

HALO-RPD: In Searching for

RNA-Binding Protein Targets in Plants

A.O. Shamustakimova

*All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskaya st., 42,
Moscow 127550 Russia*

E-mail: nastja_sham@mail.ru

Abstract

9 Study of RNA-protein interactions and identification of RNA targets are among the key aspects of
10 understanding the RNA biology. Currently, various methods are available to investigate these interactions, in particular,
11 RNA pulldown assay. In the present paper, a method based on the HaloTag technology is presented that is called Halo-
12 RPD (**HaloTag RNA PullDown**). The proposed protocol uses plants with stable fusion protein expression and the
13 MagneBeads magnetic beads to capture RNA-protein complexes directly from the cytoplasmic lysate of transgenic *A.*
14 *thaliana* plants. The key stages described in the paper are as follows: 1) preparation of the magnetic beads 2) tissue
15 homogenization and collection of control samples 3) precipitation and wash of RNA-protein complexes; 4) evaluation
16 of protein binding efficacy; 5) RNA isolation; 6) analysis of the obtained RNA. Recommendations for better NGS assay
17 designs are provided.

Keywords: *A.thaliana* - HaloTag – RNA-binding proteins – RNA pulldown assay – RNA-protein complexes – cold shock domain protein

INTRODUCTION

21 RNA-binding proteins play a major part in complex cellular processes, such as
22 differentiation, development, responses to biotic and abiotic stress factors, and post-transcriptional
23 control.

24 In recent years, the variety of methods to study RNA-protein interactions has expanded
25 significantly [1]. However, some older technologies, such as RNA-immunoprecipitation (RIP), still
26 remain rather common [2]. The latter is based on *in vivo* mapping of RNA-protein interactions
27 using crosslinking agents, such as ultraviolet or formaldehyde. Currently, RIP is used in a vast
28 majority of studies investigating RNA-protein complexes in plants [3-6].

29 Despite its wide use, RIP has several downsides, e.g. UV radiation induces the formation of
30 the irreversible covalent bond between a protein and RNA; formaldehyde not only binds the protein
31 of interest to RNA but crosslinks its partner proteins as well; highly specific antibodies are required
32 for a successful outcome.

33 HaloTag-fused proteins are used in the proposed protocol as an alternative to RIP [7].
34 Initially, the HaloTag technology was intended and successfully used for precipitation of protein-
35 protein and DNA-protein complexes from bacterial and mammalian cell lysate [8]. However, in the
36 last few years, the technology was adapted [9-11] and modified [12] to identify RNA-protein
37 complexes in tissue cells in humans and animals.

38 So far, there have been only two papers, whose authors investigated the use of HaloTag
39 technology for the search of partner proteins in plants [13, 14]. In the first paper, the authors
40 analyzed mediator proteins in transgenic plants of rice, and in the second one, the binding site of
41 transcription factor *ZmNST3* in transgenic plants of maize was investigated.

42 The goal of the presented study was to design a protocol for isolating RNA-protein complexes
43 from cytoplasm of *Arabidopsis thaliana* plants using the HaloTag technology.

44 Papers [10] and [15] were used as a reference to design the protocol called **HaloTag RNA-**
45 **PullDown** (Halo-RPD).

46 THE HALO-RPD METHOD

47 **Plant material.** Two lines of *Arabidopsis thaliana* (L.) Heynh. Columbia ecotype were used
48 in the study as transgenic plants with stable expression of HaloTag and *EsCSDP3*-HaloTag-fused
49 proteins [16]

50 The stages of HaloRPD protocol for isolation of RNA-protein complexes are as follows:
51 preparation of magnetic beads; tissue homogenization, and collection of control samples; pull-down
52 and wash of RNA-protein complexes; evaluation of protein binding efficacy; RNA isolation;
53 analysis of the obtained RNA. A simplified assay design is presented in Fig. 1.

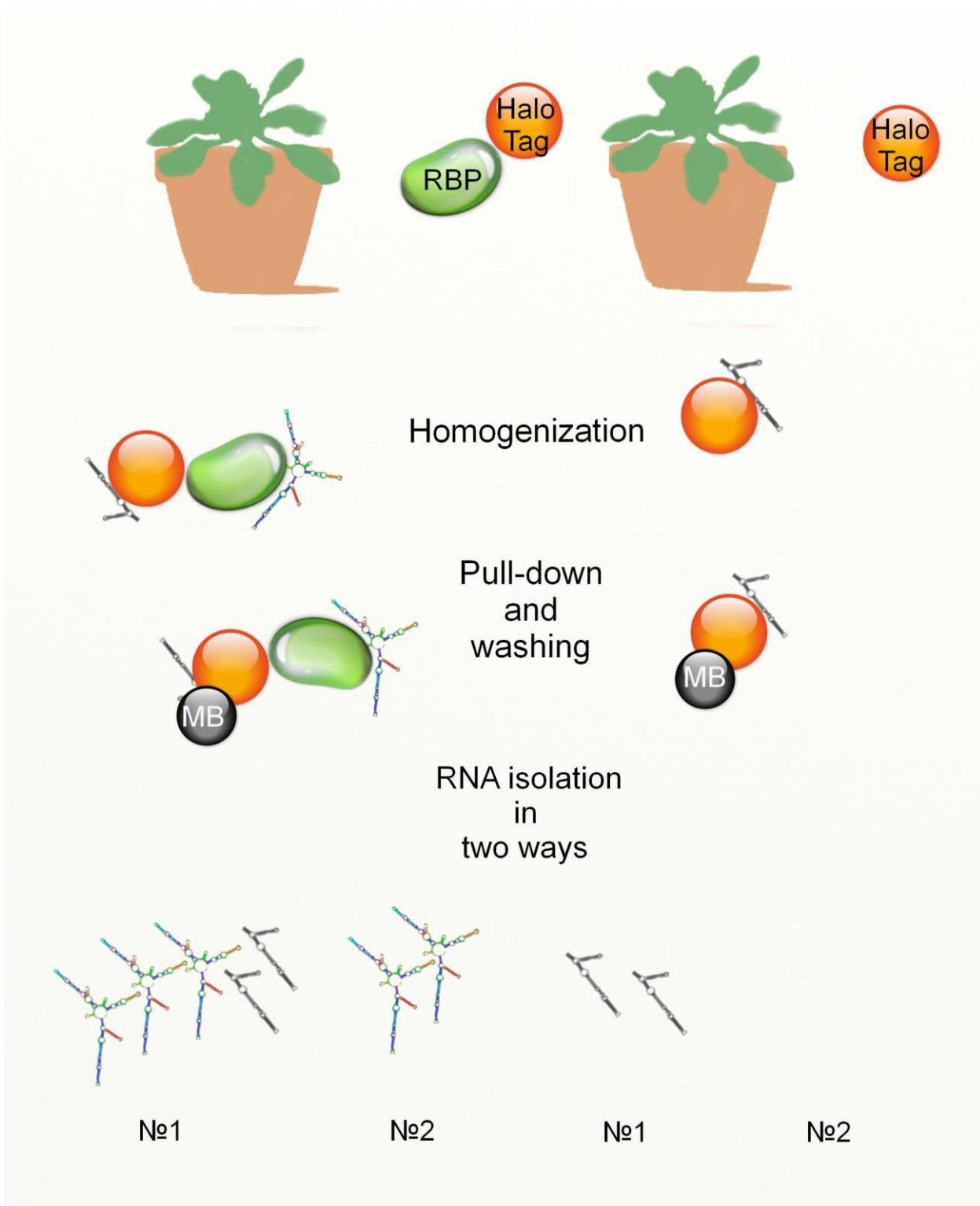


Fig. 1. Simplified Halo-RPD assay design. Transgenic plants expressing HaloTag-fused RNA-binding protein (on the left) and the plants expressing the HaloTag protein (on the right). Plant tissue is homogenized to obtain cytoplasmic lysate and incubated with the magnetic beads capable of binding HaloTag protein by covalent bonds. The beads with precipitated target protein complexes are washed, and RNA is isolated in two ways. The first way is to isolate RNA directly from the magnetic beads by incubation in the ExtractRNA reagent, and the second implies elution in TEV buffer and further isolation using the ExtractRNA reagent.

54 Preparation of magnetic beads

55 The Magne Halotag Beads (Promega Corp.) magnetic particle suspension (100 μ l) was placed
56 in two tubes for the experimental (*Es*CSDP3-HaloTag) and control (HaloTag) samples. The tubes
57 were incubated on a magnetic stand until transparent, and the liquid was carefully removed without
58 disturbing the beads. The buffer (400 μ l) composed of 50 mM Tris - HCl pH 7.4, 137 mM NaCl,
59 2.7 mM KCl, and 0.05% Igepal Ca-630 (Promega Corp.) was added to the beads, and the
60 suspension was gently mixed manually several times. The tubes were transferred to a magnetic
61 stand, incubated until transparent, and liquid was fully removed by pipetting. The tubes were then
62 washed two more times. The supernatant was not removed after the third wash. The tubes were
63 stored at 4 °C.

64 The manufacturer offers two types of substrate for pull-down of fusion protein from lysate,
65 namely HaloLink resin (Promega Corp.) and MagneBeads (Promega Corp.), the latter being a
66 newer product. The magnetic beads have an advantage of high binding affinity of HaloTag-fused
67 proteins and low non-specific binding level. For instance, 1 ml of magnetic beads binds over 20 mg
68 of protein, whereas the same amount of resin only binds 7 mg. The resin was used in prior assays of
69 our study, which significantly increased their duration due to multiple centrifugation steps. This
70 approach also required the availability of the LowBind tubes or silicone treatment of the tubes to
71 minimize resin loss.

72 Tissue homogenization and collection of control samples

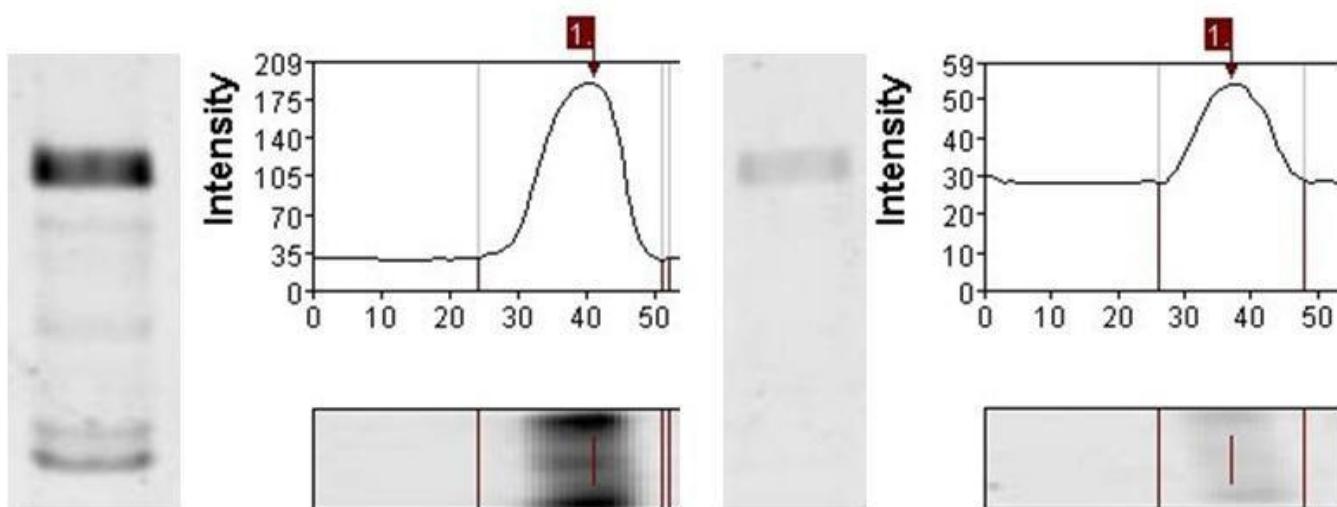
73 For better preservation of plant tissue, leaf blades were wrapped in foil and placed in liquid
74 nitrogen.

75 The precooled mortars and pestles were used for homogenization. The tissue was placed in a
76 mortar, a small amount of liquid nitrogen was added, and the mixture was homogenized to a
77 powder. The obtained powder was then added to a tube with 300 μ l of lysis buffer composed of 50
78 mM Tris - HCl - buffer (pH 7.5), 150 mM NaCl, 1% Triton X-100, 0.1 mM benzamidine HCl, 55
79 μ M phenanthroline, 10 μ M bestatin, 20 μ M leupeptin, 5 μ M pepstatin A, 1 mM PMSF, 1mM DTT,
80 and 0.4 U/ μ l RiboLockTM (Thermo Fisher Scientific). The tubes were then sealed, mixed on a
81 vortex mixer, and put on ice to cool down. The obtained homogenate was centrifuged at 4 °C for 7
82 minutes at maximum speed. The supernatant was carefully transferred to clean precooled tubes
83 without disturbing the debris. The obtained lysate had a rather high detergent content, which could
84 potentially cause dissociation of RNA-protein complexes and weaken the protein's bond with the
85 substrate. To avoid this, 700 μ l of the buffer composed of 50 mM Tris - HCl (pH 7.4), 137 mM
86 NaCl, 2.7 mM KCl was added to the lysate. At this stage, two control samples were collected: 1)
87 lysate samples of 100 μ l were placed in separate tubes for future analysis of RNA input fraction; 2)
88 lysate samples of 10 μ l were placed in 0.6 μ l tubes to evaluate the binding efficacy between the
89 target protein and the substrate. Both tubes were stored at 4 °C.

90 Pull-down and wash of RNA-protein complexes

91 The tubes with the magnetic beads prepared earlier were placed on a magnetic stand, and the
92 excess liquid was removed. The tubes were then removed from the stand, and the obtained diluted
93 lysate was added to the beads. The tubes were placed on an orbital shaker, incubated at constant
94 rotation for two hours at 4 °C, and transferred back to the magnetic stand. Lysate samples of 10 μ l
95 were collected to control the protein's bond with the substrate, the remaining liquid was carefully
96 removed.

97 The magnetic beads were washed by adding 400 μ l of the buffer composed of 50 mM Tris -
98 HCl (pH 7.4), 137 mM NaCl, 2.7 mM KCl, and 0.05% Igepal Ca-630 (Promega Corp.). The tubes
99 were gently shaken manually three times and placed on the magnetic stand. It should be noted that
100 the number of washes is chosen for each RNA-protein complex on an individual basis. The assay
101 described here included five washes. The tubes were incubated on an orbital shaker for five minutes
102 at 4 °C during the last wash.


103 When the last wash was finished, the tubes were put on ice.

104 Evaluation of binding efficacy between protein and magnetic beads

105 At this stage, content, preservation, and binding efficacy of the target protein were evaluated.
106 For this purpose, tubes with the previously collected lysate fractions described in sections "Tissue

107 homogenization and collection of control samples" and "Pull-down and wash of RNA-protein
108 complexes" were further analyzed. 1 μ l of 50 μ M HaloTag® TMR Ligand (Promega Corp.) was
109 added to each tube. The content was mixed by pipetting, and the tubes were kept in the dark for 15
110 minutes. Then, 10 μ l of 4x SDS loading buffer was added and the mixture was heated for 2 minutes
111 at 90 °C. We prepared 8% polyacrylamide gel for Laemmli electrophoresis [17] and placed 5 μ l of
112 the obtained product in gel wells. The gel was analyzed using a densitometric scanner Typhoon
113 FLA 9000 (GE Healthcare) at the given wavelength (extinction wavelength of 532 nm and the
114 emission wavelength of 580 nm).

115 It can be seen from Fig. 2 that a higher percentage of protein turned out to be bound and
116 therefore not detectable in the supernatant after two-hour incubation. Otherwise, the go-to solution
117 is to increase incubation time. A larger amount of magnetic beads increases non-specific binding.

284 **Fig. 2.** Evaluation of the binding efficacy of the EsCSDP3 protein on magnetic beads using
285 the TMRLigand fluorescent dye. a) a lysate sample before binding and the fluorescence level of the
286 bound dye; b) the lysate sample in 2 hours after incubation at 4 °C and fluorescence level of the
287 bound dye. The unbound protein fraction is about 25%.

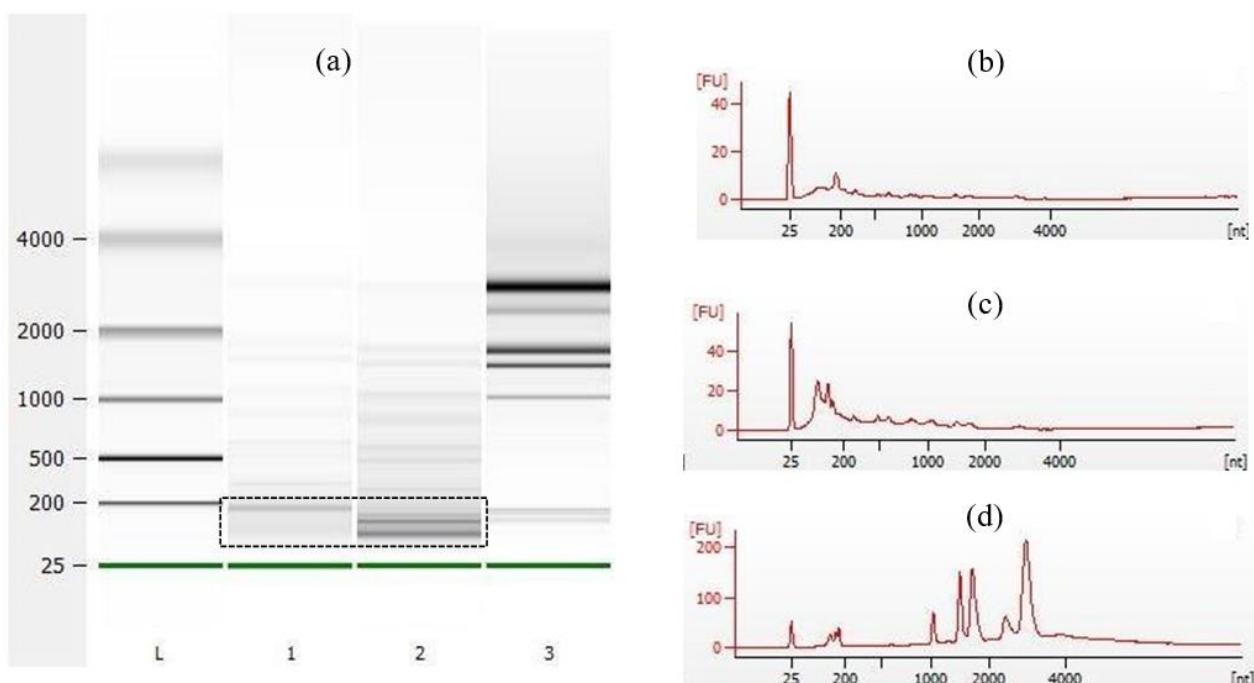
118 RNA isolation

119 At this stage, two methods of isolating RNA from the protein complex are available, and prior
120 knowledge of the studied protein, as well as the further course of analysis of the obtained RNA are
121 to be taken into account.

122 For instance, isolating RNA directly from magnetic beads by incubation in the ExtractRNA
123 reagent (Evrogen) (**first method**) produces the eluate, which, in addition to the target RNA
124 obtained directly from the protein, includes several non-specifically bound RNA molecules from
125 HaloTag® and the substrate. This isolation method is preferable, if the further analysis includes RT-

126 PCR or Real-time PCR with primers on the known RNA targets.

127 If NGS is used to identify the nature of the unknown RNA targets, then elution in TEV buffer
128 and further extraction using the ExtractRNA reagent (Evrogen) (**second method**) is recommended.
129 TEV protease treatment of the RNA-protein complex facilitates its release into the solution, while
130 non-specifically bound RNA molecules stay at the bottom of the tube.


131 To isolate RNA from the eluate, 100 μ l of the buffer composed of 50 mM Tris - HCl (pH 8.0),
132 0.5 mM EDTA, 0.005 mM DTT, 40 U of RiboLockTM (Thermo Fisher Scientific) and 5 U of
133 HaloTEV protease (Promega Corp.) was added to the washed beads with precipitated target RNA-
134 protein complex. The tube was placed on an orbital mixer and incubated overnight at 4 °C. The next
135 day, the tubes were placed on a magnetic stand, and 90 μ l of the eluate was transferred to a clean
136 1.5 ml tube. Then, 1 ml of ExtractRNA reagent (Evrogen) was added to the obtained eluate. At this
137 stage, RNA isolation from the beads and from the eluate proceeded identically. We similarly added
138 1 ml of ExtractRNA reagent (Evrogen) to the tubes with magnetic beads washed in the buffer
139 solution, and incubated the tubes on a magnetic stand at room temperature for five minutes with
140 careful intermittent mixing. Then 200 μ l of chloroform was added and the content was mixed on a
141 vortex mixer for 30 seconds. The tubes were then centrifuged at 4 °C at 10000g for 10 minutes. We

142 carefully collected 500 μ l of aqueous phase and transferred it to a new tube. We then added 25 μ g
 143 of glycogen, mixed the content by pipetting, and incubated for 10 minutes at room temperature. The
 144 tubes were centrifuged for 10 minutes at 18000g at room temperature. The supernatant was
 145 carefully removed with a small amount of isopropanol left at the bottom, and 1 ml of 75% ethanol
 146 was added to the precipitate. The tubes were incubated at -20 °C overnight. Then the tubes were
 147 centrifuged at maximum speed at room temperature for 5 minutes. The supernatant was carefully
 148 removed, and the precipitate was dried for 10 minutes at room temperature and eluted into 20 μ l of
 149 RNase-free water.

150 **Analysis of the obtained RNA**

151 To measure the concentration of the obtained RNA, a Quantus Fluorometer (Promega Corp.)
 152 was used. RNA profile was analyzed using a 2100 Bioanalyzer with RNA 6000 Nano and Pico kits
 153 (Agilent). Due to the high sensitivity of the device, a sample volume of 1 μ l was sufficient for
 154 analysis, and therefore enough eluate may be preserved for further experiments.

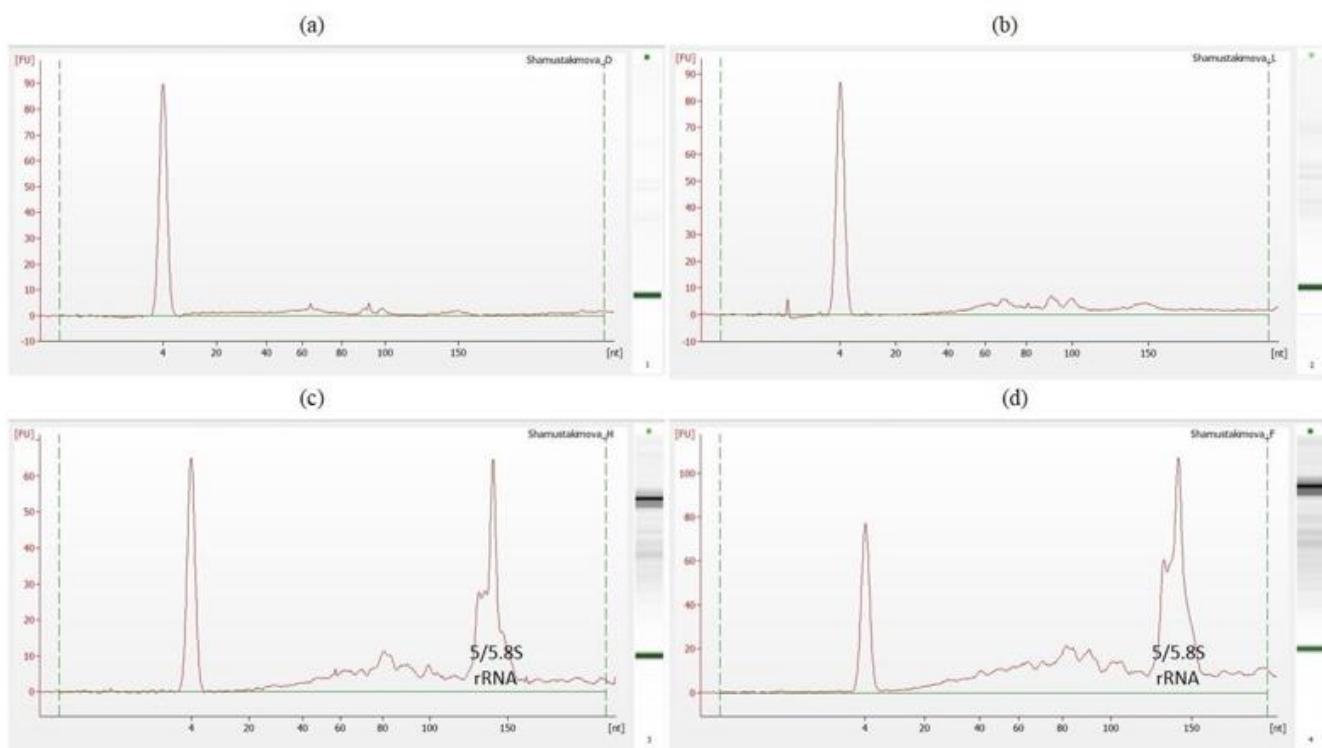

155 The RNA profile obtained using the 2100 Bioanalyzer is presented in Fig. 3.

Fig. 3. RNA profile obtained using an Agilent 2100 Bioanalyzer with RNA 6000 Nano kit:

288 (a-c) RNA is isolated using the first method, where a1 and b correspond to the HaloTag protein
 289 sample; a2 and c - to the sample of the EsCSDP3 protein; a3 and d - to the total RNA sample used
 290 for reference. A dashed outline indicates a small RNA zone. The RNA size compared to the
 291 reference marker is measured along the x-axis. The fluorescence intensity of the intercalating dye is
 292 measured along the y-axis.

156 RNA obtained by elution from TEV buffer and further isolation using the ExtractRNA
 157 reagent (the second method) is shown in Fig. 3a. Comparison of the two RNA profiles shows that a
 158 much wider variety of various RNAs with higher RNA concentration was obtained by elution in the
 159 case of RNA-protein complex (plot 1), than in the case of HaloTag (plot 2). After more detailed
 160 consideration, we could notice that both samples had some common RNAs, and this should be
 161 taken into account in further analysis and comparisons. The small RNA zone in samples from Fig.
 162 3a (dashed outline) is shown in Fig. 4.

Fig. 4. RNA profile obtained using an Agilent 2100 Bioanalyzer with Small RNA kit for small RNA analysis: (a-c) a and b are the HaloTag and EsCSDP3 proteins samples from the assay showed in Fig. 3a (dashed outline); c and d show the RNA isolated from the HaloTag and EsCSDP3 proteins samples using the second method. The fluorescence intensity of the intercalating dye is measured along the y-axis.

163 This zone was of special interest, since major differences between the samples were found. Its
 164 analysis also made it possible to predict the nature of RNA targets. The small RNA zone may be
 165 divided as follows: miRNA at nucleotide counts of ~40 and below; transfer RNAs at nucleotide
 166 counts of ~40 to ~80; small ribosomal RNAs at nucleotide counts of ~80 to ~150.

167 As expected, comparison of the RNA profiles obtained using two different extraction methods
 168 showed a much higher fluorescence intensity in samples obtained using the first method (magnetic
 169 beads). In these samples, 5/5.8S ribosomal RNA made up the highest proportion of all RNA types.

170 Comparison of the total fluorescence of the HaloTag and EsCSDP3 samples showed that the signal
171 of the experimental sample (110 FU) was almost twice as intense as that of the control sample (65
172 FU).

173

174

175

176 Preparation of cDNA libraries and sequencing

177 The proposed protocol does not include a detailed description of cDNA library preparation
178 and further sequencing procedures. It only lists the aspects to be taken into account in assay
179 designs.

180 A cDNA library preparation kit should be selected based on the amount of RNA obtained.
181 Although the *A. thaliana* genome is relatively short, its number of genes is comparable to that of
182 humans, specifically 27000 against 25000. Thus, the recommended read depth is 15-30 mln
183 unpaired reads with lengths of 50 bp [18-19].

184 This read length is sufficient for mapping onto the genome, and the given read depth should
185 be sufficient to identify specific targets based on their abundance quantitation in a statistically valid
186 manner.

187 When RNA is obtained directly from magnetic beads, it is worth using a ribosomal RNA
188 removal kit, since they would account for a large number of reads due to their high abundance.

189 The obtained results have shown that the proposed method makes it possible to isolate
190 complexes of fusion proteins and RNA targets from the *A. thaliana* leaves.

191 The Halo-RPD method has a number of advantages compared to the protocols based on
192 immunoprecipitation, in particular, stable protein expression makes it possible to minimize both the
193 initial amount of plant material for the assay and reagent consumption. The use of the reagent at the
194 stage of RNA isolation from the eluate/substrate allows one to obtain and analyze small RNA and
195 miRNA. The absence of covalent crosslinks and removal of ultrasonic fragmentation stage make the
196 proposed protocol applicable for analyzing native RNA profiles and thereby draw preliminary
197 conclusions on the nature of RNA targets, while the use of fluorescent dyes covalently bound to
198 HaloTag protein makes it possible to control the proper implementation of homogenization and
199 protein isolation stages.

200 The author thanks Charles Banks from the Stowers Institute for Medical Research for
201 assistance in protocol development. The work was supported by the Russian Foundation for Basic
202 Research (project nos. 05-04-89005- NWO and 14-04-00816). The equipment was provided by the
203 Common Use Center “Biotechnology” of the All-Russian Research Institute of Agricultural
204 Biotechnology (project no. RFMEFI62114X0003).

205 The present paper does not include any studies with humans and animals as test subjects. The
206 authors declare no conflict of interest.

212

LITERATURE CITED

213 1. *Ramanathan M., Porter D. F., Khavari P. A.* Methods to study RNA–protein
214 interactions //Nature methods. 2019. V. 16.3. P. 225-234.

215 2. *Brooks S. A., Rigby W. F. C.* Characterization of the mRNA ligands bound by the
216 RNA binding protein hnRNP A2 utilizing a novel in vivo technique // Nucleic Acids
217 Res. 2000. V. 28. P. e49-e49.

218 3. *Köster T., Meyer K.* Plant ribonomics: proteins in search of RNA partners //Trends
219 Plant Sci. 2018. V. 23. P. 352-365.

220 4. *Seo J. S., Chua N. H.* Analysis of Interaction Between Long Noncoding RNAs and
221 Protein by RNA Immunoprecipitation in Arabidopsis // Plant Long Non-Coding
222 RNAs. – Humana Press, New York, NY, 2019. P. 289-295.

223 5. *Frydrych Capelari É., da Fonseca, G. C., Guzman, F., Margis, R.* Circular and
224 micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from
225 AGO-IP libraries //Plants. 2019. V. 8. P. 302.

226 6. *Steffen A., Elgner M., Staiger D.* Regulation of Flowering Time by the RNA-Binding
227 Proteins At GRP7 and At GRP8 // Plant Cell Physiol. 2019. V. 60. P. 2040-2050.

228 7. *Los G. V., Encell L. P., McDougall, M. G., Hartzell D. D., Karassina N., Zimprich
229 C., Wood M. G., Learish R., Ohana R. F., Urh M., Simpson D., Mendez J.,
230 Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D. H., Bulleit R.
231 F., Wood, K.V.* HaloTag: a novel protein labeling technology for cell imaging and
232 protein analysis // ACS Chem. Biol. 2008. V. 3. P. 373-382.

233 8. *Urh, M., Hartzell D., Mendez J., Klaubert D. H., & Wood K.* Methods for Detection
234 of Protein–Protein and Protein–DNA Interactions Using HaloTag™ // Affinity
235 Chromatography. – Humana Press, 2008. P. 191-210.

236 9. *van Dijk, M., Visser A., Buabeng K. M., Poutsma A., van der Schors R. C., Oudejans
237 C. B.* Mutations within the LINC-HELLP non-coding RNA differentially bind
238 ribosomal and RNA splicing complexes and negatively affect trophoblast
239 differentiation // Hum. Mol. Gen. 2015. V. 24. P. 5475-5485.

240 10. *Banks C. A. S., C. A., Boanca G., Lee Z. T., Eubanks C. G., Hattem G. L., Peak.,
241 Lauren E. Weems L. E., Conkright J. J., Florens L., Washburn M. P.* TNIP2 is a hub
242 protein in the NF-κB network with both protein and RNA mediated interactions
243 //Mol. Cell. Prot. 2016. V. 15. P. 3435-3449.

244 11. *Li X., Pritykin Y., Concepcion C. P., Lu Y., La Rocca G., Zhang M., King B., Cook P.
245 J., Wah Au Y., Popow O., Paulo, J. A. Otis H. J., Mastroleo C., Ogrodowski P.,*

246 *Schreiner R., Haigis K. M., Betel D., Leslie C. S., Ventura A.* High-Resolution In
247 Vivo Identification of miRNA Targets by Halo-Enhanced Ago2 Pull-Down //Mol.248Cell. – 2020.

249 12. *Gu J., Wang M., Yang Y., Qiu D., Zhang Y., Ma J., Zhou Y., Hannon G. J., Yu, Y.*
250 GoldCLIP: gel-omitted ligation-dependent CLIP //Gen. Prot. Bioinf. – 2018. V. 16.251 P. 136-143.

252 13. *Samanta S., Thakur J. K.* Characterization of Mediator complex and its associated
253 proteins from rice //Plant Gene Reg Networks. – Humana Press, New York, NY,2542017. P. 123-140.

255 14. *Ren Z., Zhang D., Cao L., Zhang W., Zheng H., Liu Z, Han S., Dong Y., Zhu F., Liu*
256 *H., Su H., Chen Y., Wu L., Zhu Y., Ku L.* Functions and regulatory framework of
257 ZmNST3 in maize under lodging and drought stress //Plant Cell Environ. 2020. V.25843. P. 2272-2286.

259 15. *Sorenson R., Bailey-Serres J.* Rapid immunopurification of ribonucleoprotein
260 complexes of plants //Plant Functional Genomics. – Humana Press, New York, NY,2612015. P. 209-219.

262 16. *Taranov V. V., Zlobin N. E., Evlakov K. I., Shamustakimova A. O., Babakov A. V.*
263 Contribution of *Eutrema salsugineum* cold shock domain structure to the interaction
264 with RNA //Biochemistry (Moscow). 2018. V. 83. P. 1369-1379.

265 17. *Laemmli U. K.* Cleavage of structural proteins during the assembly of the head of
266 bacteriophage T4 //nature. – 1970. V. 227. P. 680-685.

267 18. *Petri R., Jakobsson J.* Identifying miRNA targets using AGO-RIPseq //mRNA
268 Decay. – Humana Press, New York, NY, 2018. P. 131-140..

269 19. *Xing D., Wang, Y., Hamilton M., Ben-Hur A., Reddy A. S.* Transcriptome-wide
270 identification of RNA targets of *Arabidopsis* SERINE/ARGININE-RICH45
271 uncovers the unexpected roles of this RNA binding protein in RNA processing //The272Plant Cell. 2015. V. 27. P. 3294-
3308.

273