

***In vivo* Neuropharmacological Potential of *Gomphandra tetrandra* (Wall.) Sleumer and *in-silico* Study against β -Amyloid Precursor Protein**

Md. Saidur Rahman^{1, 2}, Md. Nazmul Hasan Zilani³, Md Aminul Islam^{1, 2}, Md. Munaib Hasan³, Md. Muzahidul Islam^{1, 2}, Farzana Yasmin^{1, 2}, Partha Biswas^{1, 2}, Akinori Hirashima⁴, Md. Ataur Rahman^{5, 6, 7*}, Md. Nazmul Hasan^{1, 2*}, Bonglee Kim^{6, 7*}

¹Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;

²Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;

³Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;

⁴Laboratory of Pesticide Chemistry, Division of Bio-Science and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.

⁵Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh.

⁶Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.

⁷Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.

***Corresponding Author:**

Md. Ataur Rahman, Email: ataur1981rahman@hotmail.com

Md. Nazmul Hasan, Email: mnhasan1978@gmail.com

Bonglee Kim, Phone: E-mail: bongleekim@khu.ac.kr

Abstract

Medicinal plants possess a surplus of novel and biologically active secondary metabolites that are responsible for counteracting diseases. Traditionally, *Gomphandra tetrandra* (Wall.) Sleumer is used to treat mental disorders. The present research was designed to explore phytochemicals from the ethanol leaf extract of *Gomphandra tetrandra* (Wall.) Sleumer to identify the potential pharmacophore(s) in the treatment of neurological disorders. The chemical compounds of the experimental plant were identified through GC-MS analysis. Besides, *in-vitro* antioxidant activity was assessed using different methods. Furthermore, *in-vivo* neurological activity was assessed in Swiss-albino mice. Computer aided analysis was appraised to determine the best-fit phytoconstituent of a total of fifteen identified compounds in the experimental plant extract against beta-amyloid precursor protein. The experimental extract revealed fifteen compounds in GC-MS analysis and the highest content was 9, 12, 15-octadecatrienoic acid (Z, Z, Z). Also, the extract showed potent anti-oxidant activity in *in-vitro* assays. Furthermore, in *in-vivo* neurological assays, the extract disclosed significant ($p<0.05$) neurological activity. The most favorable phytochemicals as neurological agents were selected via ADMET profiling and molecular docking was studied with beta-amyloid precursor protein. Moreover, in the computer aided study, 1, 5-Diphenyl-2H-1, 2, 4-triazoline-3-thione (Pub Chem CID: 2802516) was more active than other identified compounds with strong binding affinity to beta-amyloid precursor protein. The present *in vivo* and *in silico* studies revealed neuropharmacological features of *G. tetrandra* leaves extract as a natural agent against neurological disorders, especially Alzheimer's disease.

Keywords: Neurological activity; GC-MS; ADMET profile; Molecular Docking; Beta-amyloid precursor protein; Alzheimer's disease.

1. Introduction

The World Health Organization (WHO) approximates that more than a billion people suffer from psychological disorders globally. These include bipolar disorder, traumatic disorders, epilepsy, schizophrenia, Alzheimer's disease, Parkinson's disease, brain tumors, neuroinfections, and cerebrovascular disorders like stroke and migraine. Among these diseases, Alzheimer's disease (AD) is prominent in older age groups. It is an advanced neurodegenerative brain disorder that causes structural and functional damage of the brain. Clinically, AD is characterized by unconscious behavior, memory impairment, lack of emotion, dysfunctional changes in language and speech, fatigue, hallucinations, lack of self-sufficiency, decline in muscle mass, and dependency on caretakers [1, 2]. Physiologically, AD is caused due to mitochondrial dysfunction, formation of reactive species (oxygen and nitrogen), lipid peroxidation, nitrosative stress, protein aggregation, protein oxidation, amyloidopathy, tauopathies, CREB signaling pathway, GSK-3 hypothesis, DNA damage, depletion of endogenous antioxidant enzymes, proteosomal dysfunction, microglial activation, neuroinflammation, neuroepigenetic modification etc. [1, 3-5]. Among these causes, the amyloid hypothesis, neurotransmitter hypothesis, tau propagation hypothesis and mitochondrial hypothesis were reported to be tested at 22.3%, 19.0%, 12.7% and 7.9%, respectively, of all clinical trials up to 2019 [6]. But noteworthy, it is thought that AD is caused by pathological accumulation of amyloid-peptides leading to the formation of neurofibrillary tangles and loss of neurons. Most of the current drugs used to treat psychological disorders have obtrusive unwanted effects. This is one of the main obstacles to using these drugs for years. In this perspective, medicinal plants can be a light in the dark. The use of medicinal plants to cure these psychological disorders is available in ancient scholastic works. Therefore, based on folklore use, an integral part of ethnopharmacology, and scientific evaluation, medicinal plants can serve as a reservoir for the invention of novel bioactive pharmacophores as medicinal plants possess a plethora of novel and biologically active secondary metabolites [7]. Additionally, previous studies have reported the traditional use of *Bacopa monnieri*, *Celastrus paniculatus*, *Centella asiatica*, *Clitoria ternatea*, *Convolvulus pluricaulis*, *Curcuma longa*, *Desmodium gangeticum*, *Evolvulus alsinoides*, *Ginkgo biloba*, *Glycyrrhiza glabra*, *Melissa officinalis*, *Moringa oleifera*, *Salvia officinalis*, *Tinospora cordifolia*, *Withania somnifera* etc. in Alzheimer's disease [8-10].

Gomphandra tetrandra (Wall.) Sleumer (Family: Stemonuraceae) is a potential ethno-medicinal evergreen forest shrub available in the hilly regions of Bangladesh. Locally, it is known as Sundalli or Kambuli. It is mostly found in South and Southeast Asia, as well as in Indo-malaysia and Indochina. In folklore medicine, leaves of *G. tetrandra* are used to treat epilepsy, convulsions, mental problems, as a tonic etc. [11]. An alkaloid, camptothecine, has been reported from *G. tetrandra* [12]. Until now, very few studies have been reported on *G. tetrandra*. Consequently, this study focused on identification of bioactive phytochemicals, *in-vivo* evaluation of neuropharmacological potential, and *in-silico* study of beta-amyloid precursor protein, responsible for Alzheimer's disease.

2. Material and Methods

2.1 Plant material collection and identification

The leaves of *Gomphandra tetrandra* were hoarded from the natural forest of Rangamati, Chittagong, Bangladesh. The sample was collected by taking permission and under the supervision of the forest department. Then, it was identified (DACB-54910) by the Bangladesh National Herbarium, Dhaka, Bangladesh, and also an office sample was consigned there.

2.2 Experimental animals

Young Swiss-albino mice (20-25g weight and six weeks old) were adapted to $24 \pm 1^{\circ}\text{C}$ with 50-70% relative humidity, a 12 h light/dark cycle and fed a typical diet and water accurately. The experimental mice were purchased from animal research branch of International Center for Diarrheal Disease and Research, Bangladesh (ICDDR, B). All the experimental procedures related to the animal model were performed by the European Community Guideline (EEC directives of 1986; 88/609/EEC) and the ethical standard was approved by the Ethical Review Committee, Faculty of Biological Science and Technology, Jashore University of Science and Technology [Ref: ERC/FBS/JUST/2020-47].

2.3 Extract preparation

The accumulated sample was purified from unwanted materials and washed with distilled water prior to shade drying for 2-3 weeks. Then the dried sample was ground into coarse powder. About 310 grams powder was soaked in 950 mL of ethanol (95%) with episodic agitation and

shaking for ten days. The mixture was filtered using Whatman grade 1 filter paper (Sigma-Aldrich, USA). Then, using a rotary evaporator (RE-100 PRO, DLAB Scientific Inc., China) at 50°C and 40 rpm, the crude extract was obtained and measured to be 6.53g (2.11% w/w).

2.4 Total Phenol Content

The total phenol content of the extract was discerned using Folin-Ciocalteau reagent [13]. 5ml of 10% Folin-Ciocalteau reagent was mixed with the extract solution. Then, a 4mL Na₂CO₃ (7.5% w/v) solution was added to the mixture and mixed vigorously by vortexing. Then, the solution was incubated for 30 minutes at 40°C in an incubator (Digi system, DSI-100D, Taiwan). Finally, the absorbance was measured at 765nm (Dynamica Halo DB-20S, UK). Gallic acid (500-100 µg/mL) was used as a standard. The total phenol content of the extract was calculated and denoted as mg gallic acid equivalent (GAE) per gram of dry extract.

2.5 Total Flavonoid Content

Previously described aluminum chloride colorimetric assay [14] was used to estimate the total flavonoids content of the extract. 100 µL aluminum chloride (1%) and 100 µL potassium acetate (1M) were mixed with extract solution (1 mg/mL). Then, distilled water (2.7 mL) was added and vortexed properly. Finally, the absorbance was measured at 415nm (Dynamica Halo DB-20S, UK). Quercetin (50-10 µg/mL) was used as a standard. The total flavonoids content was computed and stated as quercetin equivalent (QE) per gram of dry extract.

2.6 Gas Chromatography Mass Spectroscopy (GC-MS)

Gas chromatography-mass spectrometry analysis was carried out with a Clarus®690 gas chromatograph (PerkinElmer, CA, USA) using a column (Elite-35, 30 m X 0.25mm; PerkinElmer, CA, USA) with 0.25µm film and it was equipped with a Clarus® SQ 8 C mass spectrophotometer (PerkinElmer, CA, USA). 1µL sample was injected (splitless mode) and pure Helium (99.999%) was used as a carrier gas at a constant flow rate (1mL/min) for a 40min run time. The sample was analyzed in EI (electron ionization) mode at high energy (70eV). Though the inlet temperature was constant at 280°C, column oven temperature was set at 60°C (for 0min), raised at 5°C per minute to 240°C and held for 4mins. The scan time and mass range were

1 s and 50–600 m/z, respectively [15]. The sample compounds were identified compared to the National Institute of Standards and Technology (NIST) database.

2.7 DPPH Free Radical Scavenging Assay

The antioxidant potential of the extract was estimated by the DPPH scavenging assay [16]. Three milliliters DPPH (0.004% w/v) were mixed to different concentrations (1024-2 μ g/mL) of the extract solution. After an incubation period of 30mins (in a dark place, at room temperature), the absorbance was taken at 517nm (Dynamica Halo DB-20S, UK). Ascorbic acid was used as a standard antioxidant. The DPPH scavenging potential was quantified as: Scavenging (%) = $[1 - (A_{\text{sample/standard}} / A_{\text{control}})] \times 100$. From this data, the IC₅₀ value was calculated and compared to ascorbic acid.

2.8 Ferric Reducing Antioxidant Power (FRAP) Assay

The ferric reducing antioxidant power of the experimental extract was assessed by FRAP reagent [17] with slight modifications. The FRAP reagent was freshly prepared by mixing acetate buffer (pH-3.6), TPTZ solution (10mM) and aluminum chloride solution (20mM) at a ratio of 10:1:1. Then, 3mL of it was mixed with different concentrations (10-50 μ g/mL) of extract solution. After 30min incubation at 37°C, the absorbance was measured at 593nm (Dynamica Halo DB-20S, UK). Ascorbic acid was used as a standard. The reducing power of the extract was denoted as milligrams of ascorbic acid equivalent (AAE) per gram of dry extract.

2.9 Open Field Test

An *in vivo* open field test was conducted on mice based on a reported method [18]. An open field test board is a chessboard-like smooth board with a 0.5m² area. It consists of small black and white colored squares with a wall in the border. Twenty mice were randomly assigned into 4 groups containing 5 mice in each. Group-I was treated with distilled water orally at 10 mL/kg, group-II received diazepam at 1 mg/kg, and group-III and IV were taken the extract at 250 and 500 mg/kg, respectively. Animals were kept in one of the corners of the open field board after administration of the samples. The number of small squares crossed by the mice was counted for 3 minutes at 0, 30, 60, 90, and 120 minutes from the sample administration time. A room with a

calm and quiet environment was used to perform the experiment. The percent movement inhibition of the mice by the extract was calculated as

$$\% \text{ of movement inhibition} = \frac{Mc - Mt}{Mc} \times 100$$

Where, Mc indicates the mean number of movements in the control group, Mt denotes the mean number of movements in the test group

2.10 Hole Board Test

The hole board test was performed as stated by the previously reported method [19]. A hole board apparatus is a smooth and plain board (45cm × 45 cm) having 16 circular small holes with uniform spacing. In this test, 20 Swiss-albino mice were selected and randomly divided into 4 small groups comprising 5 mice in each group. Group-I and Group-II were considered as the control and the standard groups and received 10 mL/kg and 1 mg/kg, respectively. Distilled water was taken as the control and diazepam was used as the standard in this experiment. Both Group-III and Group-IV were the test groups and used to orally administer 250 and 500 mg/kg of the extract. Each mouse was placed on the hole board apparatus after 30 minutes of sample administration to record the number of head dips by individual mice for 10 minutes. The percent movement inhibition of the mice by the extract was calculated as

$$\% \text{ of movement inhibition} = \frac{Mc - Mt}{Mc} \times 100$$

Where, Mc indicates the mean number of head dips in the control group, Mt denotes the mean number of head dips in the test group

2.11 Brine shrimp lethality bioassay

To determine the toxicity of the extract, a brine shrimp lethality test was performed [20]. Firstly, *Artemia salina* eggs were hatched in an aquarium in simulated sea water. Fluorescent light was applied over the aquarium for 48 hours. Ten adult nauplii were added to different concentrations (1000-31.25µg/mL) of extract using a pasture pipette. The number of dead nauplii was examined after 24hours of the incubation period under a magnifying glass to assess the LC₅₀ value.

2.12 *In-silico* Study

2.12.1 Development of phytochemicals Library

A phytochemical library of 15 compounds found via GC-MS analysis of plant extract was created. The names, PubChem CID, molecular weight, and structure of those compounds were developed from the PubChem database.

2.12.2 Protein preparation

For the present study, the non-mutated tertiary (3D) structure of the targeted protein (PDB ID: 1AAP) was downloaded initially in PDB format from the Protein Data Bank. Then, the protein was opened in BIOVA Discovery Studio Visualizer Tool 16.1.0 and energy was minimized after selecting the chain, removing the non-bounded residues, water molecules, and eliminating the unwanted portion of the protein. Finally, the 3D structure of the minimized protein was retrieved as PDB format for further molecular docking studies.

2.12.3 Active site prediction using CASTp server and grid generation

In the present study, BIOVA Discovery Studio Visualizer Tool 16.1.0 was used to find the binding site of the desired protein. Moreover, binding pockets over the entire protein were identified using CASTp 3.0. Finally, the receptor grid was generated using the PyRx software.

2.12.4 Absorption, distribution, metabolism and excretion (ADME) and toxicity test

For developing a molecule as a drug candidate, it is crucial to evaluate the pharmacokinetic properties of phytochemicals, like adsorption, distribution, metabolism, excretion, and toxicity analysis. The Swiss-ADME server was used to estimate the ADME properties of the compounds. Furthermore, of the 15 compounds, only seven that showed the best pharmacokinetic and drug like properties through Lipinski's rule of violation were selected for molecular docking and further analysis.

2.12.5 Molecular docking

Seven selected compounds after pharmacophore analysis were subjected to molecular docking. In the present study, the PyRx tool was used for molecular docking, which is based on Auto

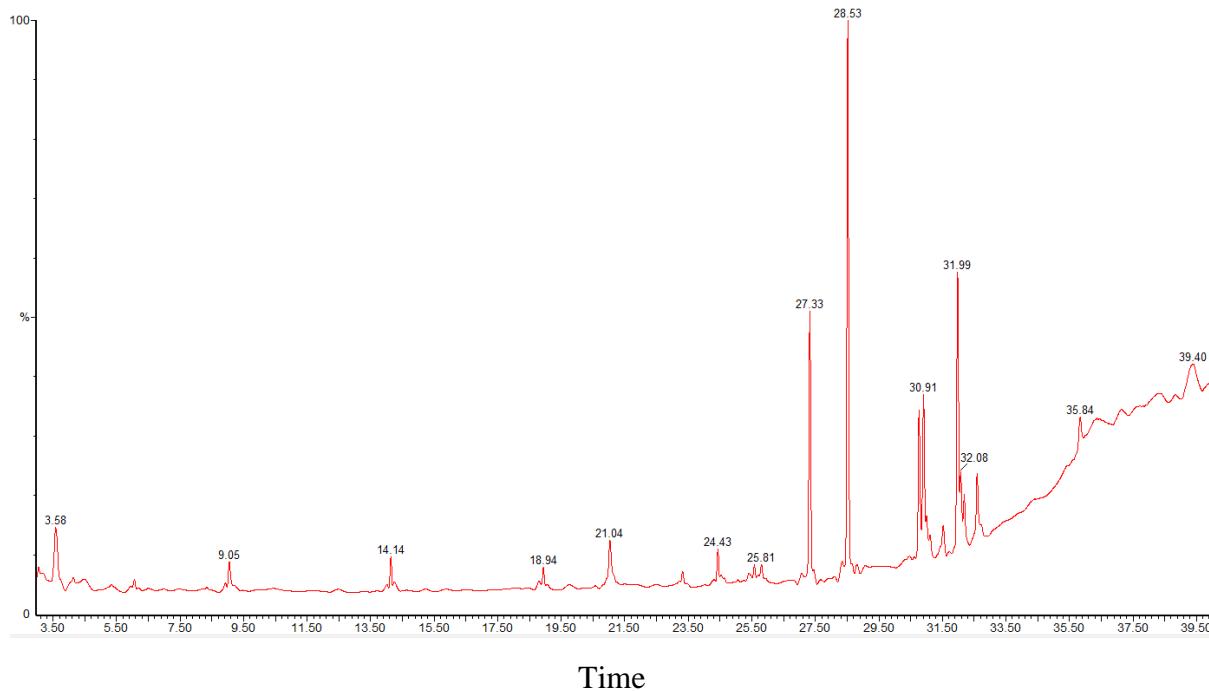
Dock Vina. Resultant compounds with binding affinity (kcal/mol) were retrieved and visualized by BIOVA Discovery Studio Visualizer Tool 16.1.0.

2.13 Statistical analysis

All experiments were repeated independently at least three times and results are presented as mean \pm standard deviation (SD). The *in vivo* data was analyzed by t-tests and one-way ANOVA followed by Turkey's test and Dunnett's comparison test using SPSS software version 20.0 (SPSS, Chicago, IL, USA). Differences were considered to be statistically significant when $p<0.05$.

3. Results

3.1 Total phenol content


The total phenol content of the extract was estimated using a calibration curve ($Y=0.00522X - 0.00290$; $R^2=0.997$) and it was found to be 86.37 ± 0.73 mg (GAE)/g of dried extract.

3.2 Total flavonoid content

Using the standard quercetin calibration curve ($Y=0.007990X-0.008300$; $R^2=0.995$), the total flavonoid content of the extract was computed as 111.17 ± 1.635 mg quercetin equivalent/g of dry extract.

3.3 GCMS analysis

In GC-MS analysis, 15 compounds were identified from the experimental extract. Figure 1 represents the distinct GCMS chromatogram.

Figure 1: Gas Chromatography mass spectroscopic base chromatogram of *G. tetrandra* ethanol leaves extract.

The bioactive compounds were represented by their retention time (RT), molecular formula, molecular weight and peak area (%) in Table 1. Among 15 compounds, the major 4 compounds identified are 9, 12, 15-octadecatrienoic acid, (Z, Z, Z) (37.86%), heptadecanoic acid, ethyl ester (25.897%), 1, 2-cyclotadiene (7.625%), and methyl 11-methyl-dodecanoate (6.287%). The other compounds are 6-octadecenoic acid (1.43%), benzene, (1-methylundecyl) (1.26%), o-xylene (0.89%), benzene, 1,3-dimethyl (0.84%), 3-n-hexylthiolane, s,s-dioxide (0.72%), 1-hexanone, 1-phenyl (0.68%), sulfurous acid, nonyl pentyl ester (0.59%), neophytadiene (0.44%), 1,5-diphenyl-2H-1,2,4-triazoline-3-thione (0.41%), chloroacetic acid, tetradecyl ester (0.33%), 13-octadecenoic acid, methyl ester (0.28%) and heptadecanoic acid, ethyl ester (0.13%).

Table-1: Gas Chromatography Mass spectroscopic data of compounds in *G. tetrandra* ethanol leaves extract

Serial No.	Retention Time	Name of the compound	Molecular Formula	Molecular weight (g/mol)	% Peak area
1	3.58	O-Xylene	C ₈ H ₁₀	106	0.8942
2	4.11	Benzene, 1,3-dimethyl-	C ₁₂ H ₁₆	106	0.8402
3	5.45	Benzene, (1-methylundecyl)-	C ₁₇ H ₂₈	246	1.2634
4	6.01	1-Hexanone, 1-phenyl-	C ₁₂ H ₁₆ O	176	0.6826
5	9.05	3-n-Hexylthiolane, s,s-dioxide	C ₁₀ H ₂₀ O ₂ S	204	0.7248
6	18.94	Chloroacetic acid, tetradecyl ester	C ₁₆ H ₃₁ ClO ₂	290	0.3253
7	21.04	Sulfurous acid, nonyl pentyl ester	C ₁₄ H ₃₀ O ₃ S	278	0.5913
8	24.43	Neophytadiene	C ₂₀ H ₃₈	278	0.4438
9	25.81	1,5-Diphenyl-2H-1,2,4-triazoline-3-thione	C ₁₄ H ₁₁ N ₃ S	253	0.4150
10	27.33	Methyl 11-methyl-dodecanoate	C ₁₄ H ₂₈ O ₂	228	6.2876
11	28.53	Heptadecanoic acid, ethyl ester	C ₁₉ H ₃₈ O ₂	298	25.8970
12	29.83	13-Octadecenoic acid, methyl ester	C ₁₉ H ₃₆ O ₂	296	0.2756
13	30.91	1,2-Cyclooctadiene	C ₈ H ₁₂	108	7.6252
14	31.54	6-Octadecenoic acid	C ₁₈ H ₃₄ O ₂	282	1.4305
15	31.99	9,12,15-Octadecatrienoic acid, (z,z,z)-	C ₁₈ H ₃₀ O	278	37.8608

3.4 DPPH free radical scavenging assay

Both the extract and the ascorbic acid showed a concentration-dependent DPPH scavenging activity. The IC₅₀ value of the extract was found to be 276.64 ± 2.91 µg/mL and the standard was 19.02 ± 1.26 µg/mL.

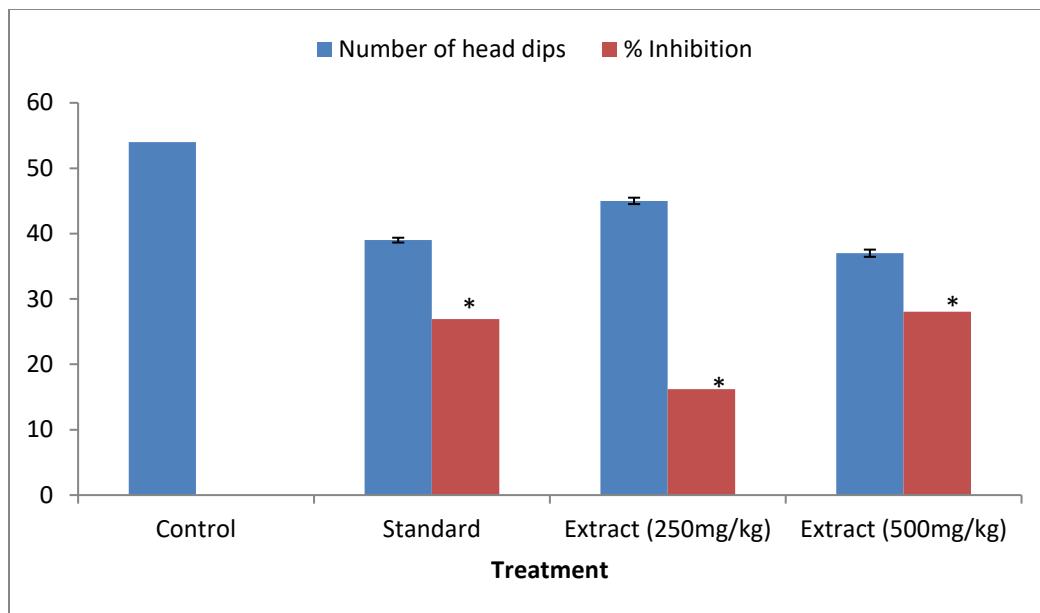
3.5 Ferric reducing antioxidant power assay

The FRAP assay evaluates the antioxidant activity based on reduction of ferric (Fe³⁺) to ferrous (Fe²⁺). The FRAP value was calculated using the linear equation (y= 0.027x-0.080, R²= 0.993)

obtained from the ascorbic acid standard curve. In this study, ferric reducing capacity was estimated at 90.07 ± 0.973 mg/g of ascorbic acid equivalent.

3.6 Open field test

The extract exhibited a depletion in the movements of mice which was statistically significant ($p<0.05$) compared to the control. The movement reduction was incessant from the first observation time (30 mins) to the final (at 120 min) for both doses (250 and 500mg/kg) of the extract. At the final observation time, the movement inhibition by the extract at 250mg/kg was 58.33% and it was higher than that of standard (42.66%) at that particular time. But, at 500mg/kg dose, the movement inhibition was better than the standard at 90 min (50.86%) and 120 min (69.04%) (Table 2).


Table 2: Neuropharmacological activity of *G. tetrandra* extract in open field test

Group	Dose(mg/kg)	Number of square moved (Movement inhibition)				
		0 min	30 min	60 min	90 min	120 min
Control	10 mL/kg	117.4 \pm 1.54	111.2 \pm 1.47	109 \pm 1.47	104.2 \pm 1.51	100.8 \pm 1.53
Standard	1	119.3 \pm 2.78	83.2 \pm 1.26*	75.4 \pm 0.97*	64.8 \pm 1.47*	57.8 \pm 2.02*
	250	115.2 \pm 1.37	103.6 \pm 2.39 (6.83%)	88 \pm 0.947*	66.2 \pm 1.02*	42 \pm 1.61*
Extract	500	114.8 \pm 1.92	101.2 \pm 1.36 (8.99%)	80.2 \pm 1.32*	51.2 \pm 1.46*	31.2 \pm 1.37*

Values are presented as Mean \pm SD (n=5), *Statistical significance when $p < 0.05$

3.7 Hole board test

The extract exhibited a significant ($p<0.05$) abatement in the number of head dips in mice compared to the effect of the control. The percentage of head dipping inhibition was 16.23% and 28.04% at 250 and 500mg/kg dose of the extract, respectively, while diazepam at 1mg/kg showed an inhibition of 26.93% (Figure 2). The extract at 250mg/kg body weight showed better head dipping inhibition than the standard.

Figure 2: Neurological activity of *G. tetrandra* in hole board test (Values are presented as Mean \pm SD) (n=5), * p < 0.05 compared to control

3.8 Brine shrimp lethality bioassay

The estimated LC₅₀ value of the extract was $387.44 \pm 1.46 \mu\text{g/mL}$ and for the standard it was $0.91 \pm 0.74 \mu\text{g/mL}$. The result showed that the extract exhibited little or no cytotoxicity on shrimp larvae.

3.9 *In silico* study

3.9.1 Evaluation of pharmacokinetic properties

Seven compounds out of the 15 fulfilled all the criteria of the ADMET analysis and showed drug likeness characteristics (Table 3). That is why they had been selected for further molecular docking analysis. These molecules exhibit an extensive excretion rate after metabolism in the body. Besides, they also revealed maximum tolerance doses in a range from 0.303 to 1.173 mg/kg/day (Table 3). Moreover, several toxicological parameters, such as hepatotoxicity and Ames toxicity, were assessed and found in an acceptable range.

Table 3: The pharmacophore and pharmacokinetic profile of the selected ligand molecules

Ligands name	MW	NHA	NHD	LogP	NRB	GIA	LD50	BBB	HT	AT	MTD	NLV	DL
Rivastigmine (control)	250.34	3	0	3.21	6	High	3.402	Yes	No	No	0.382	No	Yes
O-Xylene	106.16	0	0	2.303	0	Low	1.841	Yes	No	No	0.921	No	Yes
1-Hexanone, 1-phenyl-	176.25	1	0	3.449	5	High	1.655	Yes	No	No	1.173	No	Yes
3-n-Hexylthiolane, S,S-dioxide	204.33	2	0	2.391	5	High	2.033	Yes	No	No	0.393	No	Yes
Sulfurous acid, nonyl pentyl ester	278.45	3	0	4.539	12	High	1.98	Yes	No	No	0.653	No	Yes
1,5-Diphenyl-2h-1,2,4-triazoline-3-thione	253.32	1	1	3.596	2	High	2.81	Yes	No	No	0.926	No	Yes
Methyl 11-methyl-dodecanoate	228.37	2	0	4.326	11	High	1.6	Yes	No	No	0.303	No	Yes
1,2-Cyclooctadiene	108.18	0	0	2.661	0	Low	2.043	Yes	No	No	0.852	No	Yes

MW-molecular weight (g/mol); **NHA**- No. of hydrogen bond acceptor; **NHD**- No. of hydrogen bond donor; **LogP**-Predicted octanol/water partition coefficient; **NRB**- Number of Rotatable Bond; **GIA**-Gastro Intestinal absorption (% absorbed); **LD50**- Oral rat acute toxicity; **BBB**- Blood Brain Barrier; **HT**- Hepatotoxicity; **AT**- AMES toxicity; **MTD**- Maximum tolerated dose for human (log mg/kg/day); **NLV**- Number of Lipinski's Violation; **DL**- Drug Likeness.

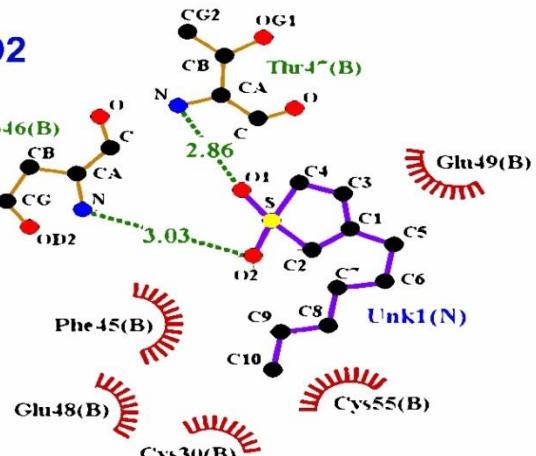
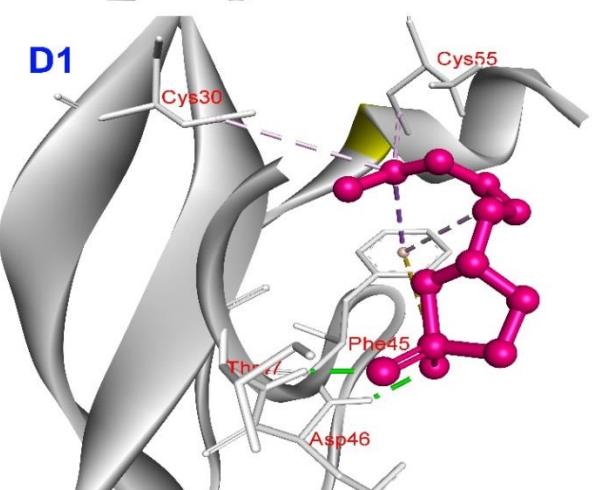
3.9.2 Molecular docking of the phytochemicals in the predicted ligand-binding pocket

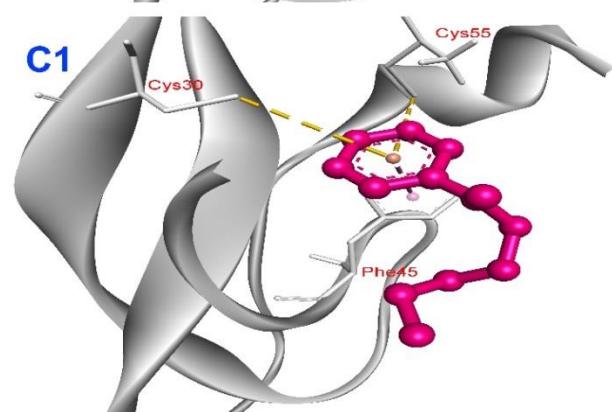
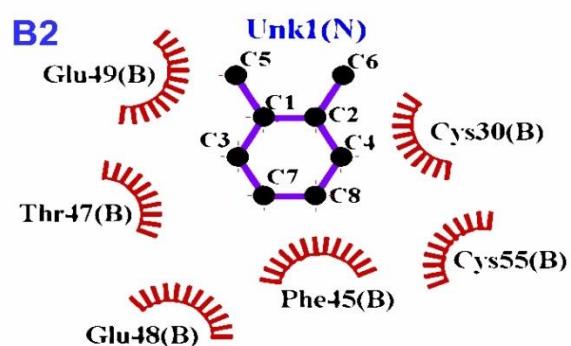
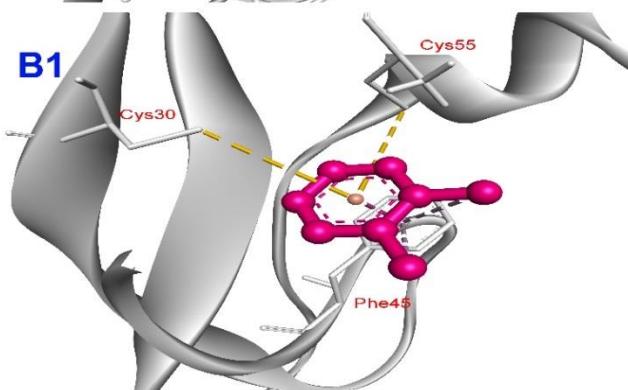
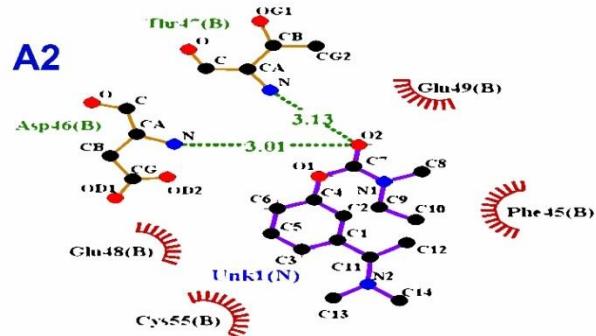
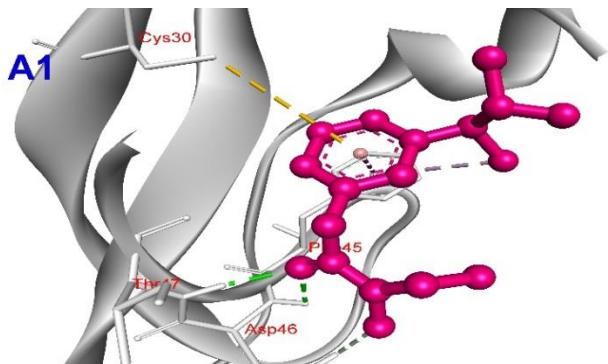
Basically, molecular docking is used to understand the biomolecular interactions of a desired compound. Structure-based drug designing also takes advantage of this technique. In our study, the top five probable binding pockets in beta-amyloid precursor protein, 1AAP, according to CASTp 3.0 software, were identified (Table 4). The software measured the volume and surface areas (SA) of the desired protein and provided the binding pocket volume and areas (Table 4).

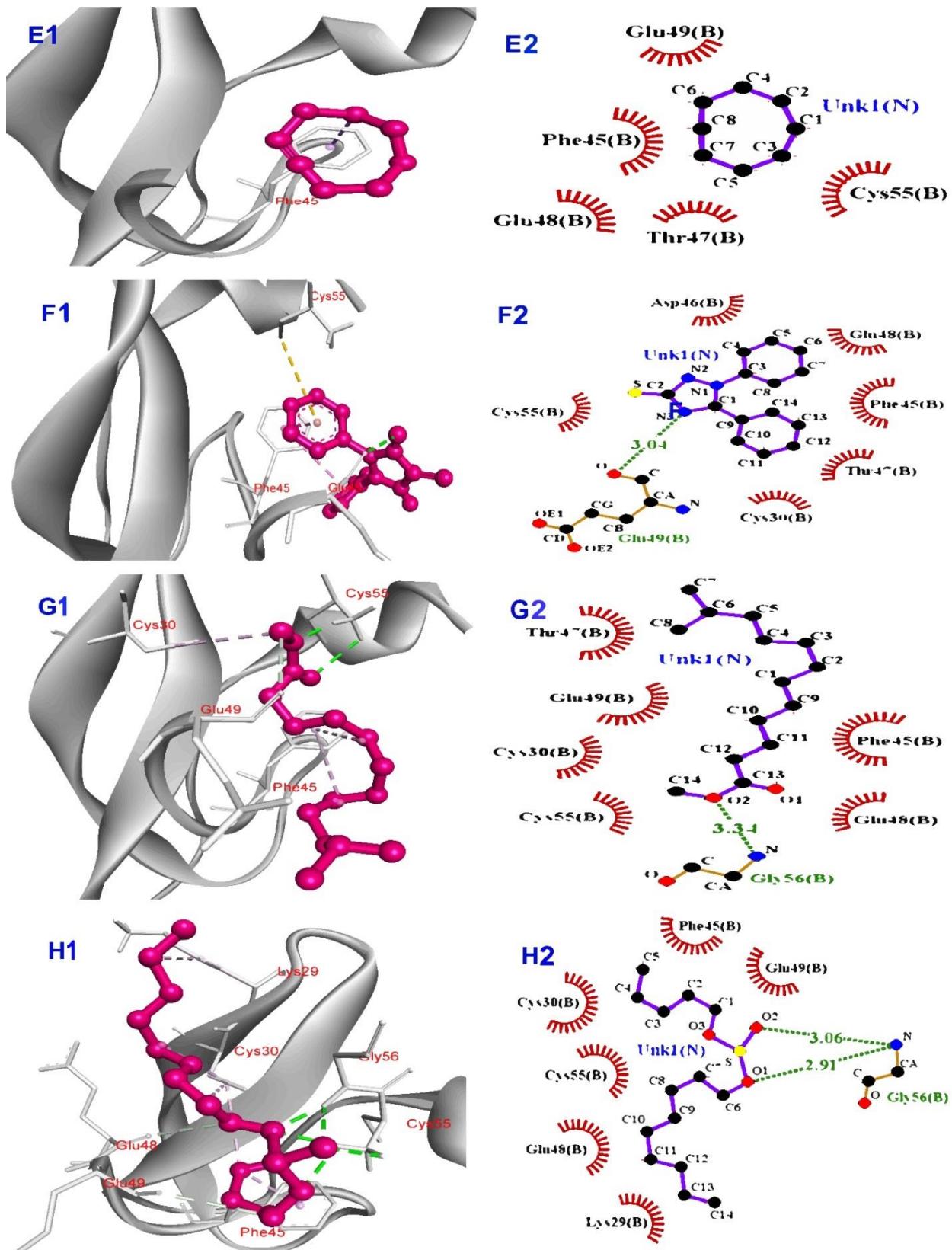
Table 4: Predicted top five ligand-binding pockets information according to CASTp

Serial No.	Pocket ID	Area (Å ²)	Volume (Å ³)	Pocket Amino Acids
1	1	40.093	18.554	TRP 21, TRP 22, CYS 30, PHE 45, TRP 47, GLU 48, GLU 49, CYS 55, GLU 56
2	2	32.138	16.291	SER 6, GLU 7, GLN 8, TYR 22, PHE 23, ASP 24, VAL 25
3	3	28.618	7.281	ARG 2, CYS 5, SER 6, PHE 23, VAL 25, CYS 55
4	4	2.729	0.565	SER 19, PRO 32, PHE 33, PHE 34
5	5	4.484	0.486	GLU 10, PHE 33, ASN 41, ASN 43, ASN 44

3.9.3 Molecular docking studies






Beta-amyloid precursor protein (1AAP) has two chains, A and B. A receptor grid with box diameter X= 17.7, Y= - 17.40, Z=18.54 was prepared for the B chain. The compounds that passed in the ADME and toxicity analysis were studied in the PyRx tool. Among them, only the compound CID2802516 showed the highest binding affinity of -5.5 Kcal/mol. Besides, the compound CID70337 and CID543842 showed a binding affinity of -4.2 Kcal/mol that was equal to the control ligand CID 77991 (-4.2 kcal/mol) (Table 5).


Table 5: Binding affinity of interested ligands with the targeted protein macromolecule and comprehensive intermolecular interactions.

Ligands Name (PubChem CID)	Binding Affinity (Kcal/mol)	Amino Acid Involved Interaction	
		Hydrogen Bond Interaction	Hydrophobic Bonds Interaction
Rivastigmine (77991)	-4.2	THR47 (3.13 Å); ASP46 (3.01 Å)	CYS55, GLU48, GLU49, and PHE45
O-Xylene (7237)	-4.0	No H-bond	CYS30, CYS55, GLU48, GLU49, PHE45, and THR47
1-Hexanone, 1-phenyl- (70337)	-4.2	No H-bond	ASP46, CYS30, CYS55, GLU48, GLU49, PHE45 and THR47
3-N-Hexylthiolane, S,S-dioxide (543842)	-4.2	ASP46 (3.03Å); THR47 (2.86 Å)	CYS30, CYS55, GLU48, GLU49, and PHE45
Sulfurous acid, nonyl pentyl ester (572661)	-3.5	No H-bond	CYS30, CYS55, GLU48, PHE45 and THR47
1,5-Diphenyl-2h-1,2,4- triazoline-3-thione (2802516)	-5.5	GLU49 (3.04 Å)	ASP46, CYS30, CYS55, GLU48, PHE45 and THR47
Methyl 11-methyl- dodecanoate (4065233)	-3.6	GLY56 (3.34 Å)	CYS30, CYS55, GLU48, PHE45 and THR47
1,2-Cyclooctadiene (641048)	-3.8	GLY56 N:O1 (2.91 Å) and N:O2 (3.06 Å)	CYS30, CYS55, GLU48, GLU49, LYS29, and PHE45

3.9.4 Interpretation of protein-ligands interactions

The java based software Ligplot+ V 2.2 was used to identify the hydrogen bond and hydrophobic bond interactions of the protein-ligand complexes. The control drug Rivastigmine (CID: 77991) showed two hydrogen bonds [THR47 (3.13 Å); ASP46 (3.01 Å)] and four hydrophobic bonds [CYS55, GLU48, GLU49, and PHE45] with the desired protein (Figure 3). Among the selected phytochemicals, 3-n-Hexylthiolane, S, S-dioxide (CID: 543842) and 1, 2-Cyclooctadiene (CID: 641048) displayed a maximum of two hydrogen bonds and more than four hydrophobic bonds, respectively. Each of the compounds 1, 5-Diphenyl-2h-1, 2, 4-triazoline-3-thione (CID: 2802516) and Methyl 11-methyl-dodecanoate (CID: 4065233) bound with only one hydrogen bond, but the former had six and the later had five hydrophobic interactions to the protein. Besides, the rest of the compounds did not have any hydrogen bond interactions but had some hydrophobic bonds (table 5).

Figure 3: Binding of phytochemicals with the targeted protein (1AAP). Here, left site indicates 3D structure and right site indicates 2D structure of ligand- superoxide dismutase binding complexes. In 3D structure, ligand molecules were represented in pink color with ball and stick model, and binding amino acids by letters and a number format which are red in color. In 2D structure, hydrogen bonding interaction is shown by olive dotted green line and hydrophobic interactions with nearest amino acid residues in red spike. (A) Control drug Rivastigmine; (B) O-Xylene; (C) 1-Hexanone, 1-phenyl; (D) 3-N-Hexylthiolane, S, S-dioxide; (E) Sulfurous acid, nonyl pentyl ester; (F) 1,5-Diphenyl-2h-1,2,4-triazoline-3-thione; (G) Methyl 11-methyl-dodecanoate; (H) 1,2-Cyclooctadiene

4. Discussion

Ethno-medicinal plants have served as a convenient and efficient source of medicine since ancient times. The popularity of traditional medicine is growing at a startling pace in the developing nations of the world as well as in developed countries for fulfilling basic healthcare purposes [21]. It has been estimated by WHO that one fourth of modern medicines are prepared from plants that had prior traditional uses [22]. Despite living in the present period of synthetic medicine, research-based drug discovery from ethnomedicine is significantly successful to a large extent.

The open field and hole board tests are very convenient and paramount methods for determining the neurological potential of medicinal plant extracts [23]. In these experiments, the presence of agents with sedative properties will reduce movements and interrupt in the interest of the new milieu. The present experimental extract at 250 and 500 mg/kg unveiled a significant inhibition of locomotion which caused a gradual reduction in movement in mice compared to the control (Table 2). The sedative action was first noticed at 30 min and continued till the last observation period (120 min). The head-dipping behavior of animals in hole board test is directly related to their emotional state [24]. From our present study, it was evident that the extract had a significant ($p<0.05$) CNS depressant effect at 250 and 500 mg/kg (Figure 2). The neuropharmacological activity of the extract could be associated with the compounds distinguished by GC-MS profiling. As the major identified bioactive constituent of the extract 9, 12, 15-octadecatrienoic acid, (Z, Z, Z), was reported to exert psychotropic effects [25]. Nevertheless, further isolation of bioactive compounds and in-depth study are required to reveal the mechanism of action of these compounds beyond their neurological effects.

Neurons are predominantly susceptible to oxidative damage owing to their high dependence on oxygen consumption, copious polyunsaturated fatty acids in their membrane and an enfeebled antioxidant defense mechanism [26, 27]. Progressively, it damages neuron structure and impairs neuron function, ultimately causing development of neurodegenerative disorders. ROS-induced oxidative stress is a vital factor in the pathogenesis of AD as it causes the accumulation and deposition of amyloid peptides, hyperphosphorilation of tau protein, modulation of JNK/MAPK stress-activated protein kinase pathways, and oxidation of functional biomolecules [3, 28-30]. Therefore, phytochemicals with antioxidant activity, through reduction of oxidative damage, may play a vital role in treating AD. The GCMS identified phytochemicals of the extract 9, 12, 15-Octadecatrienoic acid (Z, Z, Z) [31]; Heptadecanoic acid, ethyl ester [32]; Chloroacetic acid, tetradecyl ester [33]; Neophytadiene [34] as having antioxidant activity. Therefore, plant-based therapies that target the relationship between oxidative stress and neurodegenerarion at the cellular and molecular level may improve treatment and drug development efforts. In this regard, *G. tetrandra* can be a source of pharmacophore (s) for that particular purpose.

Nowadays, computer aided drug design (CADD) is a buzzword across the world to identify drug candidates from diverse sources [35]. Another tremendous screening approach is ADMET profiling, which analyses the molecular weight, lipophilicity, number of hydrogen acceptors and donors, various types of toxicity, and so on. Pharmacokinetic and pharmacophore analysis give extra advantages in predicting the appropriate drug compounds, and table 3 shows the properties that are important for drug discovery. All the compounds showed drug likeness properties and most of the phytochemicals displayed high intestinal absorption rates, but two were low. Toxicity is harmful to the body and most of the toxicity tests on an animal model are expensive and time-consuming [36]. The considerable range of LD₅₀ values was found and that means the toxicity level of the bioactive compounds was low and other toxicity like hepatotoxicity and AMES toxicity level were zero. Blood brain barrier (BBB) is an important layer which prevents different types of solutes from entering into the nervous system. To be a neurological drug, any compound needs to cross BBB [37]. Table 3 showed that all the compounds have the ability to cross the BBB. Furthermore, each and every compound exhibited drug like characteristics and did not show any Lipinski rule violations.

Molecular docking is a process which reveals the best binding affinity with minimal energy of protein-ligand complexes. In molecular docking studies, the lowest binding energy refers to the best binding affinity of a ligand to a targeted protein [38]. According to the present study, one compound named 1, 5-Diphenyl-2h-1,2, 4-triazoline-3-thione (CID: 2802516) has shown the higher binding affinity (-5.5 Kcal/mol) than the control Rivastigmine (-4.2 Kcal/mol). On the other hand, two ligands, 1-Hexanone, 1-phenyl- (CID: 70337) and 3-n-Hexylthiolane, S, S-dioxide (CID: 543842) have displayed the same docking score (-4.2 Kcal/mol) as the control drug. Lower binding affinity than control has been obtained by the rest of the compounds and all the data is mentioned in table 5. Hence, chemical analysis, *in vivo* neurological activity assessment, and *in silico* studies exposed the evidence of folklore use of *G. tetrandra* in mental disorders.

5. Conclusion

In the current study, both experimental and computational studies scientifically revealed the folklore uses of the medicinal plant *G. tetrandra* for neurological disorders. GC-MS based chemical analysis showed the presence of fifteen phytochemicals where 9, 12, 15-octadecatrienoic acid, (Z, Z, Z) and heptadecanoic acid, and ethyl ester were identified as major molecules. Overall, 1, 5-Diphenyl-2H-1, 2, 4-triazoline-3-thione (Pub Chem CID: 2802516) could be the potential lead of beta-amyloid precursor protein inhibitor for further evaluation of drug-likeness. *In vivo* neurological assays and *in silico* studies suggest that *G. tetrandra* could be a source of neurological agent (s) against Alzheimer's disease. Moreover, it is recommended to isolate bioactive phytochemicals and to explicate the mechanistic pathway for preventing neurological disorders.

List of abbreviation:

AD: Alzheimer's disease; ROS: Reactive Oxygen Species; CREB: cAMP Response Element-Binding Protein; GSK-3: Glycogen Synthase Kinase-3; GAE: Gallic Acid Equivalent; QE: Quercetin Equivalent; GCMS: Gas Chromatography Mass Spectroscopy; DPPH: 2,2 diphenyl-1-picrylhydrazyle; FRAP: Ferric Reducing Antioxidant Power; b.w: Body Weight; ADME: Absorption, distribution, metabolism and excretion; APP: Beta-amyloid Precursor Protein; CNS: Central Nervous System; A β : Beta-amyloid; JNK/MAPK: c-Jun N-terminal Kinase of Mitogen-activated Protein Kinase family; CADD: Computer Aided Drug Design; BBB: Blood Brain Barrier.

Acknowledgements: Authors are grateful to the authorities of the department of genetic engineering and biotechnology and Department of pharmacy, Jashore University of Science and Technology for providing excellent working facilities.

Authors Contribution: All authors contributed equally in this research project.

Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A2066868), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A2019413).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Competing interests: The authors declare that they have no competing interests.

References

- [1] Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. *Molecular neurodegeneration*. 2020;15:40.
- [2] Siddappaji KK, Gopal S. Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches. *AIMS neuroscience*. 2021;8:357-89.
- [3] Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. *Cells*. 2021;10.
- [4] Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Srivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. *Progress in neurobiology*. 2019;174:53-89.
- [5] Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease. *BioMed research international*. 2018;2018:3740461.
- [6] Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. *Signal transduction and targeted therapy*. 2019;4:29.
- [7] Abedi Z, Basri H, Hassan Z, Mat LNI, Khaza'ai H, Mohamad NA. A review of the neuroprotective effects of andrographolide in Alzheimer's disease. *Advances in Traditional Medicine*. 2021;21:253-66.
- [8] Mehla J, Gupta P, Pahuja M, Diwan D, Diksha D. Indian Medicinal Herbs and Formulations for Alzheimer's Disease, from Traditional Knowledge to Scientific Assessment. *Brain sciences*. 2020;10.
- [9] Roy AJJCAM. Role of medicinal plants against Alzheimer's disease. 2018;11:205-8.
- [10] Jivad N, Rabiei ZJAPJoTB. A review study on medicinal plants used in the treatment of learning and memory impairments. 2014;4:780-9.
- [11] Uddin SN. Traditional uses of Ethnomedicinal plants of the Chittagong Hill Tracts: Bangladesh National Herbarium; 2006.
- [12] Ramesha BT, Suma HK, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R, et al. New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. *Phytomedicine : international journal of phytotherapy and phytopharmacology*. 2013;20:521-7.

[13] Zilani MN, Sultana T, Asabur Rahman SM, Anisuzzman M, Islam MA, Shilpi JA, et al. Chemical composition and pharmacological activities of *Pisum sativum*. BMC complementary and alternative medicine. 2017;17:171.

[14] Zilani MNH, Uddin SJ, Hossain H, Hazni H, Shilpi JA, Hossain MGJOP, et al. Chemical characterization and bioactivity of *Trichosanthes dioica* edible shoot extract. 2018;18:167-75.

[15] Rahman MS, Hossain R, Saikot FK, Rahman SM, Saha SK, Hong J, et al. Insights into the in vitro germicidal activities of *Acalypha indica*. 2017;30:26-31.

[16] Hossain MG. Md. Nazmul Hasan Zilani, Md. Amirul Islam, Sharmin Sultana Khushi, Jamil Ahmad Shilpi, Md. Mustafizur Rahman.

[17] Hmidani A, Ajebli M, Khouya T, Benlyas M, Alem CJB-SUJoB, Sciences A. In vitro investigation of antioxidant and antihemolytic activities of three Lamiaceae species from Morocco. 2021;10:1-8.

[18] Anisuzzman M, Hasan MM, Acharzo AK, Das AK, Rahman S. In Vivo and In Vitro Evaluation of Pharmacological Potentials of Secondary Bioactive Metabolites of *Dalbergia cardenatensis* Leaves. Evidence-based complementary and alternative medicine : eCAM. 2017;2017:5034827.

[19] Hafiz W, Zilani MNH, Sultana NA, Isalm MM, Anisuzzman M, Hossain MGJCP. Neuropharmacological potential of *Ceriscoides turgida* (Roxb.) leaf and root in mice. 2019;5:1-6.

[20] Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. *Planta medica*. 1982;45:31-4.

[21] Park YL, Canaway R. Integrating Traditional and Complementary Medicine with National Healthcare Systems for Universal Health Coverage in Asia and the Western Pacific. *Health systems and reform*. 2019;5:24-31.

[22] Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. *Molecules* (Basel, Switzerland). 2016;21.

[23] Moniruzzaman M, Atikur Rahman M, Ferdous A. Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of *Scoparia dulcis* Linn. Evidence-based complementary and alternative medicine : eCAM. 2015;2015:873954.

[24] Rath M, Bhattacharya A, Rath K, Santra S, Ghosh G, Nanda BBJIJoPS. A Comprehensive Study of the Neuropharmacological Profile of Methanol Leaf Extract of *Aloe vera* and Identification of Associated Neuroprotective Compounds through Gas chromatography-mass spectrometry Analysis. 2020;82:996-1005.

[25] Godwin A, Akinpelu B, Makinde A, Aderogba M, Oyedapo OJJOPRI. Identification of n-hexane fraction constituents of Archidium ohioense (Schimp. Ex Mull) extract using GC-MS technique. 2015;366-75.

[26] Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and Nutritional Antioxidants in Human Diseases. *Frontiers in physiology*. 2018;9:477.

[27] Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. *Oxidative medicine and cellular longevity*. 2017;2017:2525967.

[28] Fracassi A, Marcatti M, Zolochevska O, Tabor N, Woltjer R, Moreno S, et al. Oxidative Damage and Antioxidant Response in Frontal Cortex of Demented and Nondemented Individuals with Alzheimer's Neuropathology. *The Journal of neuroscience : the official journal of the Society for Neuroscience* : the official journal of the Society for Neuroscience. 2021;41:538-54.

[29] Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. *Frontiers in physiology*. 2020;11:694.

[30] Cenini G, Lloret A, Cascella R. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. *Oxidative medicine and cellular longevity*. 2019;2019:2105607.

[31] Kim BR, Kim HM, Jin CH, Kang SY, Kim JB, Jeon YG, et al. Composition and Antioxidant Activities of Volatile Organic Compounds in Radiation-Bred Coreopsis Cultivars. *Plants* (Basel, Switzerland). 2020;9.

[32] Vats S, Gupta T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of *Moringa oleifera* Lam. from Rajasthan, India. *Physiology and molecular biology of plants : an international journal of functional plant biology*. 2017;23:239-48.

[33] Shyam P, Suresh P. Comparative analysis of three leaf extracts of *Ixora Coccinea* linn. For their protective and anti-oxidant Potentials and correlation with analytical data. 2013.

[34] Simoh S, SHIN S, Abd Rahim F, ZAINAL MAA, Malaysiana AJS. Comparative Analysis of Metabolites and Antioxidant Potentials from Different Plant Parts of *Curcuma aeruginosa* Roxb. 2018;47:3031-41.

[35] Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. *Journal of computer-aided molecular design*. 2013;27:221-34.

[36] Samad A, Ahammad F, Nain Z, Alam R, Imon RR, Hasan M, et al. Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatics approach. *Journal of biomolecular structure & dynamics*. 2020;1-17.

[37] Daina A, Michelin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific reports*. 2017;7:42717.

[38] Yuliana D, Bahtiar FI, Najib AJAJST. In silico screening of chemical compounds from roselle (*Hibiscus Sabdariffa*) as angiotensin-I converting enzyme inhibitor used PyRx program. 2013;3:1158-60.