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Abstract:  Apoptosis is associated with numerous phenotypical characteristics, and is thus studied 
with many tools. In this study, we compared two broadly used apoptotic assays: TUNEL and stain-
ing with an antibody targeting the activated form of an effector caspase. To compare them, we de-
veloped a protocol based on commonly used tools such as filters, z-projection and thresholding. 
Even though it is commonly used in image-processing protocols, thresholding remains a recurring 
problem. Here we analyzed the impact of processing parameters and readout choice on the accuracy 
of apoptotic signal quantification. Our results show that TUNEL is quite robust, even if image pro-
cessing parameters can allow or not to detect subtle differences of the apoptotic rate. On the con-
trary, images from anti-cleaved caspase staining are more sensitive to handle and proved to neces-
sitate to be processed more carefully. We then developed an open source Fiji macro automatizing 
most steps of the image processing and quantification protocol. It is noteworthy that the field of 
application of this macro is wider than apoptosis as it can perfectly be used to treat and quantify 
other kind of images.  
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1. Introduction 
Apoptosis is a programmed cell death characterized by caspases activation, subse-

quent degradation of cell components, including DNA fragmentation, and final phagocy-
tosis of so called "apoptotic bodies" by surrounding cells or macrophages [1]. Importantly, 
apoptosis is not only critical for correct development of metazoan organisms, but also for 
their survival. Indeed, apoptosis failure is observed in many diseases including cancers. 
Therefore, it is widely studied and new actors are regularly identified. Apoptosis detec-
tion can be performed by multiple methods based on various features of apoptotic steps 
or regulators. Imaging of apoptosis in whole tissues can rely on a more limited number of 
methods. The first developed and best known of them is TUNEL (Terminal deoxynucleo-
tidyl transferase dUTP Nick End Labeling) which is based on labeling of DNA 3’ ends 
whose number increases during the DNA fragmentation step of apoptosis. However, 
TUNEL is costly, time consuming and also detects necrotic cells [2]. Alternatively, use of 
antibodies raised against cleaved ─ and thus activated ─ executioner caspases has proved 
to be more specific and convenient since immunodetection protocols are less time con-
suming as they include fewer steps than TUNEL. In mammals, the cleaved form of exe-
cutioner caspase 3 is targeted [2]. In Drosophila melanogaster, the antibody used was raised 
against the executioner caspase Dcp-1 cleaved at Asp 216. This antibody was recently 
shown to actually detect the cleaved forms of both Dcp-1 and DrICE executioner caspases 
[3].  
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In this study, we wanted to compare TUNEL and cleaved caspase stainings the more 
objectively possible. To this end, we co-stained apoptotic wing imaginal discs (the larval 
tissue giving the adult wing) with TUNEL and anti-cleaved Dcp-1 antibody and ad-
dressed their sensitivity and requirements in terms of image processing. 

As a single image can give a great diversity of information, the first step of image 
analysis consists in choosing a readout (i.e. which data is worth collecting). For example, 
protein quantity can be assessed by measuring staining intensity and tumor or bacterial 
colony growth can be followed by measuring stained area. In the case of apoptosis, the 
most commonly found readouts are the “number of apoptotic cells” or an "apoptotic in-
dex" that has various definitions according to the lab [4–7].  

When the chosen readout is the "number of apoptotic cells", many studies use a man-
ual counting, implying that an experimenter defines interesting spots and count them. 
Manual counting is reliable because the expert eyes of experimenters are able to distin-
guish the signal of interest from background noise better than any machine. This counting 
can be assisted by the “Cell Counter” plugin of ImageJ that records every experimenter’s 
clicks. Even with this assistance, this approach remains time consuming and might in-
volve estimation bias that can eventually raise ethical questions. This is why, whenever it 
is possible and whatever the readout, it is better to rely on automatized -or semi automa-
tized- computer-based methods. However, machines do not have eyes trained to recog-
nize specific signal from background. This discrimination is allowed by the image pro-
cessing steps done prior to quantification in order to decrease background noise and am-
plify the signal of interest. This proper discrimination of foreground from background is 
called segmentation and defines the boundaries of the objects of interest. Thus, segmen-
tation quality directly affects quantification accuracy. 

Other software than ImageJ such as Imaris or Matlab display default functions for 
signal quantification [8,9] which usually comprise image processing to yield a rapid result. 
However, these programs are not open source and the methodology used to obtain the 
values is often hard to access, which means that users have only a limited control on their 
implementation. Moreover, they usually are computationally demanding and thus re-
quire powerful device to run. For all those reasons, many researchers prefer working on 
ImageJ / Fiji with which one can develop its own protocol for image processing and quan-
tification.  

Once the readout has been chosen, image quality has to be increased by getting rid 
of background noise and artefacts in order to improve segmentation. Images typically dis-
play three major kinds of defects: 1. general background noise; 2. isolated pixels with an 
aberrantly high intensity; 3. groups of pixels with aberrantly high intensities. Many func-
tions are available to improve image quality on ImageJ but they often involve experi-
menter's appreciation. Unfortunately, the more the experimenter is involved, the harder 
it is to ensure that all the images have undergone the same process. However, most of the 
time, it is impossible to totally obliterate experimenter involvement.  

We previously showed in the Drosophila model that overexpressing rbf1, the homolog 
of the human tumor suppressor RB1, induces apoptosis. This apoptosis requires the 
pro-apoptotic Bcl-2 family member Debcl, and involves caspases activation [10]. It can be 
visualized using TUNEL on rbf1 overexpressing wing imaginal discs [11]. In this study, 
we co-stained wing imaginal discs overexpressing rbf1 alone (vg > rbf1) or in the context 
of a debcl partial inactivation (vg > rbf1, debclE26) with both TUNEL and anti-cleaved Dcp-1. 
We used these images to compare several methods of image processing and estimate their 
impact on the quantification of apoptosis for both assays. We then developed a semi-au-
tomatic protocol available as a free access Fiji macro called CASQITO (Computer Assisted 
Signal Quantification Including Threshold Options). This protocol enables, to process im-
ages of both labelings and quantify the number of apoptotic cells or the stained area. It is 
worth noting that our analysis and protocol can be relevant to quantify other types of 
staining outside the field of apoptosis. 

2. Materials and Methods 
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Fly stocks 
Flies were raised at 25°C on a standard medium. The UAS-rbf1 and vg-gal4 strains 

were generous gifts from Joel Silber (Institut Jacques Monod, Université de Paris, France). 
The debclE26/E26 was obtained from the Bloomington Drosophila Stock Center (BL 27342) 
and we used a w1118 fly stock as the reference strain.  

 
Immunostaining and images acquisition 

Third-instar larvae were dissected in 1X PBS pH 7.6 in order to remove every possi-
ble tissue except wing imaginal discs, then carcasses were fixed with 3.7 % formaldehyde 
in 1X PBS for 20 minutes at room temperature and washed three times for 10 min in 
PBST (1X PBS, 0.3 % Triton X-100). Discs still attached to cuticles were then saturated for 
1h in PBST-BSA (1X PBS, 0.3 % Triton X-100, 2 % BSA) and dissected again to isolate wing 
imaginal discs which were then incubated overnight with 1:100 dilution of anti-cleaved 
Dcp-1 (Asp216, Cell Signaling Technology) at 4°C. The following day, after three washes 
in PBST, wing discs were incubated for two hours with anti-rabbit secondary antibody 
(1:400, Alexa-Fluor-612-conjugated goat anti-rabbit-IgG (H+L) antibody, Molecular 
Probes, Thermo Fisher Scientific) in PBST. Following three washes in PBST, TUNEL stain-
ing was performed according to manufacturer instructions (ApopTag Red In situ apopto-
sis detection kit, merck-millipore). Finally, wing discs were mounted in ProLong Dia-
mond (Invitrogen) and images were acquired using a Leica SPE upright confocal micro-
scope (Leica) at 568 nm for TUNEL and 612 nm for anti-cleaved Dcp-1 stainings. Image 
analysis was done exclusively on Fiji, the exact same zone selection was studied for both 
assays 

3. Results 

3.1. Choosing a readout according to the biological question 
The readout is the data used to translate the intensity of the biological effect in num-

bers. Therefore, the chosen readout should be coherent with the biological question and 
the tool used to study it. For instance, intensity can be measured to assess the amount of 
a stained component. In the study of apoptosis rate, whatever the assay used, a cell is 
apoptotic or not. Thus, quantifying the intensity of the staining, even if it can somehow 
make sense, does not seem the best option for accurate quantification of apoptosis. Con-
versely, as long as apoptotic cells can be separated from each other (low apoptosis rate, 
widespread pattern or intracellular discrete staining), counting the number of objects 
equals counting the number of apoptotic cells, which constitutes a valid readout. In case 
this readout cannot be used, another valuable readout is the stained area. This can be used 
as a readout per se or can be used as a primary data and further treated to get an apoptotic 
index or score. If so, the stained area can be divided per the number of cells (obtained by 
plasma membrane or nuclear co staining), the area of interest (surface of a cellular clone 
or of the tissue section). These numbers do not indicate the actual number of apoptotic 
cells but this number is rarely necessary and those readouts satisfy the need to have a 
quantification precise enough to compare different samples. 

Here, we used TUNEL and anti-cleaved Dcp 1 to detect apoptosis. These highlight 
different features of apoptosis as TUNEL labels fragmented DNA in the nuclei while 
anti-cleaved Dcp 1 staining is cytosolic. As rbf1 overexpression is a potent apoptosis in-
ducer in the wing imaginal discs, the probability to have clusters of adjacent apoptotic 
cells is rather high. This can eventually become problematic for accurate quantification. 
Indeed, when adjacent cells are apoptotic, TUNEL labeling is expected to remain puncti-
form as nuclei remain spaced by cytoplasms (Figure 1 (a) and (c)). On the contrary, with 
anti-cleaved Dcp 1 staining, it is expected that such adjacent apoptotic cells become indis-
tinguishable from each other and thus appear as a single object (Figure 1 (b) and (d)).  
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Figure 1. Effect of different type of stainings on the "Count" readout. (a) and (b) scheme showing a 
virtual cluster of four apoptotic cells. In (a), green spots represent nuclei stained by TUNEL while 
in (b), red patches represent cytosols stained by anti-cleaved Dcp-1. (c) and (d) schemes present 
the result of image processing for these signals.  

Therefore, for the count of apoptotic cells, these clusters of labeled cells are not ex-
pected to alter the quantification for TUNEL while they may cause an underestimation of 
the number of apoptotic cells with anti-cleaved Dcp-1 staining. The extent of this under-
estimation is difficult to anticipate as it depends on many parameters. Still, this underes-
timation surely increases with the apoptotic rate – as the probability to have clusters of 
apoptotic cells increases – which could lead to an artificial flattening of the difference of 
apoptosis rate that may exist between two conditions. As for the area readout, the size of 
the wing imaginal disc cells (and their nucleus) being homogenous, the stained area indi-
rectly reflects the number of apoptotic cells without being impacted by their relative lo-
calization. In the end, counting cells seems, at least at first sight, a more precise, because 
more direct, readout of apoptosis than area. However, this readout might be altered by 
apoptotic cells clusters. As it is not possible to anticipate how these clusters will affect the 
quantification in our experimental set up, we chose to use both count and area readouts. 
On Fiji, these two readouts can be obtained using the “Analyze Particles” function, which 
only works on binary 2D images. This means that our image processing protocol should 
include both z projection and binarization using a threshold, these two treatments being 
compatible with our set up. Indeed, our tissue of interest is a monolayer, then z projection 
should not affect quantification. Besides, because a cell is apoptotic or not, our readouts 
do not depend on signal intensity and binarization by itself should not affect the quanti-
fication. 

3.2 Designing an image processing protocol 
Steps of image processing directly depend on the chosen readout. In order to get both 

the number of objects and the stained area, our image processing protocol is based on 
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three major steps: 1. Background noise reduction, 2. Compression of our 3D images into 
2D by a z-axis projection, 3. Thresholding. Those steps allow appropriate segmentation 
required for relevant quantification by the "Analyze Particles". Importantly, on ImageJ, 
there are many ways to minimize background signal, 6 ways of compressing a 3D image 
in 2D and 17 ways of determining a threshold, resulting in countless combinations of pos-
sible image processing. In this study, we investigated the weight of these parameters on 
signal segmentation to end up with an optimized and unbiased protocol for apoptosis 
quantification. 

 
3. 2. 1. Median Filter and size limitation efficiently reduce artefacts 

When quantification is automatized, definition of the signal of interest by segmenta-
tion is even more critical. Indeed, bad segmentation can lead to quantification of unreal 
objects and thus gives useless results. To do so, signal of interest boundaries have to be 
better defined while background noise have to be decreased. General background noise 
can be minimized in many ways depending on the kind of images, the readout wanted 
and the defaults faced. In our case, mandatory use of a threshold would blacken every 
low intensity pixel responsible of general background noise. However, if binarization of 
the image efficiently removes diffuse low intensity background noise, it is not sufficient 
to erase artifactual pixels with aberrantly high intensity, i.e. which intensity is higher than 
the threshold value. Fortunately, isolated aberrantly high pixels can be dealt with filters. 
Filters are matrix operations that re-calculate a pixel intensity value based on itself and its 
neighbors. The two mainly used filters are “Mean Filter” and “Median Filter” (Figure 2A). 
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Figure 2. Filters effect on background noise and segmentation. A: The grid in (a) presents intensity 
values of a 3x3 pixels image. The grid in (b) presents how a "Mean Filter" with a radius of 1 affects 
the central pixel of the original image (left) and the whole image (top right grid). The grid in (c) 
presents how a "Median Filter" with a radius of 1 affects the central pixel of the original image 
(left) and the whole image (bottom right). In order to make intensity differences more visible, each 
boxes background color corresponds to the double of each pixel intensity value in greyscale. B: (a) 
TUNEL-labeled wing imaginal disc image after a Max Intensity z-projection. (b) magnification of 
(a) after binarization using a manually determined threshold. (c) same as (b) but the image was 
applied a "Median Filter" with a radius of 1 before Max Intensity z-projection. White bars corre-
spond to 10 µm. Arrows with circled numbers 1, 2 and 3 target areas of interest. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 July 2021                   doi:10.20944/preprints202107.0543.v1

https://doi.org/10.20944/preprints202107.0543.v1


 

 
 A “Mean Filter” with a radius of 1 gives a pixel an intensity value that corresponds 

to the mean of its value and those of its direct neighbors (Figure 2A (b)). Hence, the value 
of an isolated pixel with aberrantly high intensity is attenuated by the intensity value of 
its neighbors. However, as extreme values impact mean calculation, every neighboring 
pixel is affected by the isolated aberrantly high pixel and their intensity is artificially in-
creased (Figure 2A (b)). By contrast, a “Median Filter” with a radius of 1 gives a pixel an 
intensity value corresponding to the median of its value and those of its direct neighbors 
(Figure 2A (c)) which is expected to be much closer to local intensity value. Besides, as 
extreme values effect on median calculation is low, high intensity isolated pixel impact on 
its neighbors is negligible. All in all, the “Mean Filter” tends to spread an aberrantly high 
value whereas a “Median Filter” tends to confine it. This effect is illustrated in Figure 2B, 
where the “1” arrows of the "No filter" panel shows typical isolated aberrantly high pixels 
that are efficiently erased by a "Median Filter" with a radius of 1 (Figure 2B compare (b) 
and (c)). Aside from this benefit, the area pointed by the “2” arrow exemplifies the median 
filter ability to preserve edges of an object. Indeed, on the illustration, human eyes easily 
detect that the “2” arrow targets a marked cell (Figure 2B (a)). However, this object is het-
erogeneous: in a restricted space, it contains few pixels of high intensity and many pixels 
of low intensity (i.e. below the chosen threshold). Without any filter, only high intensity 
pixels are kept after the thresholding step thereby fragmenting this object in several small 
groups of pixels (Figure 2B (b)). Thus, with no further treatment, multiple objects will be 
counted in this area, which does not reflect reality. However, as these high intensity pixels 
are close to each other, the "Median Filter" with a radius of 1 homogenizes intensity values 
within this object. This allows its reconstruction and gives a segmentation consistent with 
reality (Figure 2B (c)). Thus, when the "Median Filter" with a radius of 1 is applied, the 
"number of objects" decreases only to be closer to what a human eye would count.  
Although the “Median Filter” with a radius of 1 efficiently reduces the number of arti-
factual objects by erasing isolated high pixels, the issue of groups of pixels with an inten-
sity higher than the threshold value remains. A way to eliminate most of those artifacts 
is to limit our analysis to objects with a size consistent with the smallest biological object 
of interest. In our case, this smallest biological object is TUNEL-labeled nucleus, we as-
sessed their size on a few random images and thus set a size limit at 2 µm. Importantly, 
this "> 2 µm size limitation" fits our data but should not be taken as a default value and 
must be adapted for other kinds of signals or cell types. As the "Analyze Particles" func-
tion records the size of every object, this filtering can be done after quantification. This 
function directly proposes to define a size range of object to quantify which we used. In 
Figure 2B, the "> 2 µm limitation" eliminates artifactual object pointed by the “3” arrow 
as well as individual pixels such as those pointed by the “1” arrows. It thus appears very 
powerful to “clean” the image. However, as efficient as the size limitation may be, it can-
not replace "Median filter". Indeed, as already explained, in the absence of a “Me-
dian Filter”, the cell indicated by the “2” arrow in Figure 2B gets fragmented in several 
small groups of pixels, each one being smaller than 2 µm (Figure 2B (b)). Thus, without 
the "Median Filter", these pixels are eliminated by the "> 2 µm limitation" and the actu-
ally labeled cell indicated by the “2” arrow is not included in the quantification of the 
apoptotic signal. Here, reconstruction of the object by the "Median Filter" prevents its 
elimination by the "> 2 µm limitation" (Figure 2B (c)). In the end, combination of a "Me-
dian Filter" with a radius of 1 and "> 2 µm limitation" allows a better segmentation and a 
more accurate quantification.  
 
3.2.2. Max Intensity z-projection improves contrast  

Confocal microscopy gives the possibility to capture objects in 3D. However, image 
processing often requires transforming volumes into 2D images by compressing the 
z-axis. In our case, the “Analyze Particles” function used to quantify the signal of interest 
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requires images to be in 2D. Flattening a 3D volume can seem counterproductive, as sep-
arate objects on the same z-axis will be reduced to one on the final 2D image. In our case, 
this is unlikely to happen since imaginal disc cells are organized in a monolayer with only 
limited folding and this is also true for tissue sections as long as they are thin enough.  
Projection consists in compressing the signal contained in every pixel of a z-axis in a sin-
gle one. On ImageJ, projection can be done in several ways but two of them are mainly 
used. The first one, Average Intensity (AI), averages the intensity of all the pixels of a 
z-axis. The second, Max Intensity (MI), only retains the maximal intensity value along 
the z-axis. Figure 3 presents examples of these projection methods on a virtual object 
without any other treatment (i.e. median filter).  
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Figure 3. Projection methods. The left panel presents different planes obtained by imaging a vir-
tual object surrounded by a perfect background noise of 0. On the right, the upper panel presents 
the coordinates of three pixels: A, B and C, and their respective intensity values along z-axis. Bot-
tom panels show the resulting projection obtained either by an Average Intensity or a Max Inten-
sity projection with respective intensity values obtained for A, B and C pixels. For all representa-
tions, boxes background color corresponds to their pixel intensity in grey scale. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 July 2021                   doi:10.20944/preprints202107.0543.v1

https://doi.org/10.20944/preprints202107.0543.v1


 

The z-axis presented in “A” shows only one illuminated pixel on slice #2 and this pixel is 
included in the object. The “B” z-axis shows numerous pixels highly illuminated, com-
prised in the object. The “3” z-axis presents an artifactually illuminated pixel on slice #2 
that is not comprised in the object. Comparison of the projection methods shows that AI 
projection decreases the importance of the artifactual pixel of the “C” z-axis while the MI 
projection, increases its weight. However, in the processing protocol, the preceding use 
of a “Median Filter” with a radius of 1 eliminates most of those artefacts that are thus 
not present anymore at the projection step. Conversely, the AI projection of the “A” 
z-axis leads to loss of signal even if it is part of the object. Furthermore, with the AI pro-
jection, the contrast between object and background is little so the range for the appro-
priate threshold value is limited (Figure 3). After a MI projection, contrast is enhanced 
and thus threshold determination is easier for the experimenter, which helps limiting the 
experimenter bias. This is particularly important for signals with low contrast such as 
TUNEL. In our case, these two projection methods do not end up in drastically different 
results but, all in all, MI projection presents more benefits than AI projection.  
 
3.2.3. Use of custom manual thresholds gives the best segmentation for relevant quantifi-
cation 

The "Analyze Particles" function used for quantification requires the image to be bi-
nary. The transition from a greyscale image to a black and white image involves the set-
ting of a threshold that defines an intensity value above which a pixel is turned to white 
and under which a pixel is turned to black. Ideally, this value should enable to get an 
image where white only corresponds to the signal of interest. Thresholding is the last step 
of segmentation and finally defines the objects of interest, which is critical for accurate 
quantification. Therefore, among the steps of image processing, it is the one that has the 
most dramatic effect on quantification accuracy so we dedicated a particular attention to 
the threshold determination method. 

Threshold can be automatically set by algorithms that analyze specific features of the 
image intensity histogram to determine a threshold value using either simple indicators 
such as the mean, maximal or minimal intensity values, or more complex formulas. Hence, 
algorithms appear as an unbiased method to obtain a specific threshold value per image. 
We thus wondered whether any of the 16 thresholding algorithms available on Im-
ageJ / Fiji could be used to determine a threshold capable to properly segment apoptotic 
signal on our images. Using some randomly chosen images, we visually checked if these 
algorithms could provide a threshold value allowing a relevant segmentation, i.e. con-
sistent with apoptotic signal. Most algorithms did not pass the visual inspection step as 
they yielded unrealistic segmentation either by ignoring a great portion of the signal or 
by including artifactual signal. However, two of them, Otsu and Moments, seemed capa-
ble to discriminate actual apoptotic staining from background. We then performed a more 
detailed analysis of the threshold values obtained with these algorithms by comparing 
them to the ones obtained by experimenters. To this end, for the 28 images of the vg > rbf1 
genotype, three experimenters determined the threshold to use for each staining (TUNEL 
or anti-cleaved Dcp-1) by eye and in triplicate (see Supplementary Figure S1). Thresholds 
for these images were also determined using the 16 algorithms. As expected, algorithms 
inducing obvious unrealistic segmentation of the apoptotic signal yielded threshold val-
ues very far from the range of the ones determined by experimenters (Figure 4 (a) and (b), 
compare IsoDota and Intermode with Exp, and data not shown). On the contrary, Mo-
ments, Otsu and experimenters threshold values are in the same range (Figure 4 (a) and 
(b)).  
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Figure 4. Comparison of thresholding methods. Upper panel presents overall distribution of 
threshold values per image obtained with various thresholding methods for images of vg > rbf1 
genotype. (a) and (b) Exp distribution (in yellow) corresponds to the whole of the threshold values 
determined by three experimenters in triplicate (raw data are presented in Supplementary Fig-
ure S1). Intermode (in light blue) and IsoData (in green) are examples of algorithms yielding inad-
equate values, very far from experimenters' distribution. Otsu (in brown) and Moments (in blue) 
are algorithms that seemed usable. (c) and (d) show the threshold values for each image obtained 
by Otsu (in brown), Moments (in blue) and experimenters (Exp, in black) in a pairwise organiza-
tion. Yellow bars correspond to the range of the threshold values determined by the experimenters 
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for each image. Bottom panel illustrates the result of the binarization using the threshold values 
determined by experimenters (e) and (g), Otsu (f) and Moments (h). Black arrows of the middle 
panels target the image used for illustrations presented on the bottom panel. Importantly, these 
images were chosen as they are representative of the deviation between the algorithm and the 
experimenters average value (chosen images have a deviation equal to the median of the devia-
tions).  

 
From this global analysis, it could seem that algorithms can be as good as human eye 

for threshold determination (compare for instance Otsu and Exp in Figure 4 (b)). How-
ever, visually, Otsu capability to determine a relevant threshold seemed irregular. We 
thus further digged into these data and compared the threshold values obtained not glob-
ally but for each image. As shown in Figure 4 (c) and (d), the values obtained with Otsu, 
if they tend to be roughly the same on average than the ones obtained by experimenters, 
are actually most of the time out of the range of experimenters values. This is particularly 
striking for images obtained from TUNEL (Figure 4 (c)) as Otsu’s determined values are 
far higher or lower that the ones obtained by any experimenter. This would not be an issue 
as long as the threshold values obtained still allow a realistic segmentation of apoptotic 
signal and subsequent relevant quantification. However, such deviation of the threshold 
value results in an inappropriate segmentation (compare Figure 4 (e) and (f)), that neces-
sarily ends in a biased or most likely totally wrong quantification. When it comes to Mo-
ments, it provides threshold values that are usually lower than experimenters’ ones (Fig-
ure 4 (a) and (b)), which means that using this algorithm tends to include some back-
ground noise to the quantification. The question resides then in determining whether this 
amount of background noise is important enough to alter quantification. In the case of 
TUNEL staining (Figure 4 (c)), values are quite low so it certainly affects quantification 
rather importantly. By contrast, when images come from anti-cleaved Dcp-1 staining, the 
threshold values given by Moments are much closer to the ones obtained by experiment-
ers, they actually seem very similar to the lowest values determined by experimenters 
(Figure 4 (d)). Therefore, one could assume that the variability of threshold values be-
tween Moments and an experimenter is comparable to the one that exists between exper-
imenters. We tested this by comparing the relationship between the two most distant ex-
perimenters’ batch of measurements to the one between Moments and its closest dataset. 
As shown in Supplementary Figure S2B, if two experimenters will not determine exactly 
the same value for the threshold, their evaluations remain consistent with each other 
(p = 10-5 and R2 = 0.53 for the most distant measurements), the difference can be more or 
less described as a given experimenter tending to set thresholds always lower than the 
other. This is a systematic error that should affect quantification only moderately. On the 
contrary, threshold values determined by Moments are not consistent with the values of 
experimenters (p = 0.8 for the closest in Supplementary Figure S2B). This indicates that 
Moments can set a low threshold value when experimenters would have all chosen a 
higher one but it is not always the case, and most of all, the extent of this underestimation 
(i.e. the range of the difference between experimenters and Moments threshold values) is 
variable. This is more problematic as the extent of background incorporation in the quan-
tification will then vary and might alter quantification relevance. 

Contrary to algorithms, manual determination of the threshold values appears quite 
robust. Indeed, comparison of manually determined threshold values for individual im-
ages shows a low variability and a good reproducibility both between several determina-
tions of a given experimenter and between experimenters (Supplementary Figure S1). As 
all images from an experiment are acquired identically, with the same microscope set-
tings, originate from samples treated with the same solutions, at the same time, theoreti-
cally, the appropriate threshold value is expected to be the same for all of them. Moreover, 
using the same unique threshold value for all images can be considered as more objective 
and unbiased. 
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However, manually determined threshold values display some variability (Figure 4, 
Exp). This can justify using a distinct individual threshold for each image as it might ena-
ble a more accurate segmentation and subsequent quantification. In order to assess to 
which extent these two thresholding methods can affect quantification and detection of 
our biological effect, we tried both (Figure 5A).  

In the Manual condition, each image was binarized using its own manually deter-
mined threshold value (determined by experimenter 1, measure 3). From these individual 
threshold values, we calculated the median value per genotype and then the median of 
these medians. This last value was used as the unique threshold value to binarize all im-
ages in the Total condition (1128 for TUNEL and 777 for anti-cleaved Dcp-1). We decided 
to use the median of the medians per genotype rather than the global median (calculated 
from the whole of the images independently of their genotype) to avoid giving more 
weight to a genotype (that might have a larger headcount for instance).  
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Figure 5. Impact of thresholding on quantification. TUNEL and anti-cleaved Dcp-1 stainings quan-
tifications. Upper panel shows representative images of wing imaginal discs stained by TUNEL 
((a) and (b)) or anti-cleaved Dcp-1 ((c) and (d)) for vg > rbf1 ((a) and (c)) and vg > rbf1, debclE26 ((b) 
and (d)) genotypes. White bar corresponds to a 50 µm scale. "Count" panel presents quantification 
of TUNEL (e) and anti-cleaved Dcp-1 (f) signal based on the counting of the number of objects 
according to the different thresholding methods (Manual and Total) for vg > rbf1 (in pink) and 
vg > rbf1, debclE26 (in blue). "Area" panel presents quantification of TUNEL (g) and anti-cleaved 
Dcp-1 (h) signal based on the number of white pixels (stained area) according to the different 
thresholding methods (Manual, or Total) for vg > rbf1 (in pink) and vg > rbf1, debclE26 (in blue). p-
values displayed above results were obtained using Wilcoxon tests. 
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For TUNEL stained images, both thresholding approaches give a workable quantifi-

cation both for count and area readouts (Figure 5B (e) and (g)). Indeed, a significant de-
crease of apoptosis between the two genotypes is detected in all cases. However, even if 
Total or Manual thresholding method enable to detect the biological effect, we noticed 
that quantification is still somehow altered when a unique threshold is used (Supplemen-
tary Figure S3). 

As for anti-cleaved Dcp-1 stained images, the first observation we can do is that the 
count readout was not usable. Indeed, we knew that apoptotic cells clusters might alter 
quantification as these clusters might be considered as a single object. Moreover, such 
underestimation is enhanced when the apoptosis rate rises, eventually leading to the flat-
tening of the difference between two samples. However, we chose to keep this readout, 
as it was not possible to anticipate the extent of this phenomenon in our samples. As 
shown in Figure 5 (f), with this readout, the difference in the apoptosis rate between the 
two genotypes becomes undetectable. This indicates that the level of apoptosis induced 
by rbf1 generates apoptotic cells clusters frequently enough to significantly alter quantifi-
cation, and this, whatever the thresholding method, thus prohibiting the use of the count 
readout. By contrast, when anti-cleaved Dcp-1 staining is quantified using the area 
readout, the difference between the two thresholding methods (unique versus individual 
thresholds) becomes obvious. As shown Figure 5 (h), when a unique threshold value is 
used for all images (Total), the difference of apoptosis rate between the two genotypes is 
barely detectable (p = 0.033). Moreover, extreme values compatible with an overestima-
tion due to inadequate segmentation are seen (see highest values for vg > rbf1, debclE26 gen-
otype in Figure 5 (h) and also Supplementary Figure S3). On the contrary, the use of indi-
vidual specific threshold values (Manual) enables to readily detect the difference of apop-
tosis rate between the two genotypes (p = 1.5 10-5). 

In the end, this analysis shows that, in our case, using an individual threshold per 
image is more adequate and turns out to be the safest option for accurate segmentation 
and thus, relevant quantification.  
3.3. Quantifications of TUNEL or anti-cleaved Dcp-1 stainings do not have the same 
requirements 

TUNEL and anti-cleaved caspase stainings are widely used to assess the level of 
apoptosis in tissues. However, depending on the experimental set-up, the quantification 
step may become tricky.  

TUNEL appears as a quite robust apoptosis detection technique. Indeed, it allows to 
quantify apoptosis and to detect differences in apoptosis rate whatever the thresholding 
approach, and with both count and area readouts (Figure 5 (e) and (g)). This was not to-
tally expected since in our images, there was not a strong contrast between the apoptotic 
signal and the background (Figure 5 (a) and (b)). However, as previously mentioned, 
TUNEL assay is costly, time consuming and lacks specificity as it also detects necrotic 
cells. 

On the contrary, using antibodies against cleaved caspase(s) is considered as a more 
specific and convenient staining of apoptotic cells. By contrast with TUNEL which labels 
nuclei, caspase staining covers the whole volume of the cell, raising the issue of adjacent 
apoptotic cells when the readout is counting cells. Indeed, counting the number of apop-
totic cells stained with anti-cleaved caspase antibody is perfectly possible as long as apop-
totic cells are sufficiently separated from each other. In our experimental set-up it ap-
peared that the apoptosis rate was too high to prevent the underestimation of the signal 
due to fusion in a single object of clustered apoptotic cells. When the stained area was 
measured, it revealed that images from anti-cleaved Dcp-1 stainings should be carefully 
processed because determination of the threshold value to use for binarization is particu-
larly important. Indeed, even if the difference of apoptotic rate between the two genotypes 
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was known and easily seen by eye (Figure 5, compare (c) and (d)), its detection after quan-
tification was not obvious. Actually, the decrease in apoptosis between the two genotypes 
is barely detected when a unique threshold value is used for the segmentation of all im-
ages (Figure 5 (h)) whereas using a specific threshold value for each image enables to see 
it. Therefore, anti-cleaved Dcp-1 staining quantification is more affected by image pro-
cessing than TUNEL and should be handled more carefully.  

 
3.4. Macro explanation 

Once the image processing protocol was established and validated, we worked on its 
automatization. Indeed, doing this processing for every image manually is not only time 
consuming but also error-prone since it increases the probability to skip or treat twice an 
image or to make mistakes during data collection. We automatized this image processing 
protocol by developing an open-source macro on Fiji called CASQITO (Computer As-
sisted Signal Quantification Including Threshold Options, available at 
https://github.com/JdNoiron/CASQITO). This macro limits experimenter’s involvement 
to threshold determination. As we only work on Leica microscopes, this macro only sup-
ports .lif files and should be adapted for other formats. During processing of the images, 
the macro generates several files for every given .lif file, which will be stored in the same 
folder as the parental .lif file. We thus recommend recording images from different con-
ditions (genotypes or treatments) in separate .lif projects. The first file generated is a .txt 
file that recapitulates data from the Log window, which conserves settings associated to 
the treatment of the .lif file. Two .xls files of results are also generated, respectively com-
piling results of threshold determination and quantification. It is worth noting that this 
latter provides all possible quantification obtainable with the "Analyze Particles" function 
whatever the chosen readout may be. A .png file is also generated to display an histogram 
representing the distribution of the obtained threshold values. If a zone selection is re-
quired, another .png file is generated for each image to display experimenter zone selec-
tion. Lastly, the macro is not able to treat multiple regions of interest on the same image, 
thus, even if two objects (in our case two wing imaginal discs) are in the same field and 
can be captured in the same image, it is very important to capture this field twice.  

The macro consists of two parts described in Figure 6: the first part allows determi-
nation of threshold values and the second part allows zone selection and quantification. 
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Figure 6. Fiji macro workflow. Giving our image processing protocol, the macro is divided in two 
major parts. Part 1 (left panel) is dedicated to manual threshold determination while Part 2 (right 
panel) is dedicated to zone selection and quantification after application of the previously deter-
mined threshold. In Part 1, images are opened, treated according to parameters set in the window 
presented Figure 7 and presented to user for threshold determination. Once every image of a .lif 
file has been treated in Part 1, threshold results are recapitulated before starting Part 2. In Part 2, 
images are opened again and treated as in Part 1, chosen threshold is applied and the resulting 
image is presented to user for zone selection before quantification. When every relevant images 
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have been treated, quantification results are superficially analyzed to yield mean, standard devia-
tion, min and max.  

Once a .lif file has been chosen, the window presented Figure 7 opens to set a few 
parameters.  

 
Figure 7: Macro Part 1. The macro starts by collecting few parameters. Importantly, the chosen 
"Condition name" will end up in the name of the files associated with the .lif file. The default back-
ground noise reduction method is a “Median Filter” with a radius of 1 but user can apply its own 
protocol before and / or after Z projection if needed. As a thresholded image is in black and white, 
it can hardly be used to define region of interest when a zone selection is needed. Therefore, the 
macro offers the possibility to define region of interest (i.e. vestigial domain in our case) on an-
other channel or an unthresholded version of channel of interest. If the whole image has to be ana-
lyzed, a “No selection needed” option is available. Concerning threshold determination, "A. Us-
ing an algorithm" and "B. Manual determination" options will lead to application of an individual 
threshold value per image. If use of a unique, representative, threshold value to treat every image 
of a .lif file is wanted, user can make its choice after treating every image (option "C"), 50 % of the 
images (option "D"), 25 % of the images (option "E") or 10 % of the images (option "F"). If manual 
determination has already been done, user can skip Part 1 with option "G". Once chosen, those 
parameters are recorded in the Log window which content is ultimately saved in a .txt file. 
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These parameters aim at setting the method used for background noise reduction 
and z-projection as well as determining channels of interest. It should be noted that chan-
nels are automatically assigned a number that increments in ascending order of the wave-
length starting from the shortest wavelength used. Once these parameters are set, the 
macro opens the first image and checks if it is an actual stack and not a 2D image. In the 
latter case, the 2D image is skipped without being analyzed and the macro records it has 
ignored this image in the Log window (“Caution series X is not a stack”) and directly 
opens next image. When the opened image is a stack, it is processed according to the pa-
rameters previously chosen for background noise reduction and z-projection. In our case, 
this means a "Median Filter" with a radius of 1 is applied and z-projection is done by the 
Max Intensity method. Result of this z-projection opens twice, giving one image to work 
on and a second to check in real time if the changes induced are consistent with reality. 
Just before allowing the user to determine a threshold value, a checkpoint asks for confir-
mation to treat this image. Indeed, acquisition might have been done on another channel 
than the one of interest thus, huge artifacts on channel of interest might reveal themselves 
only at this point. Discarding such image from the analysis is done by clicking the “Do 
not take series X into account” option. The macro records this image has been ignored in 
the Log window (“Series X has been excluded from threshold determination”) and di-
rectly opens next image. At this step, four windows are open to allow threshold determi-
nation: the two images obtained after z-projection to monitor the effect of the threshold 
and two system windows: a “Threshold” window that contains the cursor used to set the 
threshold value and a "Threshold Selection" window whose “OK” button clicking is re-
quired once the threshold has been determined. Importantly, if the “OK” button of the 
“Threshold Selection” window must be clicked for the macro to continue, buttons of the 
“Threshold” window should not be clicked. As soon as the “OK” button of the “Threshold 
Selection” window is clicked, the chosen threshold value is recorded in the Log window 
and the .xls table and next series is opened. Once all images have been processed, Part 1 
is over and a histogram showing the threshold values distribution is displayed. When 
ready, user have to click the "OK" button of the "End of Part 1" window to start Part 2. 
Importantly, Part 2 does not necessarily have to be done right after Part 1. As presented 
in the Part 1 settings choice window (Figure 7), a possible option of the last question is 
"G. Part 1 already done". This option will lead directly to Part 2. In this case, user can ei-
ther define a unique threshold value to treat every image of a .lif file or treat each image 
with its own threshold value after loading the corresponding Excel table containing 
threshold values for this .lif file obtained in Part 1. This option allows users wanting to 
apply the same threshold value for all of their conditions to assess the best threshold value 
for all their conditions in a first time and perform quantification in a second time.  

Part 2 begins with the opening of the window presented Figure 8, which offers the 
possibility to use the threshold value previously determined in Part 1 and to apply addi-
tional limitations to quantification such as a size limitation.  
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Figure 8. Macro Part 2. Starting window of Part 2 lightly differs according to the choice of thresh-
old method made in Part 1. The one presented here corresponds to option "B. Manual determina-
tion". If option "A. Using an algorithm" was chosen, the window would start by asking which al-
gorithm should be used. If any of options "C", "D", "E" or "F" were chosen, the window would start 
by asking which unique threshold value should be used. The following parameters (how to re-
trieve the results, objects' size, objects' circularity and range of series to analyze) are always pre-
sent. Once chosen, those parameters are recorded in the Log window which content is ultimately 
saved in a .txt file. 

 
Furthermore, depending on the study, the data needed can be more or less detailed. 

Here, a global count of the number of objects or total stained area per image was sufficient 
to be conclusive. Therefore, only a summarized compilation of data was needed. When 
checked, this option generates an .xls file where each line corresponds to a treated image 
and its summarized result (i.e. total number of objects or total stained area in the ROI). 
However, one might need to compare objects size within an image and thus need more 
detailed data where specifications of every object are recorded. When checked, this option 
generates an .xls file where each line corresponds to an object (objects of all images are in 
the same table). Both options are available on the macro and user can choose one or both 
of them (in which case two .xls files will be generated). Once these settings are done, im-
ages are processed as in Part 1 except that, this time, the chosen threshold is applied. After 
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thresholding, Part 2 offers the possibility to limit quantification to a region of interest. If 
so, the channel needed to draw the selection is opened. Then, when the “OK” button of 
the “Zone Selection” window is clicked, the macro goes on with quantification and results 
are recorded in an .xls file. If the settings chosen in Part 1 end up associating a threshold 
determined by an algorithm with a zone selection, the zone selection is done before run-
ning the algorithm. Indeed, to determine a threshold value, algorithms take the whole 
image into account, which can become a problem if there is a highly illuminated artifact 
outside of the region of interest. To allow a wide range of application for this macro, we 
have chosen to ask the "Analyze Particles" function to quantify all the possible readouts.  

4. Conclusions 
Apoptosis quantification in a tissue is usually indirect as it generally relies on imag-

ing techniques. There are many ways to analyze an image and once a readout has been 
chosen, many processing protocols are possible. Here, we describe a semi-automatic pro-
tocol running on Fiji for quantification of apoptosis on Drosophila wing imaginal discs after 
TUNEL or activated-caspase labelings. During the development of this protocol, we paid 
particular attention to the weight of specific steps to obtain a realistic segmentation, which 
underlies an accurate quantification. As in many image processing protocols, determina-
tion of the threshold for binarization turned out to be a critical step. In our case, none of 
the algorithms available in Fiji was satisfying to determine relevant thresholds.  

We also considered using the same threshold value to treat several images but, in the 
end,, the best option for our data, was to use a specific threshold manually determined for 
each image. Indeed, this method proved to carry out a proper segmentation for all images 
resulting in valid quantification and subsequent detection of biological effects. Even if one 
could be concerned about the bias that might be induced by this approach, the bias is in 
fact limited as we observed that threshold values obtained by experimenters are actually 
very consistent both for a given experimenter and between experimenters. Moreover, an 
appropriate processing of the images can facilitate this determination of a threshold value. 
In this sense, association of a “Median Filter” with a radius of 1 and a Max Intensity z-pro-
jection proved to be very efficient. It would also be interesting to try the "Sum Slices" pro-
jection that adds up all pixels intensity of a z-axis which should enhance contrast even 
more (particularly after a median filter) and thus facilitate threshold determination.  

The protocol presented here should not affect other readouts available in the “Ana-
lyze Particles” function such as: bounding rectangle, shape descriptors, centroid, perime-
ter, Feret’s diameter or stack position. Furthermore, we kept the options implemented in 
CASQITO macro rather open offering a possible use of this tool for a great variety of 
readouts, stainings and biological questions.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Individual experimenters' choice of threshold values, Figure S2: Statistical analysis of threshold val-
ues consistency, Figure S3: Pairwise comparison of thresholding methods. 
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