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Abstract: Accurate early diagnosis of COVID-19 viral pneumonia, primarily in asymptomatic people
is essential to reduce the spread of the disease, the burden on healthcare capacity, and the overall
death rate. It is essential to design affordable and accessible solutions to distinguish pneumonia
caused by COVID-19 from other types of pneumonia. In this work, we propose a reliable approach
based on deep transfer learning that requires few computations and converges faster. Experimental
results demonstrate that our proposed framework for transfer learning is a potential and effective
approach to detect and diagnose types of pneumonia from chest X-ray images with a test accuracy of
94.0%.
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1. Introduction

COVID-19 was declared by the World Health Organization (WHO) to be the most
lethal pandemic the world is grappling with in recent human history [1]. Its origin of the
first transmission remains unknown, as it started in December 2019 from Wuhan and has
lead to massive loss of life and stagnation of the global economy. The primary mode for the
virus transmission from an infected person’s mouth or nostrils in small fluid particles is
through coughing, sneezing, speaking, singing or breathing heavily. The fluid particles vary
significantly in size, ranging from larger respiratory droplets to smaller aerosols. Because
the droplets are too heavy to travel more than a meter, they cannot spread person-to-person
without coming in close contact. It has been indicated that COVID-19 can be in the air
for up to 3 hours, 4 hours on copper surfaces and nearly 72 hours on plastic and stainless
materials [1]. Nonetheless, the exact nature of the virus remains an open problem in the
medical research community.

Early and accurate detection of this viral pneumonia in asymptomatic cases is vital
in reducing the transmissibility of the viral infection, the burden on healthcare capacity
and the overall mortality rate. Machine Learning (ML) is increasingly being integrated into
healthcare systems ranging from medical image acquisition to reconstruction, outcome
analytics, and prediction. Thus, the use of ML to detect and classify traditional pneumonias
from the pneumonia induced by COVID-19 is vital to providing an early, fast and efficient
diagnosing mechanism [2].

Although the mass of vaccination campaigns is being carried out worldwide, coro-
navirus cases have been rising. The global death toll of COVID-19 has been markedly
increasing. India has surpassed Brazil as the second country with the highest infections
and is currently experiencing the third wave of infection and COVID-19 related deaths.
Virologists around the world have been extensively working to develop COVID-19 vac-
cines. Candidates such as Pfizer–BioNTech (mRNA-based, USA), Moderna (mRNA-based,
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United States), Oxford AstraZeneca (replication-defective live-vector, the United King-
dom), Sinovac (China), and Sputnik V (viral vector vaccine, Russia) have been approved
for vaccination and are being used in many countries around the world for COVID-19
immunization. Large-scale clinical trials on the safety and efficacy of these vaccines have
indicated their effectiveness with minor side effects on tested demographics [3]. Clinical
trials of Sinovac in Brazil, Chile, Indonesia, the Philippines, and Turkey have shown 67%
effectiveness against symptoms while reducing hospitalisations, intensive care visits and
deaths by 85%, 89%, and 80%, respectively [4]. The vaccine was developed using conven-
tional technology similar to BBIBP-CorV and BBV152; other inactivated-virus COVID-19
vaccines. The primary advantage of Sinovac is that it does not need to be frozen like
Moderna’s vaccine that needs to be stored at −20C, AstraZeneca vaccine requires regular
fridge temperature and Pfizer’s vaccine at −70C [3,5]. Secondly, both the vaccine and
raw material for formulating the new doses could be transported and refrigerated at 2–8
C temperatures at which flu vaccines are kept. This compounded advantage makes the
vaccine suitable for developing countries that have limited public health infrastructure.
Sputnik V was developed by Gamaleya Institute in Russia and is currently being used in
Belarus, United Arab Emirates, Saudi Arabia, India, and Iran [6].

However, mass vaccine adaption in many countries remains a public health logistical (
e.g., logistics of manufacturing, storing and distributing the vaccine, and mass vaccination)
and leadership challenge. The problem is attributed to many reasons ranging from citizens’
vaccine resistance to vaccine nationalism [7–9]. With the development and usage of vac-
cines, further research is needed to address open questions such as: will the new vaccines
be able to control the COVID-19 pandemic? What is the efficacy of current vaccines on the
emerging variants of COVID-19 from the UK, South Africa, Brazil, Portugal and India iden-
tified as more contagious and lethal? What will be the long-term efficacy and side effects of
current vaccines that have been researched, developed and tried at break-neck speed on
different population demographics? Giving the upsurge in vaccine nationalism, will it be
possible to surmount both financial and political challenges for equitable distribution of
vaccines, especially to low-and-middle-income countries?

1.1. Problem Statement

One of the critical steps in containing viral spread is the timely detection of positive
cases in the community. Clinical laboratories have been developing, validating, and
implementing various molecular and serologic assays to test SARS-CoV-2 nucleic acid [10].
Reverse Transcriptase-Polymerase Chain Reaction (RT–PCR) is a laboratory testing method
that combines reverse transcription of RNA into DNA (called complementary DNA or
cDNA) and amplification of specific DNA targets using the standard Polymerase Chain
Reaction (PCR). RT–PCR diagnostic has been identified to be effective in detecting the
SARS-CoV-2 virus. This technique, however, has inherent limitations such as long delays
in obtaining test results, patients with high clinical suspicion testing falsely negative on
initial RT-PCR test often requiring multiple tests runs to validate the result and a slew of
other laboratory logistical challenges [10,11]. Low test sensitivity may be possible due to:
sub-optimal clinical sampling approaches; variations in viral load; and manufacturer test
kit sensitivity. With communities having a high surge in caseloads, managing these RT-PCR
negative patients are overwhelmingly cumbersome. Procedural adherence requirements
in the laboratory and a multitude of the testing characteristics could be attributed to
the limitations [10–13]. Laboratories and virology research centres are working towards
overcoming the current limitations of RT-PCR testing in enabling more accurate detection
of the coronavirus. According to the WHO recommendations of October 2020, chest
imaging examination is a useful and effective approach for detecting clinical symptoms
of COVID-19 suspected and recovered cases [14,15]. These imaging modalities include
ultrasound, X-rays, MRI of the chest, computed tomography (CT) and needle biopsy of
the lung. Among these modalities, chest X-ray is primarily used to detect coronavirus
in contrast to CT, MRI and other medical imaging modalities. CT image takes longer for
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imaging, and CT scanners are sparsely available in low-income countries. Additionally,
CT imaging is costly, and it may pose health risks to pregnant women and children due
to its high ionizing radiations [16]. In stark contrast, X-ray imaging has a multiplicity of
use cases in many medical and epidemiological applications because it is readily available
around the world [17,18]. Thus, chest X-ray is a well-suited modality for examining and
diagnosing cases due to its lightweight operating speed, lower cost and ease of use by
radiologists. However, prior research has indicated some degree of inconsistencies in chest
X-ray images of COVID-19 patients [19].

1.2. Objectives

This work aims to detect and classify three types of pneumonia ( lung opacity pneu-
monia, Covid-19pneumonia, viral pneumonia) and distinguish these types of pneumonia
from a healthy chest X-ray scan to aid safe, accurate, less cumbersome and timely diagnosis.
We aim to use domain-invariant representations from a source domain to transfer unto the
chest X-ray target domain to improve model prediction performance given limited target
domain sample data without overfitting. Moreover, we provide a framework of end-to-
end learning using a dataset collected from multiple locations and periods to study the
transferrable properties of latent representations across domains and tasks using transfer
learning.

1.3. Contributions

Our main contribution in this work is a novel end-to-end Deep Transfer Learning
framework using deep convolutional neural network that detects and classifies the type
of pneumonia from chest X-ray scans. This study uses data from the public COVID-19
Radiography dataset collected from more than 20 hospitals across the world [20]. In this
dataset, we have a total of 21165 chest X-ray images in which 3616 images are infected by
pneumonia induced by COVID 19, 6012 images are lung opacity infection, 1345 images are
viral pneumonia, and 10192 images are normal images that are not infected. To the best
of our knowledge, the literature has not explored this data yet for this type of work. We
review the most recent 16 papers applying ML to classify the different types of pneumonias
from chest X-ray images. We found that most published ML models are dealing with
limited data that are mostly two classes (COVID-19 pneumonia and uninfected chest X-ray)
or three classes (COVID-19 pneumonia, all the other types of pneumonia regrouped into
a single class, and uninfected chest X-ray). Amount the 16 most recent papers reviewed,
we found 2 papers dealing with 4 classes and both resulting to an accuracy less than 90%.
These two works are based on limited data i.e. one used 1251 X-ray images and another
5941 X-ray images. We proposed a ResNet50 CNN architecture that is built to detect
and classify four types of classes (lung opacity infection, viral pneumonia, pneumonia
induced by COVID-19, uninfected chest X-ray) with an accuracy of 94.0% using 21165
chest X-ray images with a well-adopted methodology to deal with class imbalance. The
ResNet50 performance in convergence and generalisation is in contrast to Alexnet, VGG,
and ResNet34.

1.4. Outline

This paper is organized as follows: Section 2 introduces the reader to the problem
background and discusses related literature, Section 3 discusses the research methodology.
Section 4 presents the experimental results and a comparative survey of performances of
existing literature. Section 5 concludes and presents future research directions.

2. Related Literature

There has been an extensive body of scholarly work to detect COVID-19 from chest
X-ray (XCR) and CT images. These methods are varied in their use of different pipelines
and ML techniques from feature preprocessing to the choice of architecture under different
contexts and considerations, thus yielding different performance results. Ahammed et
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al.[21] in their comparative survey of ML and deep learning approaches for the detection
of COVID-19 using a dataset of all publicly available chest X-ray images of COVID-19
patients, reported 94.03% accuracy, 95.52% AUC and 94.03% sensitivity. Ng et al. [19]
created a massive dataset of 13,1975 XCR images and used a deep neural network model
to classify the images which resulted to an accuracy of 93.30%. Abbas et al.[22] developed
a convolutional neural network (CNN) model named Decompose-Transfer and Compose
(DeTraC) to classify chest X-ray images where they reported accuracy of 93.1% and 100%
sensitivity. In their study, Apostolopoulos et al.[23] using a dataset of 1,427 XCR images
and a transfer learning approach, reported the accuracy of 96.78%, a sensitivity of 98.66%
and specificity of 96.46%.

El-Din Hemdan et al.[24] proposed a Computer-Aided Diagnosis system (COVIDX-
Net) to classify positive and negative COVID-19 cases with reported F1-Scores of 89%
and 91% for normal and COVID-19, respectively. Karar et al.[25], developed a cascaded
architecture of VGG-16, ResNet-50V2 and DensNet-169 which achieved the accuracy of
99.9%. Minaee et al.[26] used radiograms of 5000 chest X-ray images to perform transfer
learning using ResNet-18, ResNet-50, SqueezeNet and DenseNet-121 with a reported best
sensitivity of 98% and specificity of 90%. Heidari et al.[27] used histogram equalization and
bilateral filtering techniques for preprocessing resulting in filtered images. These features
were used to train a VGG-16 network obtaining the best accuracy of 94.5% on all image
classes and 98.1% accuracy on COVID-19. Khan et al.[28] proposed CoroNet based on
the Inception architecture. They used the model to classify Normal, Pneumonia-bacterial,
Pneumonia-viral and COVID-19 from chest X-ray images. Their model achieved an overall
accuracy of 89.6% with 93% precision and 98.2% recall for the COVID-19 class. In their
work, Chandra et al.[29] proposed an Automatic COVID-19 Screening (ACoS) system using
a two-staged majority voting scheme of an ensemble of models. They reported a validation
accuracy of 98.062% in the first stage and 91.329% accuracy in the second stage. Ismael et
al.[30] used a pre-trained ResNet-18, ResNet-50, ResNet-101, VGG-16 and VGG-19 models
for feature extraction from XCR images. Using a Support Vector Machine (SVM) classifier
applied with different kernels, they obtained the accuracy of 94.7% on ResNet and SVM
with a linear kernel.

Karthik et al.[31] developed a custom CNN model which learns latent feature filters.
Their model has a reported F1-Score of 97.20% and an accuracy of 99.80%. Ohata et al.[32]
used a pre-trained MobileNet model with a linear SVM classifier and DenseNet-201 with
a Multi-Layer Perceptron to detect COVID-19. They reported accuracy and F1-Score of
95.6% for the MobileNet model and 95.6% accuracy and F1-Score for the DenseNet-201
model. De Moura et al.[33] demonstrated three end-to-end models for the classification
of chest X-ray images from portable equipment using a dataset of 1,616 images. Their
proposed DenseNet-201 CNN models have a reported accuracy of 79.62%, 90.62%, and
79.86%, respectively. Duran-Lopez et al.[34] proposed a deep learning model (COVID-XNet)
trained using 5-folds cross-validation. They obtained an accuracy of 94.43% and an AUC of
98.8%. Shorfuzzaman et al.[35] used a pre-trained Convnet encoder with a contrastive loss
function to learn the representation of XCR image features. Afterward, the learned features
were classified using a Siamese neural network with a reported accuracy of 95.6% and
an AUC of 97%. Shankar et al.[36], introduced a hand-crafted feature extraction method
(FM-HCF-DLF) and a CNN based on the Inception-V3 architecture for the classification of
XCR images. Their model yielded a sensitivity of 93.61%, specificity of 94.56%, accuracy of
94.08%, precision of 94.85%, F1-Score of 93.2%, and Kappa value of 93.5%.

The 16 most recent papers using ML models reviewed above are compared in Table
1 in terms of the size of the total number of images used, number of classes, adopted
method, and reported accuracy. Table 1 shows important results or observations; so it
warrants a detailed explanation. Out of the 16 papers reviewed, 4 papers addressed a
binary classification with images ranging from 50 to 1531 and reported accuracy ranging
from 95% to 99.0%; the average total of images and accuracy in these 4 papers are 725
images and 96.81% respectively. We have 10 papers that built the ML model based on
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a dataset with 3 classes. The reported accuracy ranges from 87% to 99.7% and the data
size ranges from 542 to 16995 images; the average total number of data size and accuracy
reported in these 10 papers are 4623 and 94.417%, respectively. Only two papers attempted
the work with a dataset of 4 classes. Of these two, the first published paper reported
accuracy of 89.0% using 1251 images while the second paper reported accuracy of 89.92%
with 5941 images. From this survey, it can be noted that few classes classification problems
are prompt to have greater accuracy with a small dataset. The accuracy measured on a
small amount of data is generally unreliable since the model can be generalizing very
poorly. In addition, most of the datasets discussed are not balanced with the number of
COVID-19 cases ranging from 25 images to 1968 images. Some of the papers did not report
the number of images per class. We reported an accuracy of 94.0% using a larger data that
includes 3616 images of COVID-19, thus guarantees generalisation compared to the above
4 classes classification papers.

3. Methods

This section provides discussion on the transfer learning framework and the related
deep transfer learning setting. We elucidate the conceptual framework of transfer learning
in medical image analysis. Also, an exploratory data analysis is carried out to understand
the dataset and its inherent characterization. In addition to this, we state the performance
criteria for the proposed framework for generalisation.

3.1. Transfer Learning

We provide the formal notation for transfer learning. Consider the source domain DS
as:

DS = {XS, P(XS)},

where XS is the input space and P(XS) is the marginal probability of the input. Te source
input XS ⊂ XS is defined as:

XS =
{

xSi |∀xSi ∈ Rn}m
i=1,

where m is the number of vectors xSi of size n. In DS, a source task TS is defined as:

TS = {YS, P(YS|XS)},

where YS is the label space and P(YS|XS) is the conditional probability of the output given
the input. This suggests that if YS ⊂ YS then the source output is:

YS =
{

yS1 , yS2 , . . . , ySm

}
, ∀ySi ∈ YS.

Each of the ySi ∈ {c1, c2, . . . , ck} with ck a given class. A target domain DT is defined as:

DT = {XT ,P(XT)},

where XT is the input space and P(XT) is the marginal probability of the input. The target
input XT ⊂ XT is given by:

XT =
{

xTi |∀xTi ∈ Rn}m
i=1.

For source target domain ST , a target task TT is defined as:

TT = {YS,P(YT |XT)},

where YT is the label space, P(YT |XT) is the conditional probability of the output given the
input. The output, YT ⊂ YT is defined as:

YT = {yT1 , yT2 , yT3 , . . . , yTm}, ∀yTi ∈ YT .
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Table 1: Short survey of proposed COVID-19 chest X-ray classification and/or detection
methodology.

Reference Number of Images Classes and Size Method(s) Reported Accuracy

Khan et al. [28] 1251

• Normal (310)
• Pneumonia Bacterial (330)
• Pneumonia Virus (327)
• COVID-19 (284)

CNN (ConNet) 89%

Ozturk et al. [37] 1625
• Pneumonia (500)
• No Findings (1000)
• COVID-19 (125)

Dark CovidNet 87.02%

Apostolopoulos and Mpesiana [23]

1427

1442

Dataset (i)

• Pneumonia Bacteria (700)
• Normal (504)
• COVID-19 (224)

Dataset (ii)

• Pneumonia Bacteria and Viral (714)
• Normal (504)
• COVID-19 (224)

CNN, MobileNet v2 96.78%

Wang et al. [8] 13975
• Pneumonia (5538)
• Normal (8066)
• COVID-19 (358)

DNN, VGG-19, ResNet-50, CovidNet 93.3%

Sethy and Behera [38] 381
• Pneumonia (127)
• Normal (127)
• COVID-19 (127)

CNN, ResNet-50 + SVM 95.35%

Hemdan et al. [39] 50 • Normal (25)
• COVID-19 (25) D-CNN, VGG-19, DenseNet-201 98.0%

Keles et al. [40] 810
• Normal (350)
• COVID-19 (210)
• Viral Pneumonia (350)

CNN, Covid-ResNet, Covid-CNNet 97.6%

Narayanan et al. [41] 5856
• Normal (1583)
• Viral Pneumonia (1493)
• Bacterial Pneumonia (2780)

ResNet-50, DenseNet-201, Inception-v3, Xception 98.0%

Ghoshal and Tucker [42] 5941

• Normal (1583)
• Viral Pneumonia (1504)
• Bacterial Pneumonia (2786)
• Covid-19 (1968)

CNN, Bayesian ResNet-50 v2 89.92%

Chowdhury et al. [43] 3487
• Normal (1579)
• Viral Pneumonia (1485)
• Covid-19 (423)

DCNN, CheXNet + DenseNet-201 99.7%

Zhang et al. [44] 1531 • Pneumonia (1431)
• Covid-19 (100) CNN, Classification Grad-CAM 95.13% AUC

Abbas et al. [22] 195 • Normal (80)
• Covid-19 (105) D-CNN, DeTraC 95.12%

Karim et al. [45] 16995
• Normal (8066)
• Pneumonia (8614)
• Covid-19 (259)

DNN, Deep Covid Explainer PPV 96.12%

Sitaula and Hossain [46]

1125

1638

Dataset (i)
• No Findings (N/A)
• Pneumonia (N/A)
• Covid-19 (N/A)

Dataset (ii)• Normal (310)
• Pneumonia Bacteria (330)
• Covid-19 (327)
• Viral Pneumonia (327)

VGG-16, VGG-19 87.49%

Pham [47] 1124

Dataset (i)
• Normal (721)
• Covid-19 (403)
Dataset (ii)
• Normal (438)
• Covid-19 (438)

Dataset (iii)
• Normal (876)
• Covid-19 (438)
Viral Pneumonia (436)

CNN, AlexNet, GoogleNet, SqueezeNet 99.0%

Chandra et al. [29]

542

80

680

Dataset (i)
• Normal (19)
• Covid-19 (434)
• Pneumonia (89)

Dataset (ii)
• Normal (80)

Dataset (iii)
• Normal (345)
Pneumonia (345)

KNN, ANN, DT, SVM 93.41%
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The hypopaper spaceH ⊂ YX is defined as

f : X → Y s.t. f ∈ H

X 7→ f (X) .

The goal of transfer learning is to learn a representation
∼
X such that

∼
X = argmin

f∈H
{L( f (X) 6= Y), }

where L is the loss function defined as:

L : Y × Y → R

L(y, f (X)) 7→ R.

The classification empirical risk RDT is measured by:

RDT = P( f (XT) 6= yT |
∼
X), DS 6= DT or ST 6= TT ,

such that:
f ∗DT

= argmin
f∈H

{RDT ( f (XT), YT ,
∼
X)}.

3.2. System Architecture

CNNs have increasingly been used in vision tasks such as detection, classification and
segmentation [48–52]. CNNs take a biological inspiration from the visual cortex. The visual
cortex is a region of the brain that has cells that are sensitive to visual perception. The
adoption of CNNs in ML stems from a research conducted by Hubel and Weisel in 1962
where they demonstrated that some individual neuronal cells in the brain fire or activate
only in the presence of certain edges and in specific orientations [53]. A CNN architecture
consists of a convolutional, pooling which is used for down-sampling then followed by a
non-linear activation and a fully connected layers. The convolutional has a filter that acts
as a feature detector and selection. The convolved region is known as the receptive field.
The output of a convolution is a feature or activation map which serves as input to deeper
layers of the network. The role of the filter (a concatenation of kernels) is to detect low level
features like edges, colors, curves, virtual lines, boundaries and high level features such
orientations, local surfaces and discontinuities as was first proposed by Marr[54]. In this
paper, the ImageNet (i.e., a dataset with over one million images and a thousand categories
of objects) was used as the source domain for the basis of transfer learning to chest X-ray
images. Figure 1 shows the proposed architectural framework for this representational
transfer learning task. Transfer learning is a well-suited framework for healthcare computer
vision tasks where target domain datasets for learning are significantly small, and model
generalisation is a key consideration.
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Figure 1. Proposed network architecture where convolution blocks in the left segment indicate
pre-trained weights from the source domain which remain frozen and the right indicates the frozen
base layers with trainable fully connected layers with a top Softmax layer.

3.3. System Model and Assumptions

A high-level overview of our proposed transfer learning framework is presented
in Figure 2. The initial stage is dataset setup, which includes loading both the brain
chest X-ray image scans and associated class labels followed by batch normalization and
cross-validation split into train, validation and test sets. We have used various data
augmentation approaches such as zooming, flipping, rotation, mirroring, etc. to make
the model generalize better. Afterwards, we used ResNet50 CNN architecture, Stochastic
Gradient Descent for the transfer learning framework.

Data Augmentation
zooming/flipping

/rotation etc

CNN feature 
extraction layers

of ResNet50

Training the 
Dense layers

 

1

2

3

4

Output

Input Covid-19

Lung 
Opacity

Normal
(Healthy)

Viral
Pneumonia

Figure 2. The schematic represents the proposed system model wherein the input is an RGB x-
ray tensor, followed by a series of affine transformations. The next stage is a feedback latent
feature extraction through convolution operations, classification in the dense layers preceded by
non-linearities and parameter optimizations using SDGM. The four output classes are shown in the
final stage of the model.

3.4. Dataset

To understand the underlying signal distribution in the chest X-ray image dataset, we
performed exploratory data analysis. Figure 3 gives a histogram of the dataset class distri-
butions. Healthy and Lung Opacity samples compose 80% of the dataset. Given that our
primary objective is to recognise COVID-19 patients to aid early diagnosis thus preemptive
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medical care, the figure indicates a problem of class imbalance. Viral Pneumonia is the
least represented class indicating 6.4 % of the total dataset, thus in such situation Precision,
F1-Score or Recall are better suited as metrics in contrast to accuracy.

Normal Lung_Opacity COVID Viral Pneumonia
Class Type - Diagnosis

48.2%

28.4%

17.1%

6.4%

Figure 3. A histogram of the distribution of the X-Ray images per class. Healthy/Normal has the
largest numbers of data-points, representing 48.2% per cent of the dataset followed by Lung Capacity,
Covid-19then viral pneumonia respectively.

The dataset contains a substantial number of images compared to existing literature [2,
55,56]. However, due to privacy concerns, additional clinical information about patients is
not available. Thus, we proceed with the investigation of image patterns and relationships
between the classes. The data is unbalanced with almost 50% of samples belongs to the
"Healthy" class that may bias the model towards this class in terms of performance. The
X-ray images are rank 3 tensors that represent the height, width, number of channels. We
proceed by examining the inherent pattern between the image colour values and their class.
Figures 4 and 5 show the RGB color intensity distributions for the four classes which is
scaled between 0 to 255-pixel intensities for the individual image classes. The distribution
illustrates how the minimum, mean and maximum colour values are presented in the
dataset.

We continue by observing the relationship between a sample X-ray image mean as
shown in Eq. (1) and its standard deviation using Eq. (2):

x =
1

Ic Ih Iw

Ic

∑
i

Ih

∑
j

Iw

∑
k

xijk, (1)

where Ic is the number of color channels, Ih is the height of the image and Iw is the width
of the image.

σ =

√√√√√ 1
Ic Ih Iw

Ic Ih Iw

∑
i

(
Ic

∑
j

Ih

∑
k

Iw

∑
l

xjkl − x

)2

. (2)
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Figure 4. The minimum and mean RGB color intensity distributions for the four X-ray image classes.
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Figure 5. Maximum RGB color intensity distributions for the four X-ray image classes.

The distribution of the whole dataset is very akin to the individual healthy and lung
opacity patient images, this is because both classes contribute the most to the dataset
relative to the remaining classes of viral pneumonia and COVID-19. Separating by class,
we can visualise that the mean, maximum and minimum values vary according to the
image class. Amongst all classes, viral pneumonia shows a Gaussian-like distribution
across the three different distributions while COVID-19 shows a nearly normal distribution.
The maximum value possible for an image is 255 and most classes peak around it. From
Figure 4, viral pneumonia is the class that has the highest samples with lower maximum
values. Most samples’ RGB colour intensities are within the 200− 225 range. Normal
(Healthy) and lung opacity images show a very similar distribution of their mean values.
This may be due to the two classes having the most sample X-ray images in the dataset.
Moreover, the different peaks in the distribution could be attributed to the image source
(e.g. two different hospitals where instrument noise, compression error or some other
phenomena may have contributed to the veracity of the underlying signals). Figure 4
shows a similar distribution with regards to the maximum values as indicated by the local
minimum between intensities of 220 to 240. At the same time, normal patients have a peak
at 150 and another peak around 250. We observe that the images are in gray-scale, they
have the three channels which contain repeated RGB values. A visualised sample images
from the dataset are shown in Figure 6 in a rainbow color map.
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Figure 6. A comparison illustrating a plot of the 3 colors channels.

Figure 7, gives a depiction of the dataset projected onto a two-dimensional plane,
shows that most of the data points are clustered in the central region of the graph. That
implies the inter-class pixel intensity variability is low. However, Covid-19 samples show
some clusters with a high channel colour mean and pixel intensities laying between 150
through 200. This can be visualised in Figure 7 (bottom-panel), a 10% zoom in the centre
of Figure 7 (top-panel). It can be observed that the samples with a lower mean and a
low standard deviation are in the lower corner and the upper corner has the converse
situation. Because of the dense clustering of data points in Figure 7, which gives a high-
level overview of the dataset but not fine-grain information, a plot of class-level depictions
of the dataset is shown in Figure 8. We observe that the classes (Covid-19, Lung Opacity,
and Viral Pneumonia) have high intra-class variability with outliers that are distant from
the centroid.

Figure 8 shows that Normal (Healthy) and Lung Opacity have similar data point
cluster formations. This similarity in distributional pattern between the two classes is
characterised by the spread of the respective graphs where a majority of the samples are
along regions of high standard deviation, and within 100 to 180 mean pixel intensities.
Viral Pneumonia images, on the other hand, show a denser scatter plot which is due
to the samples having higher in-class similarity. The graph of the COVID-19 does not
indicate any semblance to the other three classes. It has a higher variance and more outliers
compared to the other classes. The data points are scattered across all regions of the graph.
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Figure 7. A side-by-side comparison of the dataset clusters using image mean and standard deviation
(top-panel) and the 10% (bottom-panel) zoom at the centre of centre mean of the images

This phenomenon could indicate the unique intensity distribution of the image signals
compared to the other three classes.
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Figure 8. Individual class distributions for COVID-19 (bottom-right) to Healthy (top-left). Normal
(healthy) and Lung Opacity images have a similar cluster formation and pixel intensity distribution.

3.5. Learning Setting

The CNN architectures comprise varied hyperparameter configurations and tuning
techniques. Due to the high in-balance nature of the dataset under study, an inverse class-
weighting scheme in Eq. (3) was used to balance the class weights to help avoid a biased
model that performs well on majority class and poor on minority classes:

Wj =
m

knj
, (3)

where Wj is the weight matrix of class j, m is the total number of training examples, k is
the total number of classes, and nj is the number of examples belonging to class j. Another
useful technique that we use to help combat overfitting is the time-based learning rate
decaying technique to vary the learning rate over each iteration on the training batch to aid
faster convergence as shown in Eq. (4):

ηt+1 =
ηt

1 + ρet
, (4)

where ηt+1 is the new learning rate, ηt is the current learning rate, ρ is the decay rate
hyperparameter and et is the epoch number at time t. Another useful, technique to obtain
high performance is the use of Stochastic Gradient Descent (SDG) with Momentum. The
vanilla SGD is shown in Eq. (5), where θj is the weight at batch j which is updated
with respect to the gradient of θj that shows the direction of optimization across the loss
landscape; η ∈ [0, 1] is the step size, and the loss function L(θ) we seek to minimize.

θj ← θj − η∇θjL(θ). (5)

The Stochastic Gradient Descent uses an iterative search approach to find the optimal
minimizer (parameters or weights) that minimize the objective function (the loss function)
thus obtaining a model that generalizes to OOD examples. However, finding the global
minimum (or minima) which is the ideal objective of optimization is a hard problem largely
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due to saddle points or convergence of the optimization algorithm to a local minima. This
optimization challenge is more so common for deep learning problems which are high
dimensional and suffer from the curse of dimensionality. Thus Stochastic Gradient Descent
with Momentum (SDGM), Eq. (6), is a handy optimization technique to overcome the
problems of saddle points and local minima.

vt+1 ← ρvt +∇θL(θ),
θj ← θj − ηjvt+1.

(6)

In SDGM, the term v is often considered as the velocity and ρ as the frictional force
controlling the velocity as the weight parameter θ is updated in each iteration. As a memory
unit, the velocity v, which has accumulated previous gradient information, address the
problem of convergence to saddle points or local minima in the loss landscape which
results in SDGM having a better generalisation and performance guarantees to SDG.

3.6. Simulation Environment

Experiments are carried out on the Google Colaboratory (Colab) platform. Colab
provides access to a high performance Virtual Machine (VM) that dynamically allocates
NVIDIA K80s, T4s, P4s and P100s Graphic Processing Unit (GPU), Random Access Memory
(RAM) and GDrive storage for high-end computing freely.

3.7. Performance Metrics

Model performance evaluation is a key constituent in the pipeline of building any
ML system. Given that the primary focus of such model is to perform well on unseen
future data, therefore, evaluate train, validation and test sets give a good indication on the
generalisation bounds of such model. In that regard, a confusion matrix is useful metric
to help evaluate a classification model. Confusion matrix is an intuitive cross-tabulation
of actual class values and predicted class values. It contains a cross-tabulation of every
observations that fall in each category.
• Accuracy (acc): a measure that indicates the proportion of correct predictions to the

sum of evaluated samples.

acc =
TP

TP + FP + TN + FN
.

• Sensitivity/ Recall (R)/ True Positive Rate: computes the fraction of positive exam-
ples that are correctly classified to the total number of positive examples evaluated.

R =
TP

TP + FN
.

• Specificity (sp): indicates the fraction of negative examples that are correctly pre-
dicted.

sp =
TN

TN + FP
.

• Precision (P): measures the proportion of positive examples correctly predicted to the
total number of positive predictions.

p =
TP

TP + FP
.

• F1 Score: is a measure of the harmonic mean of recall and precision. This is a good
measure of performance when the classes are in-balanced.

F1 Score =
2

1
R + 1

P
= 2

(
RP

R + P

)
,
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• False Positive Rate (FPR): is the fraction of negative examples incorrectly classified
to the total number of negative samples. It is also regarded as the complement of
specificity.

FPR =
FP

FP + TN
= 1− sp.

4. Results

This section presents the results of all experiments conducted in this work. Three CNN
architectures Visual Geometric Group-19 (VGG-19), Densely Connected Convolutional
Network-121 (DenseNet-121), and Deep Residual Network-50 (ResNet-50) were used to
carry out experiments. The result of each model has some performance similarities as well
as marked contrasts highlighted in the illustrations (loss and accuracy curves, confusion
matrices and Receiver Operating Characteristic curves). With the goal of ML being finding
a model that shows robust bias-variance trade-off, albeit, out of sample distribution (OOD)
generalisation. The hyperparameter choices and configurations in the present work where
empirically-driven and are indicative of best practices in modeling with deep neural
networks, reason being, deep network models are highly opaque and black-box in nature.
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Figure 9. VGG-19 model was trained for 100 epochs. The plot depicts the train vs. validation loss.
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Figure 10. VGG-19 model was trained for 100 epochs. The plot on the right depicts the train vs.
validation accuracy.

Using a 5-fold cross validation technique, Figure 9 shows the train and validation loss
and Figure 10 shows the accuracy for train and validation for the VGG-19 model. With
the aforementioned technique, the VGG-19 model obtained a best train and validation
accuracy of 96.4% and 93.4% respectively, and a test accuracy of 93.99% superseding the
other two models with respect to test accuracy. This is supported by the side-by-side
comparison of the test image classification summary in Table 2. However, the accuracy is

Table 2: A summary of total images classified correctly and incorrectly by VGG-19,
DenseNet-121, and ResNet-50 using a total test dataset of 2115 images. Amongst the
three models, VGG-19 demonstrated high accuracy of XCR image classification with only
127 misclassifications.

Model Correct classification Incorrect classification
VGG-19 1988 127
DenseNet-121 1972 143
ResNet-50 1985 130

not very informative in situations where a dataset is highly in-balanced as in the current
work. Secondly, the objective of developing a model highly influences the performance
metric choice to be made. Thus, there is a trade-off where a model should have a high
sensitivity towards a certain class. In the current context, COVID-19 which if incorrectly
classified albeit goes on detected can lead to a massive infection rate in the community
retarding the containment of the virus efforts. So, the confusion matrix in Figure 11 and the
Receiver Operator Characteristic curve in Figure 12 depict the fine-grain performance of
the VGG-19 model on each XCR image class. The model generally, performed well across
the four classes with Viral Pneumonia having the least misclassified examples relative to
the class size. The ability of VGG-19 to disentangle and correctly classified these Viral
Pneumonia images is largely due to its distinct Gaussian-like class distribution as shown
in Figure 8 whilst Normal and Lung Opacity have similar class distributions leading to
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problems of correctly disentangling and classifying all examples from both classes correctly.
This similarity between the Normal and Lung Opacity class distributions has consistently
led to high misclassification of examples between the two classes across all trained models.
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Figure 11. VGG-19 Test Confusion Matrix, where most X-ray images were classified correctly with
few misclassification for COVID-19 class.
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Figure 12. The Receiver Operator Characteristic Curve (ROC) where COVID-19 class obtained the
high Area Under the Curve (AUC) of 1.0.

To further gain a deeper understanding of the classifiers performance across the four
classes, the above ROC curve in Figure 12, characterizes the AUC. The AUC gives an
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indicator of the classifiers performance per class across the test dataset. And from the ROC
curve, the VGG-19 model showed a remarkable AUC score of 1.0 across the COVID-19
images. The advantage of this measure is, it contrasts the True Positive Rate to the False
Positive Rate. So a higher AUC indicates a class-level performance of the model and the
reverse holds true. In summary, the model was able to learn disentangled representations
of COVID-19 images and classify them better than the three other classes.

In the next experiment, a DenseNet-121 model was trained for 100 epochs, using
the same test size used to testing the VGG-19 model. The goal of the experiment, was
to compare the models generalisation performances so as to a do selection of the best
model. From Figures 13 and 14 , one can notice that the model had high degree of unstable
convergence to the optima. That is, in both the train and validation loss as well as the
train and validation accuracy graph. The train loss remained consistently lower than the
validation, though weight decaying, class weighting, learning rate scheduling, checkpoints
and regularization techniques we used. Similar phenomenon was noticed with the train
and validation accuracy curves. However, the DenseNet-121 model shows a greater
degree of convergence stability in the last 50 epochs as opposed to the VGG-19 model.
This is indicative of a lower spread (upper and lower standard deviations) of the curves.
Nonetheless, the model achieved an overall train, validation and test accuracy of 97.4%,
93.58% and 93.24%, respectively.
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Figure 13. A DenseNet-121 model trained during 100 epochs: train vs. validation loss.
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Figure 14. Train vs validation accuracy. The model showed unstable convergence behaviour in the
first 45 epochs as the graphs show off-shooting effects in both train and loss metrics.

To better understand and analyze the class-level performance of the model, Figures15
and 16 show the test confusion matrix and the ROC curve respectively. From the confusion
matrix, most of the images were classified correctly, however, the same problem of high
misclassification for Normal and Lung Opacity classes persists. This clearly warrants
further inquire into the data generation process (at least for the classes in question). It is
worth noting that, the dataset was aggregated from multiple sources, which can, inevitably
introduce a range of problems from measurement errors, to wrong class labelling. Given,
that the field of radiology extensively requires dedicated training and specialization, anno-
tating medical images relies on domain knowledge and tracking problems is painstakingly
difficult. Nonetheless, the four classes showed a remarkable AUC performance, relative the
to other two models. COVID-19 class shows a consistent 1.0 AUC score in the DenseNet-121
model while Lung Opacity has the least AUC score of 0.982.
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Figure 15. DenseNet-121 Test Confusion Matrix, most of the test XCR images were classified correctly,
however, Lung Opacity and Normal classes have the highest total misclassification of 61 and 32,
respectively. DenseNet-121 has a higher misclassification total than VGG-19.
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Figure 16. The ROC curve. COVID-19 achieved the highest AUC of 1.0 followed by Viral Pneumonia
class having 0.998 whilst the two remaining classes have AUC of 0.98.

Finally, a ResNet-50 pre-trained CNN model was used for transfer learning unto the
XCR dataset. The model after fine-tuning obtained an overall test accuracy of 0.938534.
One can discern from the loss in Figure 17 and accuracy Figure 18 that the model had
a nearly smooth convergence to the optimum during training. This is indicative by the
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perfect fit relationship between the train and validation loss and accuracy curves across all
100 epochs. This phenomenon can be explained by the robust representational power of
ResNet-50 in tackling the vanishing gradient problem through residual connections in its
architectural formulation. The residual connection in ResNet, allows not only the building
of deep representational stacks of hidden layers but the preservation of information and
gradient flow in layer-wise transformations in a CNN network.
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Figure 17. Train vs validation loss of ResNet-50.
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Figure 18. Train vs validation accuracy of ResNet-50.

The test confusion matrix is shown in Figure 19 to comparatively assess class-level
performance of the model. In this figure as indicated in the former models, Lung Opacity
has the highest misclassification with a total of 68 images followed by the normal class
having 31 misclassified images. A subset of images in these two classes appear to be
entangled thus one being predicted as the other by the model. However, ResNet-50 has the
least number of misclassification with a total of 140 followed by VGG-19 having a total of
137 misclassified images and DenseNet-121 with 153 misclassified XCR images. We have
shown the ROC curve in Figure 20 that depicts the False Positive Rate (FPR) against the
True Positive Rate (TPR) for the four classes under study. The results of the experiments
indicate that ResNet-50 achieved a better AUC performance in contrast to VGG-19 and
DenseNet-121 models. Based on the analysis of the performance of the three models, we
observe that ResNet-50 is well suited for the detection and classification of traditional
pneumonia and pneumonia induced by the COVID-19 from Chest X-ray images.
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Figure 19. ResNet-50 Confusion Matrix on the left graph. Like the other two models, the Lung
Opacity and Normal XCR image classes showed the highest two misclassification.
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Figure 20. The ROC curve for ResNet-50 model. The overall performance of the model for the four
classes was excellent with COVID-19 class obtaining AUC of 1.0.

To understand the nature of the learnt representation in the fine-tuned ResNet-50
model, the activation map for layer 48 is shown in Figure 21. In this layer, the model
has learnt the latent factors of variation in the chest X-ray images as shown by the first 4
rows in the 16x16 grid of filters. This indication of specific firing patterns of the filters for
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separate image classes is a striking feature of hierarchy representations of disentangled
representations learnt in the CNN model.

Figure 21. In this diagram (ResNet-50 convolution layer 48 with 256 filter activation maps in a 16x16
grid), we see the emergence of XCR image structure in the feature maps after Transfer Learning. This
shows that the representation of the network has learnt inherent invariant regularities in the XCR
dataset.

5. Conclusions

The maturation of ML and Computer Vision fields have offset remarkable research
interest in their application to medical image analysis. Traditionally, medical image analysis
of patients is done by radiologist. This process is laborious and time-consuming. Thus
extensive scholarly work has been done in medical image analysis with Computer Vision
and ML to help improve healthcare outcomes. Moreover, the outbreak of the COVID-19
caused by the SARS-CoV-2 has led to extensive research into the application of Deep
Learning for fast and accurate detection of the disease. Deep Learning for the detection
of COVID-19 from chest X-ray modality has primary been used in prior work as a viable
complementary test method to the RT–PCR. Nonetheless, most of the existing literature on
deep learning models for the detection of COVID-19 mostly utilize unrealistic experimental
setups. On that ground, we have carried out experiment using a noisy dataset of chest
X-ray images collected from 20 health centres across the world. This was done primary to
tackle the problems of distribution shift and concept drift. Distribution shift (co-variate
shift) happens where the distribution of independent variables shift potentially due to
spatio-temporal variability in latent processes. While concept drift occurs in the change
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of the statistical properties of target variables over time in unforeseen ways. A survey of
recent work in detecting and classifying COVID-19 from chest X-ray images was presented
in Table 1. Our result showed an overall accuracy of 94.0% using a VGG-19 model applied
to X-ray images containing 4 classes. However, upon fine-grain performance analysis,
we have shown that ResNet-50 as the best test performance with respect to ROC curve
analysis.

In this present work, we have proposed a framework for the detection and classifica-
tion of traditional pneumonia and pneumonia induced by the COVID-19 from Chest X-ray
images. Transfer Learning shows a promising direction of training medical diagnostic
deep learning models where access to annotated dataset is limited as manual labelling
in such setting is very laborious and expensive because it requires domain expertise. Us-
ing 5-fold cross validation, our work demonstrates the potential utilization of transfer
learning to aid fast and accurate early detection of COVID-19 especially in asymptomatic
patients. Nonetheless, further inquiry is required to use hyperparameter optimization
techniques such as Bayesian Optimization or Evolutionary Optimization to find the right
set of hyperparameters for better test performance improvement.
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