simple form after Fourier transformation.
Finally, the system (18)-(19) and (21) takes the form
5 14 Vv
a—g ;? =L ;? (22)
¢ ¢
where L is the z-propagation matrix operator, that gains the form
—2 10
e *?_g* 0 . —(r=2) -25 0
R s %1;5 0 (y=Dr=2) 2(vy—1) 0

where I;x = [ kdt. To obtain the mode projection operators we need to transform (22) into Fourier
space. At the domain the propagation matrix takes the form

—(y—=2) “2Iw 0
—29%Iw (y-2) 2 |. (24)
21 | gon-2) 2r—1) 0

Iw

= 1
L=
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5. Projection operators

Propagation matrix L (24) has the eigenvalues

0, IV1—4w? —-1V1-4w? (25)

N[—

which are consistent with expected two directed waves, with up- and downward directions, and one
stationary entropy mode. We can calculate projection operators using standard method Pi};‘ = EikE;jl
where E is a matrix constructed from eigenvectors. They take the form

1 —4(y—-1) 0 —4lw
P! = 21 — 2(y—2 , 26
P =1 | o (r=1D(r-2) N 2(7 ) . (26)
(=1 (4w = (r-27%) 0 4w®*—(y-2)
) w(l1-K)Z4 —4lw*yK 2Iw?(K® — K)
i 17203K3 —IX4Zy _ XewhyK X (K+K)w |, @)
I(y=1)(K=1)Zs 4(y—-1)70’K*> =2(K> = K)(y - Dw
. —w(1+K)Z- 4lw*yK —2Iw?(K3 - K)
3 2
’ = pRend IX_Z_ XK 2X_(K+K)w |, (28)

Iy -1)(K-1)Z- —4(y-1)7@°K* 2(K®=K)(y - Nw

where K = V1 —4w?, Zy = 2w?(FAY?w? £ 2 F2y £4+2ky) + (v - 2)(k+ 1)), Xo = £2yw? +
k £ 1. Variables K, Z+ and X+ were introduced only to shorten notation of projection operators.

6. The mode energy density at omega-domain

Following [6] we get the formula for the energy density

P(z,t)? d(z,t)?
vgHpo (v —1)gHpo’

e(z,t) = poU(z, t)* + (29)
in the three-mode case. This formula is written using variables from (z, t)-space, so we need to
rewrite it, using Fourier-images of these variables from (w, T)-space. Firstly, we must transform it into
dimensionless form. To do it we will use the same formulas that we used for main system: z = H(,
t=1-H/c = T,/%,P = pop = pogHp, U = ¢V = V\/ygH and ® = ppdp = pogH¢P. We get the

expression

(0ogHP(E,1))? | (pogH$(E,7))”

€& 1) = HV(E 1)*+ ) (30)
(&0 = pogHV(ET) 18Hpo 7(7v = 1)gHpo
A transition to the w-space variables by the conventional Fourier transformations
TR

T) w)dw, 31

b = —= [ (e w) G1)

&) / I“’TV (& w)dw, (32)
VI Wi

and

167 = o= [ ema(E w)de )
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We plug it in the expression for energy density (30) and get

e(,;,-[) — pog ['Y% ffO Iwrf/(ér w)dw- \/%IEO Iw’rf/(é' w’)dw’+
7\/27{[_ TR w)dw - = [T, ! T(E, w)dw'+ (34)
1) am S TR w)dw - e 7 (G )dw’] :

Hence, the energy ¢ —profile is obtained by the integration over dimensionless time

E@) = [ e(@ (35)

It depends on ¢ instead of T since we are solving boundary mode ¢-propagation problem. But by
definition -
/ Tt g = 2715 (w + '), (36)

hence

o ~ 1 1 -
BQ) = [ e wet - SREw) + s Ew) | do @)

7. Neutral atmosphere parameters obtained using API technique

As well as in work [16] we used the results of determining atmospheric temperature and density
on 26 September 2017 from 12:00 to 16:20 local time (Moscow time) at the height at 100 km, adding to
them the results of simultaneous measurements of the vertical velocity. Experimental data take the
form of measurements of temperature, density and vertical gas velocity. Our projection operators are
formulated in the terms of V, p and ¢. Vertical gas velocity can be used after calculating difference from
average, transforming into dimensionless variables using formula U = V/gH. Then the discrete
Fourier transformation was applied.

For the wave entropy variable ¢ we have ¢ = p — plo p where p is perturbations of density, it can
be calculated as deviation from average too.

So, the only question is how to go over from temperature to p which is perturbation of pressure.
To do that we calculate pressure in each point using Mendeleev-Clapeyron law

R
= —pT
P

and then calculate difference with averaged value over all points to get perturbations values.
Experimental data are presented in the table

Time Velocity; m/s | Temperature; K | Density; kg/m>
12:00:00 | -6.84E-01 2.19E+02 6.52E-07
12:05:00 | -1.05E+00 1.82E+02 5.72E-07
12:10:00 | -1.42E+00 1.45E+02 4.91E-07
12:15:00 | -1.78E+00 1.08E+02 4.11E-07
12:20:00 | -2.30E+00 2.14E+02 7.22E-07
12:25:00 | -9.87E-01 1.29E+02 4.18E-07
12:30:00 | -1.12E+00 1.50E+02 4.47E-07
12:35:00 | -1.24E+00 1.71E+02 4.76E-07
12:40:00 | -1.28E+00 1.29E+02 4.18E-07
12:45:00 | -1.32E+00 1.36E+02 4.44E-07
12:50:00 | 3.80E-01 1.83E+02 4.70E-07
12:55:00 | 5.09E-01 2.09E+02 5.90E-07
13:00:00 | 6.37E-01 2.36E+02 7.09E-07
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Time Velocity; m/s | Temperature; K | Density; kg/m3
13:05:00 | -2.89E+00 1.69E+02 5.17E-07
13:10:00 | -1.46E+00 2.32E+02 7.65E-07
13:15:00 | -9.16E-01 1.39E+02 4.60E-07
13:20:00 | -6.51E-01 1.54E+02 4.86E-07
13:25:00 | -3.87E-01 1.68E+02 5.13E-07
13:30:00 | -1.22E-01 1.83E+02 5.39E-07
13:35:00 | 1.43E-01 1.97E+02 5.65E-07
13:40:00 | -3.56E+00 1.20E+02 3.74E-07
13:45:00 | -7.34E-01 1.34E+02 3.80E-07
13:50:00 | -6.30E-02 1.55E+02 3.28E-07
13:55:00 | -9.07E-01 1.16E+02 3.01E-07
14:00:00 | 7.90E-02 6.92E+01 1.55E-07
14:05:00 | 3.85E-01 1.76E+02 5.04E-07
14:10:00 | 1.28E+00 9.90E+01 2.22E-07
14:15:00 | 1.15E+00 2.08E+02 5.12E-07
14:20:00 | -1.39E+00 1.50E+02 3.71E-07
14:25:00 | 5.09E-01 2.12E+02 5.45E-07
14:30:00 | -4.72E-01 1.60E+02 3.57E-07
14:35:00 | -5.59E-01 2.16E+02 4.51E-07
14:40:00 | 5.23E-01 2.86E+02 6.36E-07
14:45:00 | -8.27E-02 1.68E+02 6.28E-07
14:50:00 | -2.19E+00 1.89E+02 5.11E-07
14:55:00 | -8.93E-01 1.66E+02 6.72E-07
15:00:00 | -7.24E-01 1.72E+02 5.88E-07
15:05:00 | 1.21E+00 1.98E+02 6.92E-07
15:10:00 | -1.13E+00 1.49E+02 5.04E-07
15:15:00 | -2.17E+00 1.82E+02 7.72E-07
15:20:00 | -2.02E+00 2.14E+02 1.04E-06
15:25:00 | -3.40E-01 8.96E+01 4.41E-07
15:30:00 | 4.87E+00 9.32E+01 4.46E-07
15:35:00 | -1.09E+00 1.09E+02 4.53E-07
15:40:00 | -1.71E+00 8.76E+01 2.78E-07
15:45:00 | -2.33E+00 1.86E+02 6.93E-07
15:50:00 | 8.68E-01 1.30E+02 4.19E-07
15:55:00 | -2.37E+00 1.96E+02 7.12E-07
16:00:00 | -9.78E-01 2.01E+02 2.82E-07
16:05:00 | 1.97E-01 1.76E+02 4.59E-07
16:10:00 | -2.35E+00 1.51E+02 6.36E-07
16:15:00 | -2.04E+00 1.53E+02 4.50E-07
16:20:00 | -1.73E+00 1.55E+02 2.64E-07

Now it is possible to apply out projection operators (26,27,28) and then to calculate separately
energies for each mode using formula (37) which need to be rewritten in the discrete form by
replacement of integrals with sums i.e. using midpoint rule. Since points are spaced and we are
interested in relative values only, simple sums can be used. It gives us relative values. For entropy
mode we obtain

E; ~ 0.000024E (38)

and for the wave modes we have
E; ~ 0.501E, (39)
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E; ~ 0.499E, (40)

where E = E; + E; + Ej is the total energy of all modes.

In contrast to the work [16], we used the data of determination of three atmospheric quantities; we
use a set that allows us to find the contribution of the entropy mode. An important fact is that it turned
out to be small. In addition, we have demonstrated the procedure for measuring this contribution.
Recall that the origin of the entropy mode is heating by waves, and which is proportional to the
dissipation and the square of the amplitude of this mode. At these altitudes, both are few.

8. Error estimation

8.1. The vertical velocity measurement error

Our analysis has been carried out with a certain degree of accuracy. The error in the E estimates is
the sum of the errors in measuring the the parameters of the neutral component (temperature, density,
and vertical velocity) by the API technique and the error in the algorithm for calculating the entropy
and wave modes.

As can be seen from the formula for the vertical velocity, the absolute error AV of a single
measurement of the speed is determined by the error of the time derivative of the signal phase. If we
find A¢/ At from two dimensions, then the variance of this derivative is expressed by the formula

1
2 2 2
Onp/nt = H(%l +‘7¢2) 41)

where the time measurement error is neglected, and (7%1 and (742,2 are the variances of the first and
second measurements, f1 is the measurement time.

To reduce the error, it is necessary to increase the measurement time interval t;, but this is
prevented by the exponential decrease in the signal amplitude during the API relaxation period, which
leads to a decrease in the signal-to-noise ratio (A / Aneise) and an increase in the variance (T(%Z . According

to [29], for A/ Anoise > 3 the value of U'q% is 0'(%2 ~ (A/Anoise)2 therefore ai(p/At = 0'(%1 % This

value reaches a minimum at t; = 0.867* and gives the value 0% ¢o/nt = 309,

A more accurate estimate of the derivative can be obtained by taking into account all measured
values of the phase ¢. It was shown in [20] that the optimal procedure for finding A¢ /At is a linear
approximation of ¢(t) by the least squares method with the weight function exp(—t;/7*) while

209 [2At
‘Tﬁfp /a7 o\ (42)
at t; > t*. Ultimately, the error in determining the vertical speed is expressed by the formula
AV — i Anoise i 2At (43)

T4 A T\ T

Assuming the relaxation time of the scattered signal equal to T = 1 s the time between two
measurements At = 20 ms and A/ Apoise = 20, which corresponds to the API experiments, we find
the value AV = 0.08 = 0.08 m/s. Thus, the random error of a single measurement does not exceed 0.1
m/s. There is a small systematic error due to the heating of the electron gas by a powerful radio wave.
This issue is considered in detail in [18]. It was shown there that for typical experimental conditions at
an altitude of 100 km, the systematic error in measuring the velocity does not exceed AV = 0.05 m/s
for the extraordinary component of a powerful wave. The total relative velocity error does not exceed
2%.
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8.2. Errors in determining neutral temperature and density

In [18,19] a method for determining the temperature and density of the neutral component based
on measurements of the height-time dependencies of the amplitude of the signal scattered by the
API technique is considered in detail. Let us to explain briefly how the errors in determining the
atmospheric parameters were calculated. Based on the expression of the barometric dependence of
pressure on altitude in an isothermal p(H) = pgexp [—(h — hy)/H|, H = KgT/mg, where H is the
height of a homogeneous atmosphere, Kp is the Boltzmann constant, and measuring the relaxation
time T* at two close (to satisfy the isothermal condition) heights /1 and hy, taking into account the
dependence of the wave vector k on the height / through the refractive index n of a powerful wave in
plasma k = kon(h), we obtain for H the expression

hy — Iy
In (77} (b)) — In (125 (12))

H = (44)
The values of the relaxation time 7* are determined by the decay of the amplitude of the scattered
signal by a factor of e with a step in height of 1 km.

The neutral temperature T is determined from the relation T = mgh/Kpg, respectively, the absolute
error in determining the temperature is AT = mgAh/Kp and the relative error is 6T = dH. To find
the value of H, a linear approximation of the function In (n2t*) = boh + by over several values of the
relaxation time is used. Coefficients by and b; are determined by the least squares method by applying
the linear regression method to the dependence In (n?7*) In this case, the standard (root-mean-square)
approximation error is calculated in the usual way [30]. For most measurements by the API method,
the relative error 0T = 6H does not exceed 5%. The error in determining the density p is of the same
order of magnitude and does not exceed 10% [19,20]. As the long-term measurements of atmospheric
parameters by the API method show, only in some cases can these errors reach 20%.

8.3. Algorithm error

Algorithm, described in this paper inevitably also introduce additional error. It is impossible
to definitely restore function by the limited set of points without making some propositions about
function, which are not always possible to do. We will try to evaluate which error are introduced by
this process of restoration. This error appears even for pure waves.

To estimate it we used a method based on Runge’s approach - we recalculated all our energies
using only subset of our data points. The resulting relative error was the estimated as

§1E = ’EN —Eng (45)
En

There Ey denotes value of energy calculated using N data points. Ey/, - using only odd numbered
points. Error do not noticeable change if we use complimentary subset of points (i.e. even numbered
points) which confirm correctness of such method of error estimation.

Resulting error was around 49% for entropy mode and around 0.9% for wave modes. Therefore

E1 ~ (0.000024 +49%)E, (46)

and for wave modes
Ep ~ (0.501 £ 0.9%)E, 47)
E; ~ (0.499 £0.9%)E. (48)

We have used the results of the energy density estimation at the heights within the nearest vicinity of
the experimental conditions (about z = 100km). The estimation is performed in the frequency domain,
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that we consider as upper boundary of the error because of the minimum contribution of white noise
while the Fourier transformation is performed.

9. Conclusion

The main purpose of this work is the estimation of the entropy mode accompanying a wave
disturbance, observed at the atmosphere heights range of 90-120km. The study is the direct
continuation and development of recent results on diagnosis of the acoustic wave with the separation
on direction of propagation. The estimation of the entropy mode contribution relies upon the
measurements of the three dynamic variables (the temperature, density and vertical velocity
perturbations) of the neutral atmosphere measured by the method of the resonant scattering of
radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement of the
atmosphere dynamic parameters have been carried out on the SURA heating facility. The mathematical
foundation of the mode separation algorithm is based on the dynamic projecting operator technique.
The operators are constructed via the eigenvectors of the evolution operator of the transformed system
of balance equations of the hydro-thermodynamics.

The main result is the algorithmic extraction of the modes of an atmosphere gas disturbance,
specifically: the entropy mode from three-component data of atmospheric parameters. Having in
mind the vertical movements of the atmosphere gas within rather small height interval, we apply
the 1D exponential model of the atmosphere that results in relatively simple algorithm of the mode
contribution extraction. The entropy mode energy estimation, as it is calculated at the Sec. 7 give
values, small, compared to ones of wave modes. We consider it as important result, expecting however
the mode contribution growth, that may be an important reason for the background temperature and
density slow dynamics, which, as mentioned, should be taken into account in thermosphere heating
or cooling during strong atmosphere storms. A reason for such growth may be a presence of wave
perturbation of high enough amplitude. It is important as for atmosphere perturbations modeling as
for prognosis.
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