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Abstract: Species diversity in microbiome is a cutting-edge concept in metagenomic research. In
this study, we propose a multifractal analysis for metagenomic research. From the chaos game
representation (CGR) visualization of simulated and real metagenomes, we find that there exists
self-similarity in the visualization of metagenomes. Then we compute the multifractal dimensions
for simulated and real metagenomes. For simulated metagenomes, we also compute their diversity
indices, such as species richness indices, Shannon’s diversity indices and Simpson’s diversity in-
dices respectively for varying value of g.Fom the Pearson correlation coefficients between their
multifractal dimensions and traditional species diversity indices, we find that the correlation coef-
ficients between the multifractal dimensions and species richness indices and Shannon diversity
indices reach their maximums at g =0, lrespectively. The correlation coefficients between the
multifractal dimensions and Simpson’s diversity indices reach their maximums at ¢ =2 nearly. So

the traditional diversity indices can be unified by the frame of multifractal analysis. These results
coincided with the similar results in macrobial ecology. Finally, we apply our methods to real
metagenomes of 100 infants’ gut microbiomes when they are newborn, 4 months and 12 months.
Our results show that multifractal dimensions of infants’ gut microbiomes can discriminate the age
difference.
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1. Introduction

Species diversity in ecology has been long studied [1,2]. Generally, diversity indices
can be divided into two classes (a diversity indices and B diversity indices). All diver-
sity indices referred in this report are a diversity indices. In macrobial (plants/animals),
a diversity can be characterized by species richness, Shannon diversity index and Simp-
son diversity index. Usually, in the field of macrobial ecology, with the increasing of
ecology area, species richness is increasing. Generally, species-area relationship (SAR)
can be formulated as §(4)=cA4”, where A is area, S(4) is the number of species in 4,
¢ and z are constant. SAR is a famous formula in ecological study [3]. On the basis of
SAR, Harte and Kinzig pointed out that the formula indicates the self-similarity of spe-
cies number and area [4]. As main feature of fractals, self-similarity can be described by

S(4)
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Generally, for ¢<0, z ’ emphasis the character of rare species, for ¢ >0,z , em-
phasis the common species. Particularly, z,implies the relationship of the logarithm of
species richness (In(S(4))) and the logarithm of the area (In(4)). z implies the rela-
tionship of the logarithm of Shannon diversity (SHD) index and the logarithm of the ar-
ea. z, implies the relationship of the logarithm of Simpson diversity (SID) index and
the logarithm of the area.

In microbial diversity study, identifying bacterial strains in metagenome and mi-
crobiome samples using computational analyses of short-read sequences remains a dif-
ficult problem [5], so that the main difference of diversity indices between macrobial and
microbial is that the concept of “species” had been substituted by “OTUs”. The number
of operation taxonomic units (OTUs) within a community is akin to species richness
within macrobial systems [6]. Similar to macrobial ecology, species richness, Shannon
diversity index and Simpson diversity index were used to describe the species diversity
of microbial community [7]. Up to now, there is no report to unify these diversity indices
into one frame.

Fractal analysis has been applied in DNA sequence analysis more than 30 years
[8,9]. For example, Chaos Game Representation (CGR) is a classical method [10]. CGR
map DNA sequence into unit square by

CGR, = CGR_, +0.5%(P.~CGR, ,), P=Pa, Pc, Pc or Pr
where P, =(0,0), P. =(0,]) P, =(1,0) and P, =(L,1) is corresponding to four nucleotides
A, C, G and T respectively, CGR, =(0.5,0.5).

According to [11], CGRs have also been subjected to multifractal analysis (which
measures the degree of self-similarity within the image).On the basis of visualization for

DNA sequence, one can define its multifractal spectrum by

2lele)
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where ¢is the side length of grid, M,is the count of point in the i-th grid, M is the

summation of all M, . Furthermore, one can define multifractal dimensions by

D(g)=1lim D, (¢). In practical computation, one can rewrite the above-mentioned formula
£-0

to

(Y. M7 )= D, (eNg-1in(e)+ (g-Din(Mg). @)

Then one can compute D(g) by linear fitting between M¢? and In(e).

Inspired by [10], research group of Vélez studied the Caenorhabditis elegans genome
[12] and the human genome [13] by multifractal formalism. Their results showed that
human (Homo sapiens) genome has stronger multifractality than that of Caenorhabditis el-

egans at chromosome level. Similarly, Zhou et al. studied the discrimination problem of
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coding and non-coding DNA sequence [14]. Their results suggest that coding and
non-coding DNA sequence have different multifractal characteristic in the same ge-
nome.Pandit et al. Studied the classification of HIV-1 by use of multifractal dimensions
of their genome [15]. These results suggested that multifractal characteristic can measure
the complexity of gene and genome. Recently. Olyaee et al. Used CGR method to ex-
tract several valuable features from genomic sequences of SARS-CoV-2 [16]. In [17],
Kania and Sarapata studied the robustness of the chaos game representation to mu-
tations and its application in free-alignment methods.

In [18], Ge et al. generalized CGR to higher dimensional spaces while main-
taining its bijection, keeping such method sufficiently representative and mathe-
matically rigorous compare to previous attempts. In this frame, Dick and Green
studied Proteome-Wide Protein Prediction problem by chaos game representations
and deep learning [19]. Ni et al. studied gene sequence phylogenetic problem by
frequency chaos game representation with perceptual image hashing [20] also.

For additive methods for genomic signatures of CGR, Karamichalis et al. studied
this problem in [16]. They proposed the general concept of additive DNA signature of a
set (collection) of DNA sequences. For example, the composite DNA signature (com-
bines information from n DNA fragments and organellar), the assembled DNA signature
(combines information from many short DNA subfragments (e.g., 100 basepairs) of a
given DNA fragment). They concluded that such additive signatures could be used with
raw unassembled next-generation sequencing (NGS) read data when high-quality se-

quencing data is not available.

Motivated by [21], in this study, we apply the fractal and multifractal method to
species diversity analysis of microbiome. First, we visualize the simulated metagenomes
and real metagenomes. Then we compute the multifractal dimensions of simulated
metagenomes and study the relationship between its multifractal dimensions and spe-
cies diversity indices. Last, we compute multifractal dimensions of real metagenomes of
100 infants” gut microbiomes when they are newborn, 4 months and 12 months.

2. Materials , Methods and Results
2.1 Metagenome Datasets

The whole genomic sequences (WGS) (.fasta files) were downloaded from the NCBI
database (ftp://ftp.ncbi.nlm.nih.gov/genomes/). The WGS for real metagenomes (.gz files)
were downloaded from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra).

Data set 1: Simulated high-diversity metagenome set generated from the genomes
of ten distantly related major bacterial species used in [22]. The high-diversity set in-
clude 100 metagenomes generated from the genomes of ten distantly related major bac-
terial species accounting for more than 90 % of all reads in Chinese group: The species
used in data set 1 are listed in Table 1. The abundances in data set 1 are listed in Table S1

of Supplementary Materials.
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Table 1. Species and accession numbers used in Data set 1.

Organism Accession number
Akkermansia muciniphila ATCC BAA-835 NC_010655.1
Alistipes shahii WAL 8301 NC_021030.1
Bifidobacterium adolescentis ATCC 15703 NC_008618.1
Bacteroides vulgatus ATCC 8482 NC_009614.1
Coprococcus sp. ART55/1 FP929039.1
[Eubacterium] eligens ATCC 27750 NC_012778.1
Faecalibacterium prausnitzii A2-165 ACOP02000001.1
Lachnospiraceae bacterium 1_4_56FAA NZ_GL945163.1
Prevotella copri DSM 18205 NZ_GG703878.1
Ruminococcus champanellensis type strain 18P13T NC_021039.1

Data set 2: Simulated low-diversity metagenome set generated from the genomes of
ten closely related major bacterial species used in [22]. The species used in data set 2 are

listed in Table 2. The abundances in data set 2 are listed in Table S2 of Supplementary

Materials.
Table 2. Species and accession numbers used in Data set 2.
Organism Accession number
Bacteroides caccae strain ATCC 43185 NZ_CP022412.2
Bacteroides dorei CLO3T12C01 NZ CP011531.1
Bacteroides ovatus strain ATCC 8483 NZ CP012938. 1
Bacteroides ovatus V975 NZ LT622246. 1
Bacteroides ovatus SD CMC 3f NZ ADMO01000156. 1
Bacteroides stercoris ATCC 43183 NZ DS499677. 1
Bacteroides thetaiotaomicron VPI-5482 NC 004663. 1
Bacteroides uniformis ATCC 8492 NZ_DS362249. 1
Bacteroides vulgatus ATCC 8482 NC_009614. 1
Bacteroides xylanisolvens CL03T12C04 NZ_JH724294. 1

Data set 3: 400 WGS for real metagenomes of 100 infants” and their mother’s gut
microbiota. It includes 300 infant’s fecal metagenomes when they are new born, 4 month
and 12 month; and 100 fecal metagenomes of their mothers. This data set was used in [23]
and the accession number is PRJEB6456.

2.2 Visualization of metagenomes.
Consider the alphabet Q={A, C, G, T} and let S= {sl,s2,~--,sm}be a WGS meta-

genome dataset, s, =s,s5,,:'s;, be the i-th reads in §, s, €Qis the k-th nucleotide of

reads s,. To represent a WGS dataset of metagenome in the form of a CGR plot, a unit
square was used, whose 4 vertices were labeled as 4 = (0,0),C=(0,1), G=(1,0), T =(L1).
For a given metagenome dataset S=1{s,,s,,--,s,} which includes m reads, the k-th nu-

cleotide siof reads si correspondes to


https://doi.org/10.20944/preprints202107.0560.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2021 d0i:10.20944/preprints202107.0560.v1

5 of 12

CGR, =CGR,, , +0.5%(P, ~CGR,, ,), P=P4, Pc, P or P, i=1,2,...,m

where P, =(0,0), P. =(0,1) P, =(1,0)and P, =(1,1) is corresponding to four nucleotides A,
C, G and T respectively, CGR,, =(0.5,0.5).

In order to avoid “large number annihilating small number”, we disgarded the first
10 points of each reads. The visualization of a simulated metagenome in data set 1 is

demonstrated by Figure 1 as an example.

Figure 1. Heat map of simulated metagenome

2.3 Fractal and multifractal spectrum of metagenome
We found all CGRs (e.g. Figure 1) seem to be self-similar. So we intend to study
their fractal and multifractal properties. On the basis of visualization of metagenome

sequence, one can define its multifractal spectrum by (1).

Furthermore, one can define multifractal dimension by D(g)= limD, (¢). Figure. 2

&0

shows the linear fit between ln(ziMf) (i.e. In(M(s,q))) and In(s) of simulated meta-

genome.
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Figure 2. Linear fit of ln(M(g,q)) and ln(g).

In practical computation, one can compute D(g) by linear fitting between
In(M(s,q)) and In(g) according to (2). In metagenomic research, for a given community
(i.e. given abundance values of bacteria), a WGS dataset of metagenome is actually a
collection of sampling reads from the give community. Here, we simulate 100 meta-
genomes from a given abundance of ten bacteria. Figure 3 demonstrates the multifractal
dimensions of 100 simulated metagenoms from data set 1 and 100 simulated meta-
genoms from data set 2.

From Figure 3, we can find that multifractal dimension curves of different simulated
metagenomes from the same abundance are unstable when ¢ <0, they are stable when

q=0. So we only consider D(q) for q>0 in multifractal spectrum of metagenome.

Figure 3. Multifractal dimensions of simulated genome. The number of reads is 10M, read length
is 1000bp, green asterisk represented the D(q) of samples simulated from high-diversity commu-
nities, blue dot represented the D(q) of samples simulated from low-diversity communities. For
each sample from the same community, the abundances are given in appendix 1.(the last line in

the table)
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2.4 The relationship between multifractal spectrum and microbial diversity index of metagenomes

In order to study the relationship between multifractal spectrum and diversity in-
dices of metagenomes, we simulated 100 metagenomes whose abundance are known,
then their species richness index, Shannon diversity index, Simpson diversity index, and
multifractal dimensions are computed. Then the Pearson correlation coefficients are

computed according to varying (.
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Figure 4. Pearson correlation coefficient of species richness and multifractal dimension D(q)
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Figure 5. Pearson correlation coefficient of species shannon diversity index and multifractal dimen-
sion D(q)

The Pearson correlation coefficients between species richness diversity index and
multifractal dimension are plotted in Figure 4. The plot suggests that Pearson correlation
coefficient between species richness indices and multifractal dimensions reach its maxi-
mum (0.85) at q=0. Similarly, the Pearson correlation coefficients between species
Shannon diversity indices and multifractal dimensions reach its maximum (0.88) at
q=1. The Pearson correlation coefficient between species Simpson diversity indices and

multifractal dimensions reach 0.87 at q=2.
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Pearson correlation coefficient
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Figure 6. Pearson correlation coefficient of species Simpson diversity index and multifractal dimen-
sion D(q)
Based on the Pearson correlation coefficient plot, in order to study the relationship
between species diversity indices and multifractal dimensions of metagenomes, we plot
the scatter plot of Shannon diversity indices and D(l)s in Figure 7 and that of Simpson

diversity index and D(2) in Figure 8 respectively .

Scatter plot of Shannon's diversity index and D{1)
1.6 T T T T T T

1851 B

1.95 1 1 1 1 1 1
1 1.2 14 1.6 1.8 2 22 24

Shannon’s diversity index

Figure 7. Scatter plot of Shannon diversity index and D(l)
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Scatter plot of Simpson’s diversity index and D(2)
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Figure 8. Scatter plot of Simpson diversity index and D(Z)

2.5 Application of multifractal dimension in metagenomes to infant’s qut microbiome

In order to apply the multifractal analysis to real metagenomes, we selected 100 in-
fants’ fecal WGS datasets of 300 metagenomes (There are 3 samples, including 12 Month
(12 M), 4 Month (4 M) and new born (baby) for each infant) and 100 corresponding gut
metagenomes of their mothers to mine potential information of its multifractal dimen-

sions.

Figure 9. Multifractal dimension of gut microbiome of 12 month(12 M), 4 month(4 M), newborn
baby (baby), and her mother (M)

As an example, we plot multifractal dimensions of a selected gut microbiome of a
baby in Figure 9. The plot demonstrates the multifractal dimensions of gut microbiomes
of an infant and its mother when he/she is a newborn (baby), 4 month, 12 month. Figure
9 suggests that the D(0)(fractal dimension), D(1) (information dimension) and D(2)
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(correlation dimension) are increasing with growing. In other words, their gut microbial
diversity is developing with growing. In order to study the generality of this property,
we computed the mean value of 100 multifractal dimensions of 12 Month, 4 Month, new

born and their mothers, respectively. From Figure 10, we can find that the similar results

in average.
2
¥ —#— 12 Month
ol 4 Month
\ o —&— baby
N —— Mother
= 1.5
o
-
o
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@«
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@
@
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Figure 10. Mean values of multifractal dimension of 100 infants” gut microbiomes of 12 month(12

M), 4 month(4 M), newborn baby(baby), and their mother(M)

For data set 3, there are 100 infants” gut microbiomes. If we consider each infant gut
micobiomes as one group, there are 100 groups gut microbiomes. For each group, we
compute the difference between 12 M and 4 M, 12 M and new born, 4M and new born
respectively. In order to observe the overall characteristic of these multifractal dimen-
sions, we plotted the mean value of 100 multifractal dimensions of gut microbiomes in
Figure 10.

In order to evaluate the discriminating power of gut microbiomes” multifractal di-
mensions in ages of infants, we use multifractal dimensions of 12M,4M, baby and Moth-
er gut microbiomes to discriminate by Support Vector Machine (SVM) [24]. Table 3
demonstrates accurate rates of discriminating metagenomes of 12M, 4M, baby and
Mothers by SVM. Within infants” gut microbiomes, the accurate rate of 12M and baby,
12M and 4M, baby and 4M is decreasing.

Table 3. Accurate rates of discriminating metagenomes of 12M, 4M, baby and Mothers by SVM.

Accurate rate 12 Month 4 Month baby
4 Month 84.0% -
baby 91.5% 70.5% -

Mother 91.5% 95.5% 94.5%
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3. Discussions and conclusions

In this study, we studied metagenomes by multifractal analysis. From the results
above, we can draw the following conclusions.

(i) From the CGR visualization of metagenomes by, we can see there exists statistical
self-similarity in these plots. Figure 3 demonstrates 100 simulated WGS metagenomes
sampling from a given abundance, it suggests that D(q) of metagenomes is stable
when ¢>0 and unstable when ¢ <0. These results guide us to study multifractal di-
mensions of metagenomes only for ¢>0 in the following study. These results show
that there is multifractal character in CGRs of metagenomes.

(if) From Figure 4, we can see that the Pearson correlation coefficients of species
richness indices and D(q) reach their maximums when ¢ =0. Similarly, we can find
that the Pearson correlation coefficients of Shannon diversity indices and D(q) reach
their maximums when ¢ =1 from Figure 5, the Pearson correlation coefficients of
Simpson diversity indices and D(q) approach their maximums when ¢ =2 from Fig-
ure 6. These results coincide with the results of macrobial ecology in [4]. On the whole,
the scatter plot of Shannon diversity indices and corresponding D(1) in Figure 7 shows
that D(1) is increasing with the increasing of Shannon diversity indices of metagenome.
Figure 8 shows that D(2) is increasing with the increasing of Simpson diversity indices
of metagenome. These results suggest that multifractal dimensions can reflect the micro-
bial diversity in metagenomic research and the traditional diversities can be unified by
the frame of multifractal analysis.

(iii) In research on real metagenomes, multifractal dimensions of gut mirobiome of
one mother and her baby is demonstrated in Figure 9, this plot shows that the mul-
tifractal dimensions of gut microbiome of baby is increasing with aging (new born, 4 M
and 12M). Figure 10 shows this law holds on the whole for baby in average.The dis-
criminated power of multifractal dimensions of gut microbiomes of infants demonstrated
in Table 3 shows that the infants’ age can be discriminated by their multifractal spectrum
of CGR visualization of gut microbiomes.This section may be divided by subheadings. It

should provide a concise and precise description of the experimental results, their inter-
pretation, as well as the experimental conclusions that can be drawn.

Supplementary Materials: Table S1: The abundances in data set 1; Table 52: The abundances in
data set 2.
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