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Abstract: Objectives: In order to solve the problem that most of the existing research focuses on the
binary tactile attributes of objects,which ignores the tactile attribute strength and category recogni-
tion,an attribute strength and category recognition method based on convolutional neural network
matrix-label is proposed. Methods:Firstly,in the data preparation stage,we preprocess the raw data
and determine the matrix labels to build the haptic dataset.Secondly,in the feature extraction
stage,we fuse the haptic data of two fingers and use the convolutional neural network to extract the
attribute strength features.Finally,in the attribute strength and category recognition stage,all chan-
nel haptic data is fused to predict the attribute strength and category.Results:We compared with
the multi-label convolutional neural network method in terms of elastic strength,hardness strength
and category,and compared the attribute strength recognition capabilities of the two methods using
novel objects outside the haptic dataset.The results show that the accuracy of the last 20 iterations
of the matrix-label method has an average elastic strength of 96.73%,hardness strength of
97.34%,and category of 96.67%.The performance is better. When the Euclidean distance between the
prediction of the novel object and the real label is less than 1,the accuracy of the elastic strength is
best to reach 100%,and the hardness strength is best to reach 100%.The performance is better. Con-
clusions:The effectiveness of the method has been verified.Comparing with the convolutional neu-
ral network method,our method can effectively recognize the attribute strength and category of
objects.

Keywords: robot tactile; convolution neural network; attribute strength identification; category
identification; robot operating system

1. Introduction

When modeling the diversity of objects based on deep learning methods, such as
image classification of visual data [1]and speech recognition of audio data [2], it is often
necessary to pay attention to the differences among objects. In the field of haptics, the
difference of haptic signals often reflects the difference of the properties of different meas-
ured objects, which is an important basis for classifying the input into discrete categories.

Tactile sensors can provide the robot with information about the interaction forces
and the object itself [3]. For example, Whether the sensor is in contact with the object [4],
whether the object slides [5], the physical properties of the object such as temperature [6],
roughness and texture [7, 8]. The robot collects this information through a dynamic [9]
exploration program (EPs) to get haptic data from the object. Collected perceivable tactile
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properties depend on EP [10]. In general, a lot of original data is needed in the deep learn-

ing model for training. these data needs to be artificial markers, which makes the model

to a specific set.The model can only identify objects that have a certain amount of data in
the set.For this problem, learning higher-level attributes of objects, such as elasticity, hard-
ness and roughness of objects, may be more conducive to model generalization.

Many researchers have tried to teach robots to recognize tactile adjectives of objects
from raw data and map the features of haptic data to artificially labeled data labels by
using binary tactile adjectives (e.g., hard or not hard) to label objects [11, 12]. However,
the above approach has the following disadvantages:

e In the existing open dataset [11, 12], the experimenter was only required to give the
binary label (yes/no) of each object's attribute, and the binary label does not contain
the delicate recognition of the object's attribute, so it is impossible to evaluate the
strength of the object's attribute.

¢ In the real scene, human beings have a rich tactile perception system. Touching an
object will get a delicate sensory feedback and have a specific cognition of the
strength of the object's attributes. However, for robot tactile perception, only using
binary tactile labels to describe objects will simplify the object attributes to binary
space [13], which makes the robot have a very rough cognition of the strength of the
object attributes.

This paper aims to enable the robot not only to recognize the tactile properties of
objects, but also to understand the strength of the properties of objects more delicately,
and then to recognize the categories of objects. Therefore, in order to solve the shortcom-
ings of the above existing studies, this paper uses Kinova manipulator and NumaTac tac-
tile sensor to establish the haptic dataset of the intensity of object attributes. The dataset
contains two parts: the haptic sample of the object and the corresponding matrix label of
the sample. Among them, the haptic sample contains force signal and vibration signal,
and the matrix label contains the elastic strength and hardness strength information of the
object attribute. Then, a convolutional neural network(CNN) based object attribute
strength and category recognition algorithm is proposed, which is used to identify the
elastic strength, hardness strength and object category of the object in the haptic dataset.
Through experiments, while ensuring a high recognition accuracy of the attribute inten-
sity and category of objects in the dataset, some haptic samples of objects outside the da-
taset are selected to verify the adaptive attribute intensity recognition ability of this
method, and a good effect is obtained.

The structure of this paper is as follows: In Section 2, the latest progress related to
this topic is introduced. In Section 3, the process of establishing the haptic dataset is in-
troduced. Section 4 introduces the algorithm of object attribute strength and category
recognition based on convolutional neural network. Section 5 presents the experimental
results of the recognition algorithm on the haptic dataset. In Section 6, we give the discus-
sion about the results. Finally, in Section 7, we summarize the whole paper and the future
work.

2. Related Work

The robot's tactile object recognition capability is achieved by processing haptic sig-
nals, which can be represented as a continuous signal, a set of discrete measurements, or
a series of images [14].Different data structures may affect how the data is processed. From
the perspective of the data structure of haptic signals, this paper reviews the related stud-
ies on the use of haptic data to identify objects and their attributes.

At present, the common haptic signals are force signals and vibration signals. If tac-
tile sensors provide a global pressure value, then the best form of haptic signals may be a
time-varying pressure curve signal, which can be used to detect contact or sliding events
between contact surfaces [15, 16]. If the sensor is made up of a set of electrodes or sensing
units [17], then haptic images may be a good signal representation. Some studies only
consider the static information of the pressure images [18]. Although the object is pressed
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several times [19], each pressure image only contains the pressure distribution infor-
mation caused by the shape of the object, and does not contain the time relationship be-
tween the images. Therefore, some research will each image represents a transient mo-
ment pressure readings matrix, and haptic image sequence can contain the physical prop-
erties of a object information changes over time [20]. For haptic image, machine learning
methods, such as k-nearest neighbor [21], bayesian method [22] and the traditional
method based on image [23, 24] was used to identify features. But this does not mean that
haptic data must use these corresponding methods.

There has been some progress in deep learning using haptic data to identify objects
[25]. In [26], a recognition system using deep learning method and tactile sensor is pro-
posed, and this system can recognize objects by grasping objects and cannot recognize the
physical properties of objects, In [27],a multi-class and multi-label deep learning model is
designed. The model can simultaneously learn four tactile features, including hardness,
thermal conductivity, roughness and texture from haptic images, and identify targets ac-
cording to these features. Considering the good performance of CNN processing to extract
spatial features, the use of CNN to process tactile images is widely used [28, 29]. In addi-
tion, some researchers use advanced processing of haptic pressure images to classify and
recognize objects. For example, the pressure images obtained during extrusion and release
are connected into a tensor that can be used to classify objects in 3D CNN [30].

Regardless of the form of the data structure of the haptic signal, one way to get richer
information about the haptic signal is for humans to classify haptic samples using discrete
categories that are more detailed than binary decisions. The simplest partitioning task is
to sort objects, classify them according to their similarity, and select one or more dimen-
sions for analysis. In [31],The results of free sorting of different material samples were
analyzed by multidimensional scaling, and the tactile material space was calibrated by
physical measurements of compressibility and roughness. Similarly, [32] discusses the
main dimensions of tactile surface perception. Roughness, smoothness and hardness are
important orthogonal dimensions, and it is concluded that elasticity may correspond to
the third main dimension. However, in a later study [33], the third major dimension of
tactile perception was identified as viscosity/slippage. In addition, in [11, 12], a number of
different researchers were selected to give binary ratings to adjectives of different objects,
but the antisense relationships between adjectives were not taken into account. Therefore,
[13] complements this aspect of the study by confirming the antonym pairs of hard/soft,
rough/smooth and cold/warm, And more tactile information than binary label is analyzed.

3. Materials

The haptic datasets:Penn Haptic Adjective Corpus-1(PHAC-1) and Penn Haptic Ad-
jective Corpus-2(PHAC-2) are proposed by using BioTac sensors in [11, 12]. However,
each volunteer was only required to give the binary label (yes/no) of each object attribute,
and the binary label cannot judge the strength of the object attribute. Therefore, this paper
uses its own haptic data collection platform to establish the haptic dataset of the strength
of the object attribute.

3.1. Robot platform

As shown in Figure 1, the desktop Kinova robotic arm equipped with Syntouch's
NumaTac tactile sensor is selected as the haptic data acquisition platform in this paper.
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Figure 1. Robot operating platform that is picking up paper cup

The Kinova arm has seven degrees of freedom, including a 6-DOF manipulator and
a 1-DOF two-finger gripper. Two NumaTac tactile sensors are mounted on each finger of
the two-finger gripper. NumaTac tactile sensor is shown in Figure 2. The original data
collected by it includes DC pressure signal (Poc) at a sampling frequency of 100Hz and
AC pressure vibration signal (Pac) at a sampling frequency of 2200Hz.

Pressure Transducer .
Electronics

Open-Cell Foam Self-Sealing Skin

Figure 2. The NumaTac

The DC pressure value and AC pressure value per unit area can be calculated with
Equations (1) and (2) :

DC = (Ppc -offset) x12.94Pa/bit (D
AC = (Pac-offset) x0.13Pa/bit (2)

In Equation (1), offset is the DC pressure signal value of NumaTac tactile sensor sig-
nal under atmospheric pressure. In Equation (2), offset is the AC pressure vibration signal
value of NumaTac tactile sensor signal under atmospheric pressure. Ppc and Pac are in-
stantaneous DC pressure signal values and instantaneous AC pressure vibration signal
values obtained by NumaTac tactile sensor when the two-finger gripper interacts with the
object, and the unit is bit.

The haptic data acquisition platform uses the Robot Operating System (ROS) as the
software interface. ROS has a series of libraries and tools to help developers write Robot
software programs, known as ROS nodes. When completing a complex task through a
series of programs, ROS creates a network connecting all nodes, which is called ROS dia-
gram. Nodes interact with each other to obtain information published by other nodes
through the ROS diagram.

In this paper, the ROS diagram mainly included the Kinova Node, Syntouch Node
and Data Processing Node, and the ROS Master managed the registration, communication
and parameter servers of the node, as shown in Figure 3.
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Figure 3. ROS diagram of data acqugiﬁon platform

e  ROS Master is the core of ROS. It registered the names of nodes, services and topics
and maintains a parameter server.

e KinovaNode is used to control the Kinova manipulator to move to the preset position
and control the two-finger gripper to perform exploratory actions on the object. It
consisted of three parts: the Bringup node to start all the nodes, to start some config-
urations for Kinova, and to activate the Kinova arm and the NumaTac tactile sensor;
Moveit node starts the motion planning control component of the manipulator;
Grasp node drives the manipulator arm to perform EPs on the target object.

e  The Syntouch Node is used to publish the haptic data generated by the interaction
between the NumaTac tactile sensor and the object. During the execution of a com-
plete exploration action to generate haptic data, two NumaTac tactile sensors follow
the two-finger gripper to physically interact with the object. The NumaTac tactile
sensor data is continuously acquired and published to the ROS network at a fre-
quency of 100Hz.

e  The Data Processing Node subscribed to the haptic data released by the Syntouch
node, and superimposed the data generated by two NumaTac tactile sensors released
by the Syntouch node into a dual-channel haptic sample. Since Kinova manipulator
first needs to reach the preset position before performing the exploration action, the
NumaTac tactile sensor returns useless data. To solve this problem during this pro-
cess, a dual thread is established. Firstly, the haptic data is continuously received in
the main thread and it is judged whether the NumaTac tactile sensor has an initial
contact with the object. When the initial contact is generated, the branch thread is
started. The branch thread first waits for 3s until all the sample data in the main
thread is received, and then intercepts the data and saves it as the haptic sample.

3.2. NumaTac Haptic Dataset

In this paper, the above haptic data acquisition platform is used to repeatedly inter-
act with some common objects in daily life to collect a large number of haptic samples.
After that, four experimenter is asked to interact with the objects physically to provide the
elastic strength and hardness strength of each object to establish the object matrix label,
and the haptic samples and matrix labels constitute the NumaTac Haptic Dataset (NHD).

3.2.1. Objects

Considering the foam material on the surface of the NumaTac tactile sensor and the
motion limitations of the Kinova two-finger gripper. In this paper, as shown in Figure 4,
32 different objects are selected after excluding objects with dangerous characteristics such
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as sharpness, high temperature, humidity and unsuitable size. These 32 objects contain a
variety of material properties and represent a wide range of physical properties.

Water Bottle Garbage Bags Glue Bubble Paper Dental Box  Plastic Box Metal Cyliner

= e

Tennis Rubber Earphone Box Soap Box Hand Cream Glass Bottle Square Foam  Foam Ball

T e e i

Foam Board Black Sponge Square Sponge Round Sponge Jelly Ham Sausage Orange Middle Draw Paper

Triangular Bandage White Thread Face Mask Black Bandage Towe Paper Cup Small Draw Paper

Figure 4. 32 object pictures in NHD

3.2.2. Data collection

In general, humans use a series of exploratory actions when evaluating objects. Sim-
ilarly, the movements of Kinova's robotic arm to explore the object in this paper are de-
termined as: Squeeze, hold and release. Since the interaction between the robotic arm and
the object are a continuous process. the above three exploratory actions are combined into
a complete process to collect haptic data.

The Kinova arm performs these explorations on each object to obtain tactile infor-
mation. Through adjusting the object location, the object are kept on the central axial plane
of the two-finger gripper, setting up small posture change of uncertainty,and the squeez-
ing action occured so that both fingers of the gripper contact the object at almost the same
time, which prevent the object centroid position on two fingers of the tactile sensor inter-
ference and reduce unnecessary changes between experiment.

When the exploration begins, the grippers hand is closed at a uniform speed until
the NumaTac tactile sensor on the two fingers make initial contact with the object. At the
beginning of the object squeezing stage, NumaTac tactile sensors continue to deform to
obtain haptic signals until a force threshold of 3493.8Pa is reached, i.e. the Ppc value of
one of the NumaTac tactile sensors reaches 270bits (offset reaches 238), and the callback
function in the node sends a stop command to the grippers. Because the signal takes time
to transmit , the gripper are going to continue to squeeze the object and send back data
for a short time before receiving the stop command, but this situation is more realistic.
When the object squeezing stage is over, the gripper enter the object holding stage. The
opening angle of the gripper remains the same, and the NumaTac tactile sensor deforms
unchanged to receive the haptic signal for a period of time. At the end of the object holding
stage, the gripper opens at a uniform speed and enters the object release stage. The Nu-
maTac tactile sensor returns to its initial shape and state and generats haptic signals.

The haptic data acquisition platform is used to perform the above continuous explo-
ration actions to touch 32 kinds of objects, each object is touched 50 times, and all Ppc and
Pac is recorded.

3.2.3. Data preprocessing
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The approximate time required for a complete data collection operation is 35, and
the frequency of the NumaTac haptic data returned to the ROS network is 100Hz, so the
length of each sample data is set to 300 discrete data points.

Considering the difference in data distribution between Ppc and Pac, the data are
normalized according to Equation (3). Then, looking at the haptic data collected and tak-
ing into account the symmetry of the mechanical structure when the dexterous robotic
hand grabs the object,, In order to retain the integrity of the tactile information of the
measured object and increase the characteristic quantity of the tactile information of the
sample, the haptic data of the left and right fingers of each sample are superplaced into a
double-channel sample.

x* = x%‘u (3

In Equation (3), x*is the normalized data, X is the original data, p is the mean value
of X, o is the standard deviation of X.

3.2.4. Label

In order to match the haptic data of the object with its real label, four subjects are
found, and then put on an eye mask and a headset. In the blind environment, two fingers
are used to simulate the exploratory movement of the robot dexterous hand touching the
object, and the strength of the object attribute is compared in pairs one by one. Then, all
the experimenters are asked to give the grade of elastic strength and hardness strength for
each object, and the grade range is limited to 10 grades from 1 to 10. After that, the grade
is transformed into a binary label of 1x10 with a value of 1 at the strength level and 0 at
the other positions. Finally, the point of value 1 is taken as the intersection point. The
binary labels are vertically crossed into a 10x10 matrix, which contained the elastic
strength label, hardness strength label and category label of the object. As shown in Figure
5,it is the location map of all objects, and the matrix element of the object's location is at
the strength level value 1. The 10x1 column vector of the location of the object is used as
the elastic strength label, the 1x10 row vector is used as the hardness strength label, and
the entire 10x10 matrix is used as the category label.
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Figure 5. Location map of 32 objects in the matrix in NHD
For the problem of different intensity levels given by different experimenters, the
experimenters can vote on all the intensity levels given, and the experimenters could agree
with their own or others' judgment of the object. This process is completely decided by
the internal discussion of the four experimenters, without the influence of other external
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personnel. The experimenters is required to give unique elastic strength and hardness
strength rating for each object that will not be changed.

4. Method

It is an important problem that tactile attribute strength and category recognition of
objects, One way to obtain rich tactile information similar to human perception is to use
more discrete categories to represent the strength of an object's attributes. According to
the similarity of attributes and the difference of attribute strength among different objects,
the objects are sorted to determine the strength of each attribute of each object, and then
the category of objects is determined by the strength of all the attributes of the object.,
After that, the category of the object is determined by the intensity of all the attributes of
the object. This process of determining the intensity of the attributes and the category label
of the object needs to be completed jointly by several experimenters in the real scene. The
feature extraction of tactile information is the basis of the recognition of the strength and
category of the object's attributes. Considering the good feature extraction ability of CNN,
this paper uses CNN to extract the tactile information features of the object, and used
matrix-label to represent the elastic strength, hardness strength and category of the object.
The structure and parameters of matrix-label CNN are shown in Figure 6.

fecl
feature map feature map fc2
haptic data 6+22%299 feature map 167107148 feature map fe3 01”0?1“5
6*11*149 1*10* 148 10
— e 111 0—
Flaslie
I ‘ 1 t f ) P uHStren;th s BCEWithLogitsLoss
nput max BN B /
conv2 conv3 .~ Dropout L
convl pooling Sigmoid s - ol
[ardness T
Label St || *
Lizbel of Orange

Figure 6. The structures of matrix-label CNN
CNN are born for images, but its application are not limited to images, so the char-
acteristic information of haptic data are extracted through the above matrix-label CNN,
the relationship between the data are analyzed, and the parameters are optimized in the
training process, as follows:

e Input consists of two parts: one is a data layer that represented the object's haptic
dataset. Each haptic sample is composed of data superimposed from two tactile fin-
gers. The other part represents the real matrix-label of the object. Take an orange as
an example, as shown in Figure 6 ,the real label contained the orange's elastic strength
(red box), hardness strength (blue box) and category label (matrix).

e The convl, conv2 and conv3 are the feature extraction layer. In order to match the
output of the network with the dimension and scale of the matrix-label, the last con-
volution layer is set with 1x1 convolution kernel and single output channel.

e The max pooling has the function of maximum pooling, which reduced the parame-
ters of the neural network and improved the calculation speed.

e The fcl. fc2 and fc3 map the learned features to the sample mark space; Normalize
the data in the BN layer; Sigmoid activation function is used to map the data within
the range [0,1]. In order to prevent overfitting, Dropout regularization technology is
adopted [34].

e Output a 10x10 matrix to calculate the distance from the real label.

e  The loss function is BCEWithLogitsLoss. Equation (4) is the calculation formula of
BCEWithLogitsLoss.

BCEWithLogitsLos'r—-% N ow;[y; * logo(x;) + (1 —y;) =log(1 — o(x))]) (4)

In Equation (4), i is the number of elements in the matrix label, N is the total number
of elements in the matrix label, w; is the weight of the neural network, y; is the matrix
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label of the sample, x; is the predicted output of CNN network, o was the Sigmoid acti-
vation function.

Before starting the training, network parameters are initialized and parameters of
the convolutional layer and the full connection layer are initialized to a normal distribu-
tion with an average value of 0 and a standard deviation of 1.

5. Experiment and Results

5.1. Experiment and Analysis of Object Attribute Strength and Category Recognition

In this paper, PyTorch, a deep learning library based on Python, is used to build a
neural network, and all haptic samples in NHD are trained and tested. Moreover, the ma-
trix label CNN method is compared with the multi-label CNN method in terms of attrib-
ute intensity perception and object recognition effect.

Take an orange as an example, orange elastic strength, hardness strength and cate-
gory label form of multi-label CNN method are shown in Figure 6.

| Elastic strength | | Hardness strength |

lo oo oo0oo0o1000f00000010 0 0]

| Label of Orange |

Figure 7. Elastic strength, hardness strength and category label of orange

In the experimental hyperparameter setting, all haptic samples in NHD are ran-
domly divided into training set and test set at a ratio of 4 : 1. The Adam optimizer is used
to set the initial learning rate as 0.05, the batch training quantity is 64 samples, and the
total iteration training is 80 times. The recognition accuracy of training and testing of each
method is shown in Table 1.
Table 1.Comparison of elastic strength, hardness strength and category recognition Accuracy rate
of each method

Method Elastic Strength Hardness Strength Category
Matrix-Label Train 99. 20% 99. 17% 99. 16%
CNN Test 96. 73% 97. 34% 96. 67%
Multi-Label  Train 99. 71% 99. 79% 99. 60%
CNN Test 95. 64% 96. 52% 94. 44%

It can be seen from Table 1 that, compared with the use of multi-label CNN, the ac-
curacy of the test is relatively high in the identification of the elastic strength and hardness
strength of the object, as well as in the result of category identification, which increases by
1.09%, 0.82% and 2.23% respectively. In addition, the accuracy gap of training and testing
using matrix-label CNN is smaller than that of multi-label CNN.

5.2. Experiment and Analysis of Novel Object Attribute Strength Perception

In real life, it is not only impossible to collect, but also impossible to pre-train that
the haptic data of all objects. Recognition of untrained novel object attributes by trained
object attributes [35, 36] usually required attribute correlation between objects. Inspired
by this idea, and by the ability of matrix-label CNN method proposed to identify object
attribute strength, this paper tested the attribute strength of 5 novel objects.

Considering the selection conditions of objects in NHD, five novel objects are se-
lected, which are Badminton, Warm Ears, Hard disk Pack, Inkpad Box and Nail Box. The
test results of matrix-label CNN and multi-label CNN on the identification of the strength
of the novel object's attribute and the occurrence times of the strength of the attribute are
shown in Table 2 and Table 3 respectively.

Table 2. Recognition results of elastic strength and hardness strength of novel objects based on ma-
trix-label CNN
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Table 3. Recognition results of elastic strength and hardness strength of novel objects based on

multi-label CNN
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Elastic Strength
Hardness Strength

Elastic Strength

Inkpad Box Hardness Strength

Elastic Strength

Nail Box IMardness Strength

[10(49), 5]
[1(12),8(38)]
[9,6,3(18)]
(19, 241)]

[10(9),9,7(19),6(4),5(11),4(5), 3]
[1(19),2(2),5(22),6(D]

5),3(35),1(8)]

9,8,7(
7(2),8(39), 10(7) ]

23,5,

(9, 4(49)]
12,4(2),5(26),7(16),9(5) ]

As could be seen from Table 2 and Table 3, when each novel object is tested for 50
times, various methods has a variety of prediction results for the strength of the object's
attribute, and the occurrence times is different. However, each object has the strength with
the most occurrence times, so it could be considered that the neural network has a ten-
dency for the strength of the attribute.

In order to more intuitively display the recognition results of each method on the
attribute strength of the novel object, the recognition accuracy of each method is judged
by the Euclidean distance between the predicted value and the label. The recognition ac-
curacy results of each method is shown in Figure 8 and Figure 9.

10
©Tlard disk Pack
9t ® Nail Box
® Badminton
8 =
@ Tnkpad Box
)
; 7k @ Warm Fars
<
— ”
= 88% 48% 84%
- OFr T -
=’
S 30% 26% . 1 acu o2%
2 51 74% 66%e | eT6%[98% | e 74%|82%
w
3]
=4t o — .
17
[xs
i / 1 / /
= 3+ ‘ @ 96% | 96% ’ @ 98%| 100%
96% 98%
2 — aQw
100% 98%
1 B
1 1 1 1 1 1 1 1

6 7 8 9 10

Hardness Strength/level

Figure 8. Matrix-label CNN accuracy chart based on euclidean distance 0 and 1
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Figure 9. Multi-label CNN accuracy chart based on euclidean distance 0 and 1

Similar to the matrix-label determination process in the NHD, the same four experi-
menters are asked to judge the attribute strength of the five novel objects. In Figure 8
and Figure 9, the coordinates of the five dots are the elastic strength and hardness strength
of the five objects jointly determined by the experimenters. The Euclidean distance be-
tween the attribute strength predicted by the neural network and the real attribute
strength determined by the experimenter is used as the criterion of judgment, and two
quantitative values of Euclidean distance 0 and 1 are selected. The X-axis value of the dot
is the prediction accuracy of hardness strength under different Euclidean distances, and
the Y-axis value is the prediction accuracy of elastic strength under different Euclidean
distances.

As can be seen from Figure 8 and Figure 9, except for Euclide distance 1, the accuracy
rate of matrix-label CNN in testing Nail Box is 48% lower than that of multi-label CNN
(98%), and the accuracy rate of Warm Ears is 96% lower than that of multi-label CNN
(100%). All the others are matrix-label CNN with better testing effect on the strength of
novel object attributes. In terms of elastic strength prediction, the best result is 100% accu-
racy of Warm Ears at Euclide distance 1, and the worst result is 26% accuracy of Nail Box
prediction at Euclide distance 0, but the accuracy increased to 48% at Euclide distance 1.
In terms of hardness strength prediction, the best result is 100% accuracy of Ink Box, and
the worst result is the Hard disk Pack with 66% accuracy when the Euclide distance is 0,
but 74% when the Euclide distance is 1.

From the above results, it could be seen that the matrix-label CNN method has a
good ability to predict the attribute strength of novel objects, and its performance is better
than that of the multi-label CNN method.

6. Discussion

There are abundant tactile sensors on human palms, so it is an interesting idea to
carry tactile sensors on robotic arms. By designing manipulator arm control algorithm and
object recognition algorithm, the intelligent perception and interaction level of the robot
can be enhanced.

This paper aims to enable the robot not only to recognize the tactile properties of
objects, but also to understand the strength of the properties of objects more delicately,
and then to recognize the categories of objects. For this purpose, this paper uses Kinova
manipulator and NumaTac tactile sensor to build the tactile attribute intensity dataset of
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the object, which includes the haptic data samples and matrix labels of the object. Among
them, the signals in the haptic samples of objects are force signals and vibration signals
that change at any time, and these two signals can well reflect the elasticity and hardness
properties of objects. In addition, there must be a correlation between the properties of
objects. As an important part of deep learning algorithms, labels in the haptic dataset exist
in the form of matrix, which can better reflect the relationship between the data, which is
obviously very interesting.

In this paper, a matrix-label CNN method is proposed to identify the attribute
strength of an object. In order to verify the effectiveness of this method, this method is
trained and tested by using the haptic dataset mentioned above. Experiments show that,
compared with the multi-label CNN method, this method can better extract the haptic
data features of the object, and can identify the elastic strength, hardness strength and
object category of the object at the same time. In addition, the real world is a non-structural
environment, so it is impossible to collect the haptic data of all objects. Therefore, some
haptic samples of novel objects are tested. The results show that the matrix-label CNN has
a good recognition effect on the strength of the object attribute, which proves the validity
of the haptic dataset and the ability of the matrix-label CNN to recognize the strength of
the object attribute. It is a good application direction to use robots to identify objects online,
which may be carried out in future work.

7. Conclusions

In this paper, a 7-DOF robotic arm platform is used. The platform includes a 6-DOF
robotic arm and a 1-DOF mechanical grip. Two fingers of the gripper are each equipped
with a NumaTac tactile sensor. Through this operation platform, we set up an object at-
tribute intensity haptic dataset, and select the object the elasticity and hardness of dimen-
sion analysis. Since our purpose is to make a delicate analysis of the properties of objects,
a method to identify the elastic strength and hardness strength of objects is proposed
based on CNN, and the results prove that this method has a good effect.

In the future work, we suggest focusing on the relationship between tactile dimen-
sions and a more delicate tactile attribute intensity classification method to identify the
object intensity. In addition, how to apply it to the actual robot application is also a prob-
lem that should be considered.
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