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Abstract

Despite several decades of research, the physics underlying translation — protein synthesis at the
ribosome —remains poorly studied. For instance, the mechanism coordinating various events occurring in
distant parts of the ribosome is unknown. Very recently, we have suggested that this allosteric mechanism
could be based on the transport of electric charges (electron holes) along RNA molecules and localization
of these charges in the functionally important areas; this assumption was justified using tRNA as an
example. In this study, we turn to the ribosome and show computationally that holes can also efficiently
migrate within the whole ribosomal small subunit (SSU). The potential sites of charge localization in SSU
are revealed, and it is shown that most of them are located in the functionally important areas of the
ribosome — intersubunit bridges, FeS4 cluster and the pivot linking the SSU head to the body. As a result,
we suppose that hole localization within the SSU can affect intersubunit rotation (ratcheting) and SSU
head swiveling, in agreement with the scenario of electronic coordination of ribosome operation. We
anticipate that our findings will improve the understanding of the translation process and advance the
molecular biology and medicine.

Introduction

Translation — protein synthesis at the ribosome — is necessary for life of all organisms and proceeds in
similar way in all domains of life. Accordingly, understanding of this process is of great importance from
both the fundamental and practical points of view. However, although the ribosome structure has been
recently resolved in detail [1], the physical mechanisms underlying ribosome operation are far from being
well understood. Specifically, it is not clear how the motions of the participants of the translation process
—ribosome, transfer RNA (tRNA) and matrix RNA (mRNA) molecules — are precisely coordinated. In short,
at each act of translation (elongation step), tRNA motion through the ribosome — translocation — is
correlated with the motion of mMRNA [2, 3], large-scale conformational changes of tRNA [4] and ribosome
[5-9], as well as chemical reactions - GTP hydrolysis in the translation factors [4] and amino acid addition
to the growing polypeptide [10]. Synchronized action of distant parts of the ribosome and tRNAs implies
the existence of some mechanism orchestrating them [11-13]. However, this allosteric mechanism
remains unknown despite several decades of intensive studies of ribosome operation. Several hypotheses
about the nature of this mechanism were suggested, most of them being of mechanistic character [11-
13]. In contrast, we have recently suggested that this mechanism is of electronic character and involves
charge (electron hole) transport along and between the RNA molecules, charge localization at certain sites
(areas) and subsequent conformational changes of the latter [14].

Electronic conductivity of nucleic acid molecules (DNA and RNA) is enabled by the n-stacking of
their nucleobases, which can provide significant overlapping of the m-conjugated electron systems of the
latter. Such n-stacking is often observed in DNA and helices (stems) of non-coding RNAs, e.g. tRNA and
ribosomal RNA (rRNA) [15]. While multiple theoretical and experimental studies addressed charge
transport in DNA [16-19], such studies for RNA [14, 20, 21] are rare. Very recently, it was shown that
charge transport along the DNA molecule plays important role in regulation of the replication process [18]
and DNA repair [19], and disruption of DNA conductivity may cause severe diseases [22]. Electron hole
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transport within the tRNA was modeled in Ref. [14]: it was shown that most nucleobases are strongly
electronically coupled (i.e. have large charge transfer integrals, J) to their neighbors so that an extended
n-conjugated system is formed. It was also shown that hole localizes at certain sites of tRNA, inducing
conformational changes of the latter. However, charge transport and localization within the very
ribosome were not addressed.

Ribosome is composed of two subunits, namely large (LSU) and small (SSU) ones. SSU is built of
RNA molecule (16S in prokaryotes), which is its structural and functional basis, and several proteins. The
secondary structure of 16S RNA contains many regular double helices connected by irregular single-
stranded loops; it is useful to consider the RNA structure as a three-dimensional arrangement of helical
elements [23]. Stacking and packing of the helical elements of 16S RNA generates three compact domains
(5" domain, central domain and 3’ major domain) and one extended domain (3’ minor domain) [23] as
sketched in Fig. 1; the latter figure also presents another commonly used division of SSU on body, platform
and head. SSU contains decoding center and unique FesS; cluster, the function of which is still unknown
[24]. During translation, SSU rotates with respect to LSU; this intersubunit rotation is often described as a
‘ratcheting’ and accompanies translation in both bacteria and eukaryotes [3]. The integrity of the
ribosome is maintained by several intersubunit bridges between SSU and LSU. Intersubunit rotation is
synchronized with rotation of the SSU head with respect to the body and the platform - ‘head swiveling’.

Fig. 1. Small subunit of the ribosome (view from the intersubunit space). Colors depict four SSU domains:
5’ domain (red), central (green), 3’ major (orange) and 3’ minor (cyan).

In this study, we investigate computationally the probable hole transport pathways and
localization sites within the SSU of the ribosome. We show that most of the nucleotides in the SSU have
large hole transfer integrals with their neighbors resulting in considerable transfer rates between them.
We then simulate motion of the electron hole within the SSU and determine the sites of hole localization;
these sites can collect holes from up to 11 nucleobases. Most of these sites are located in the functionally
important sites of the ribosome — near the intersubunit bridges, FesS, cluster and the pivot joining the
head and the body of SSU. Our findings corroborate the hypothesis of the key role of charge transport in
coordinating the operation of the ribosome during translation and are anticipated to facilitate further
studies of this issue.
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Methods

Initial geometry of the RNA studied was extracted from PDB database (16S RNA from Thermus
thermophilus ribosome at elongation stage, PDB entry 6gnq [24]). Charge migration was simulated using
the hopping model, according to which charge carriers (electrons or electron holes) incoherently hop
between the sites — nucleobases. Ribose moieties and phosphate chains are not involved in the m-
conjugated system and hence are not occupied by the charge carriers; accordingly, they were not
considered in the charge migration simulations so that the nucleotides were substituted by nucleobases
with methyl groups instead of the ribose moiety. Hopping model is expected to provide reasonable
description of the charge transport in the studied systems at room temperature [25]. The hopping rate
was described using the widely used Marcus equation [26]:

22 2[ 1 Jm (AE-2)
k =—J)| ————| exp| ——|, (1)

h Ak, T 42k, T

where h is the reduced Planck constant, kg is the Boltzmann constant, T is the absolute temperature, J is
the charge transfer integral, A is the reorganization energy of the site, and AE=E;-E; is the difference in the
energies of charge carrier between initial and final sites. These parameters were obtained using density
functional theory (DFT) calculations in GAMESS package [27,28] with CAM-B3LYP (for reorganization
energies) or B3LYP (otherwise) density functionals and 6-31g(d) basis set. Reorganization energies were
approximated by their internal (intramolecular) part and calculated according to the standard adiabatic
potentials (four-point) scheme [29, 30]. Transfer integrals were calculated using home-written code based
on dimer projection method (DIPRO) [31-33]. Several sites with poorly determined atomic coordinates
were excluded form charge transport simulation.

Results

The main factors determining the hole transport within the hopping model are energies of the highest
occupied molecular orbitals (HOMO) of the sites, charge transfer integrals between the latter and
reorganization energies of the sites (see previous Section). HOMO energies and hole-transfer
reorganization energies for various nucleobases were presented elsewhere [14, 34], so we do not repeat
them herein and just notice that the highest HOMO energies are observed for guanines, and
reorganization energies are rather large and exceed 300 meV for all the nucleobases. Moderate HOMO
levels provide an opportunity for efficient hole injection and transport in RNA molecules, while high LUMO
levels prevent trap-free transport of electrons [14]. The difference in the site energies (i.e., static disorder)
and large reorganization energies force hole localization at single sites [35], and guanines should serve as
the sites of this localization.

Fig. 2a presents the charge (hole) transfer integrals, J, within the SSU; Fig. S1 shows J for separated
SSU domains. From these figures it follows that nearly all the sites (nucleobases) have large transfer
integrals with the neighboring ones, i. e. hole can efficiently hop between them. A few transfer integrals
exceed 200 meV (to compare, in organic semiconducting crystals with high mobility, J usually amount
~100 meV [35, 36]). Large transfer integrals stem from the fact that most of the rRNA in SSU is arranged
in helices, where nucleobases form m-stacks [23]. In these stacks, HOMOs of the adjacent nucleobases can
considerably overlap [14]. As a result, we conclude that an extended mi-conjugated system is formed within
the whole SSU, where a hole can migrate like in hand-made organic semiconductor (see, e.g., Refs.
[36,37]). This finding is in accordance with our earlier results for tRNA [14] and helix h44 of 16S rRNA [34].
The most pronounced electronic interaction between the nucleobases is observed in the dense and stiff
areas of the SSU — helices h7-h9, h30, h41, h44, as well as nearly entire 3’ major domain. On the contrary,
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transfer integrals in helix h6 (spur), which is on the periphery of the SSU, are smaller and form less
pronounced m-conjugated system.

To simulate the hole migration and localization within the SSU, we applied kinetic Monte-Karlo
modeling. A hole was sequentially placed at various initial sites, then its motion was monitored. The map
of the probabilities to find the hole, which started migration from the given initial site, at the given final
site (“probability map” hereafter), is shown in Supporting Information (SlI), Figure S2. Fig. 2b-d presents
exemplary areas of this map in the vicinity of G690 - the site at which holes localize most probably (see
below). These figures clearly reveal that there are many sites, holes from which are found at the other
(sometimes distant) sites, i.e., holes migrate efficiently within SSU. Indeed, if holes could not migrate, the
non-zero probabilities would be observed only at the diagonal of the map; however, this is not the case.
Vertical cyan-green or green-red lines indicate the sites of hole localization: the corresponding final sites
collect holes from many (up to 11) initial sites. Interestingly, two types of basins of attraction (the
manifolds of sites, hole from which are localized at the given site) are observed in Fig. 2b-d: deep, i.e.,
with strong localization, and shallow, i.e., with considerable “delocalization” of the hole between several
sites (in terms of probabilities, not to be confused with delocalization of wavefunction [35]): the hole can
go back and forth between them, occupying the localization site for longer time. The deep basins reveal
themselves in Fig. 2b as red-green lines (i.e., probabilities to find the hole at the localization site tend to
unity), while the shallow ones correspond to cyan-green lines, which have counterparts at other final sites
for the same range of initial sites (i.e., the hole has non-zero probability to be found at other sites, which
are close in energy to the site of localization).

Final sites’ populations — the probabilities to find a hole at a given site summarized over various
initial sites — are shown in Fig. 2e. From this figure it follows that holes predominantly localize at three
sites (“hole scavengers”): G690, G1316 and G1504. The strongest hole scavenger is G690: it collects holes
from ~11 residues (in the range 683-697, see Fig. 2b); the basin of attraction for this site is deep. G690
resides in the central domain near the intersubunit bridge B7a — the close contact between h23 of SSU
and H68 of LSU, which involves the only cross-subunit base stacking interaction (see Fig. 3b) [1]. During
translation, this site becomes close to tRNA molecule at E-site and mRNA. Noteworthily, the 690 loop is
highly conserved [23], which highlights its importance. We suppose that hole localization at G690 can
affect intersubunit rotation (ratcheting) — hinder it at certain time moments and “lock” the ribosome.
Moreover, the hole can transfer to LSU from this site or vice versa. Thus, this transition could coordinate
processes occurring in SSU with those occurring in LSU (e.g., L1 stalk motion during tRNA release).

Fig. 2c presents the probability map near the second hole scavenger, G1316. This site has deep
but smaller basin of attraction — it is indicated by green-red line, which is shorter than that for G690.
G1316 is located at the top of the SSU head (5’ major domain) and is close to the intersubunit bridge Bla
(see Fig. 4b). Interestingly, there is a large, but shallow basin of holes attraction for the site adjacent to
G1316, namely, G1274; this basin reveals itself in Fig. 2c by long cyan vertical line. Moreover, there is also
another localization area near G1316 — nucleotides 1310-1312, which share holes collected from multiple
nucleotides (Fig. 2c). Summing up, holes from about 20 nucleotides localize in the compact area at the
top of the head (see Fig. 3c). This area is near the intersubunit bridge Bla, and hole localization therein
can affect the intersubunit rotation as suggested above.

Finally, Fig. 3d indicates that the last of the three abovementioned strongest hole scavengers,
G1504, has large and shallow basin of attraction — hole is shared between this site and G1505. G1504 is
located in the 5 minor domain (h45 helix) near the area (“pivot”) that kicks during translation and enables
head swiveling (Fig. 3d). This kick is necessary for translocation — coordinated movement of the mRNA
and tRNAs through the ribosome. Since hole localization can induce conformational changes of RNA [14],
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we assume that hole localization at G1504 can coordinate the head swiveling with other processes

occurring during translation.
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Fig. 2. a) Transfer integrals between the nucleotides in SSU. Thicknesses of the cylinders represent the
magnitudes of J. b-d) Transition probabilities map for finding a hole placed at a given initial site at a
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given final site, in the vicinity of hole scavengers. A deep basin of hole attraction is highlighted with pink
circle, a shallow one is highlighted with yellow circle. e) Summarized probability of finding the hole,
which started from various initial sites, at the given final site. Simulation time is 100 ns.
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Fig. 3. Hole localization sites within 5’ (a), central (b), 3' major (c) and 3’ minor (d) domains of SSU.
Functionally active areas of the ribosome near the localization sites (intersubunit bridges Blb, B2a, B3,
B7a; FesS, cluster; pivot enabling head swiveling) are labeled.

Beyond the three hole scavengers discussed above, there are several other potential sites of hole
localization, which are located in the functionally important areas of the SSU. One of these sites is G424,
which resides at the end of the h16+h17 co-axial stack — the left-hand border of the body (“shoulder”)
[23]. This stack contains the FesS,4 cluster (see Figures 2a and 3a) [24], which can release or acquire charges
and was previously suggested to serve as a battery that provides holes for electronic coordination of
translation [14]. Although charge transfer integrals within the stack form less dense conjugated system as
compared to the remainder of the body (Fig. 2a), presumably because of relative flexibility of the stack,
they are sufficient for efficient charge transport. The map of transition probabilities for the sites in the
vicinity of G424 is presented in Fig. S3. Vertical green-cyan line at the latter site indicate that it collects
holes from 415" to 429" nucleotides, i.e. from the top of h16. Interestingly, Fig. S3 reveals “delocalization”
of the hole between G424 and G416, G425, G428: the latter sites show weak vertical lines in the same
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region as G424. Importantly, G424’s basin of hole attraction includes A431 — the nucleotide that is in the
vicinity of FesS4 cluster; accordingly, G424 can readily catch the hole released by the “battery”. It is well-
known that upon the codon-anticodon recognition, the shoulder moves towards the intersubunit space
finally triggering GTP hydrolysis in EF-Tu [38]; we suggest that this movement can result from the hole
localization in the shoulder. In addition, G424 is located at the interface of the body with the head of the
SSU. Thus, we suppose that hole localization at G424 could also affect the head rotation with respect to
the body, which occurs during the translocation — tRNA and mRNA motion through the ribosome — and
thus contribute to the coordination of translation.

The other two potentially important sites of localization are G1405 and G1416, which reside in
h44 —the longest single helix in SSU that stretches from the bottom of the head to the bottom of the body
and forms several intersubunit bridges with LSU (see Fig. 3d) [23, 39]. Fig. 2d indicates that G1405 has
large and shallow basin of attraction, while G1416 has a small but deep basin. Importantly, G1405 and
G1416 are located in the vicinity of the intersubunit bridges B2a and B3, respectively [39]. As mentioned
above, we suppose that charge localization near these intersubunit bridges can hinder the ribosome
ratcheting at certain time moments [8, 38] and synchronize it with the other events occurring during
translation.

Discussion

Like our previous studies of charge transport in RNA molecules [tRNA, h44], this study is aimed at justifying
the relevance of our scenario of translation “orchestration” via hole migration and localization, and does
not pretend on a quantitatively accurate description of the charge transport process. For this reason, we
used rather simple hopping model, while charge transport in nucleic acids can be more complex and still
remains a subject of debates [40]. Accordingly, several factors that could considerably affect charge
transfer rates and slightly affect sites of localization were not accounted. Among them, possible charge
delocalization between the sites could decrease the effective reorganization energies [41, 30] and hence
increase charge transfer rates. Moreover, the site energies can depend on charge delocalization [42] and
on the neighboring nucleotides — for instance, the hole energy at guanine is lower if it has other guanines
nearby and is strongly electronically coupled to them. Noteworthily, some of the localization sites in SSU
revealed in this study (e.g., G424) are indeed located within the guanine sequences. We also neglected
the impact of the environment (e.g., anionic phosphate moieties or charged amino acids of adjacent
riboproteins) on the site energies. lonic conductivity, which can be coupled to the electronic charge
transport discussed herein [43], was neglected as well. Finally, low-frequency vibrations of the ribosome
and tRNA could modulate transfer integrals and site energies [14]. Considering these factors is not
straightforward and is a subject of a separate study. Nevertheless, we do believe that accounting for the
abovementioned factors will not question the qualitative side of our conclusions but will rather refine
them — for instance, accounting for modulation of charge transfer integrals and site energies was shown
to weakly affect charge localization pattern [14].

Conclusions

We have shown that electron hole can efficiently migrate within the ribosomal SSU and localize at certain
sites. Specifically, most of the nucleotides in the SSU have large hole transfer integrals with their neighbors
resulting in considerable transfer rates between them. Nonuniform energy landscape induces hole
localization, and at least six of the localization sites are situated in the vicinity of the functionally important
areas of the ribosome — several intersubunit bridges, the FesSs cluster and the pivot enabling
conformational changes of SSU. We suppose that hole localization at these sites can be a part of the
mechanism coordinating intersubunit rotation (ratcheting) and SSU head swiveling with other events
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occurring during translation. We anticipate that our findings will facilitate further studies of charge

transport within the ribosome, improve the understanding of the physics underlying translation and

advance the molecular biology and biophysics.
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