
 

 
 

 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

Article 1 

Recognition of Tactile Attribute Strength and Category Using 2 

Convolutional Neural Network 3 

Peng Zhang 1,*,Guoqi Yu2 ,Dongri Shan1,Zhenxue Chen3 and Xiaofang Wang1  4 

1 School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of 5 

Sciences),Shandong Province,China; shandongri@qlu.edu.cn(D.S.); wxf2012@stu.xjtu.edu.cn (X.W.) 6 
2   School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of 7 

Sciences) ,Shandong Province,China; 1043119037@stu.qlu.edu.cn 8 
3 School of Control Science and Engineering, Shandong University,Shandong Province,China; chenzhen-9 

xue@sdu.edu.cn 10 

* Correspondence: zp@qlu.edu.cn 11 

Abstract: Objectives: In order to solve the problem that most of the existing research focuses on the 12 

binary tactile attributes of objects,which ignores the tactile attribute strength and category recogni-13 

tion,an attribute strength and category recognition method based on convolutional neural network 14 

matrix-label is proposed. Methods:Firstly,in the data preparation stage,we preprocess the raw data 15 

and determine the matrix labels to build the haptic dataset.Secondly,in the feature extraction 16 

stage,we fuse the haptic data of two fingers and use the convolutional neural network to extract the 17 

attribute strength features.Finally,in the attribute strength and category recognition stage,all chan-18 

nel haptic data is fused to predict the attribute strength and category.Results:We compared with 19 

the multi-label convolutional neural network method in terms of elastic strength,hardness strength 20 

and category,and compared the attribute strength recognition capabilities of the two methods using 21 

novel objects outside the haptic dataset.The results show that the accuracy of the last 20 iterations 22 

of the matrix-label method has an average elastic strength of 96.73%,hardness strength of 23 

97.34%,and category of 96.67%.The performance is better.When the Euclidean distance between the 24 

prediction of the novel object and the real label is less than 1,the accuracy of the elastic strength is 25 

best to reach 100%,and the hardness strength is best to reach 100%.The performance is better. Con-26 

clusions:The effectiveness of the method has been verified.Comparing with the convolutional neu-27 

ral network method,our method can effectively recognize the attribute strength and category of 28 

objects. 29 

Keywords: robot tactile; convolution neural network; attribute strength identification; category 30 

identification; robot operating system 31 

 32 

1. Introduction 33 

When modeling the diversity of objects based on deep learning methods, such as 34 

image classification of visual data [1]and speech recognition of audio data [2], it is often 35 

necessary to pay attention to the differences among objects. In the field of haptics, the 36 

difference of haptic signals often reflects the difference of the properties of different meas-37 

ured objects, which is an important basis for classifying the input into discrete categories. 38 

Tactile sensors can provide the robot with information about the interaction forces 39 

and the object itself [3]. For example, Whether the sensor is in contact with the object [4], 40 

whether the object slides [5], the physical properties of the object such as temperature [6], 41 

roughness and texture [7, 8]. The robot collects this information through a dynamic [9] 42 

exploration program (EPs) to get haptic data from the object. Collected perceivable tactile 43 
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properties depend on EP [10]. In general, a lot of original data is needed in the deep learn-44 

ing model for training. these data needs to be artificial markers, which makes the model 45 

to a specific set.The model can only identify objects that have a certain amount of data in 46 

the set.For this problem, learning higher-level attributes of objects, such as elasticity, hard-47 

ness and roughness of objects, may be more conducive to model generalization. 48 

Many researchers have tried to teach robots to recognize tactile adjectives of objects 49 

from raw data and map the features of haptic data to artificially labeled data labels by 50 

using binary tactile adjectives (e.g., hard or not hard) to label objects [11, 12]. However, 51 

the above approach has the following disadvantages: 52 

 In the existing open dataset [11, 12], the experimenter was only required to give the 53 

binary label (yes/no) of each object's attribute, and the binary label does not contain 54 

the delicate recognition of the object's attribute, so it is impossible to evaluate the 55 

strength of the object's attribute. 56 

 In the real scene, human beings have a rich tactile perception system. Touching an 57 

object will get a delicate sensory feedback and have a specific cognition of the 58 

strength of the object's attributes. However, for robot tactile perception, only using 59 

binary tactile labels to describe objects will simplify the object attributes to binary 60 

space [13], which makes the robot have a very rough cognition of the strength of the 61 

object attributes. 62 

This paper aims to enable the robot not only to recognize the tactile properties of 63 

objects, but also to understand the strength of the properties of objects more delicately, 64 

and then to recognize the categories of objects. Therefore, in order to solve the shortcom-65 

ings of the above existing studies, this paper uses Kinova manipulator and NumaTac tac-66 

tile sensor to establish the haptic dataset of the intensity of object attributes. The dataset 67 

contains two parts: the haptic sample of the object and the corresponding matrix label of 68 

the sample. Among them, the haptic sample contains force signal and vibration signal, 69 

and the matrix label contains the elastic strength and hardness strength information of the 70 

object attribute. Then, a convolutional neural network(CNN) based object attribute 71 

strength and category recognition algorithm is proposed, which is used to identify the 72 

elastic strength, hardness strength and object category of the object in the haptic dataset. 73 

Through experiments, while ensuring a high recognition accuracy of the attribute inten-74 

sity and category of objects in the dataset, some haptic samples of objects outside the da-75 

taset are selected to verify the adaptive attribute intensity recognition ability of this 76 

method, and a good effect is obtained. 77 

The structure of this paper is as follows: In Section 2, the latest progress related to 78 

this t opic is introduced. In Section 3, the process of establishing the haptic dataset is in-79 

troduced. Section 4 introduces the algorithm of object attribute strength and category 80 

recognition based on convolutional neural network. Section 5 presents the experimental 81 

results of the recognition algorithm on the haptic dataset. In Section 6, we give the discus-82 

sion about the results. Finally, in Section 7, we summarize the whole paper and the future 83 

work. 84 

2. Related Work 85 

The robot's tactile object recognition capability is achieved by processing haptic sig-86 

nals, which can be represented as a continuous signal, a set of discrete measurements, or 87 

a series of images [14].Different data structures may affect how the data is processed. From 88 

the perspective of the data structure of haptic signals, this paper reviews the related stud-89 

ies on the use of haptic data to identify objects and their attributes. 90 

At present, the common haptic signals are force signals and vibration signals. If tac-91 

tile sensors provide a global pressure value, then the best form of haptic signals may be a 92 

time-varying pressure curve signal, which can be used to detect contact or sliding events 93 

between contact surfaces [15, 16]. If the sensor is made up of a set of electrodes or sensing 94 

units [17], then haptic images may be a good signal representation. Some studies only 95 

consider the static information of the pressure images [18]. Although the object is pressed 96 
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several times [19], each pressure image only contains the pressure distribution infor-97 

mation caused by the shape of the object, and does not contain the time relationship be-98 

tween the images. Therefore, some research will each image represents a transient mo-99 

ment pressure readings matrix, and haptic image sequence can contain the physical prop-100 

erties of a object information changes over time [20]. For haptic image, machine learning 101 

methods, such as k-nearest neighbor [21], bayesian method [22] and the traditional 102 

method based on image [23, 24] was used to identify features. But this does not mean that 103 

haptic data must use these corresponding methods. 104 

There has been some progress in deep learning using haptic data to identify objects 105 

[25]. In [26], a recognition system using deep learning method and tactile sensor is pro-106 

posed, and this system can recognize objects by grasping objects and cannot recognize the 107 

physical properties of objects, In [27],a multi-class and multi-label deep learning model is 108 

designed. The model can simultaneously learn four tactile features, including hardness, 109 

thermal conductivity, roughness and texture from haptic images, and identify targets ac-110 

cording to these features. Considering the good performance of CNN processing to extract 111 

spatial features, the use of CNN to process tactile images is widely used [28, 29]. In addi-112 

tion, some researchers use advanced processing of haptic pressure images to classify and 113 

recognize objects. For example, the pressure images obtained during extrusion and release 114 

are connected into a tensor that can be used to classify objects in 3D CNN [30]. 115 

Regardless of the form of the data structure of the haptic signal, one way to get richer 116 

information about the haptic signal is for humans to classify haptic samples using discrete 117 

categories that are more detailed than binary decisions. The simplest partitioning task is 118 

to sort objects, classify them according to their similarity, and select one or more dimen-119 

sions for analysis. In [31],The results of free sorting of different material samples were 120 

analyzed by multidimensional scaling, and the tactile material space was calibrated by 121 

physical measurements of compressibility and roughness. Similarly, [32] discusses the 122 

main dimensions of tactile surface perception. Roughness, smoothness and hardness are 123 

important orthogonal dimensions, and it is concluded that elasticity may correspond to 124 

the third main dimension. However, in a later study [33], the third major dimension of 125 

tactile perception was identified as viscosity/slippage. In addition, in [11, 12], a number of 126 

different researchers were selected to give binary ratings to adjectives of different objects, 127 

but the antisense relationships between adjectives were not taken into account. Therefore, 128 

[13] complements this aspect of the study by confirming the antonym pairs of hard/soft, 129 

rough/smooth and cold/warm, And more tactile information than binary label is analyzed. 130 

3. Materials 131 

The haptic datasets:Penn Haptic Adjective Corpus-1(PHAC-1) and Penn Haptic Ad-132 

jective Corpus-2(PHAC-2) are proposed by using BioTac sensors in [11, 12]. However, 133 

each volunteer was only required to give the binary label (yes/no) of each object attribute, 134 

and the binary label cannot judge the strength of the object attribute. Therefore, this paper 135 

uses its own haptic data collection platform to establish the haptic dataset of the strength 136 

of the object attribute. 137 

3.1. Robot platform 138 

As shown in Figure 1, the desktop Kinova robotic arm equipped with Syntouch's 139 

NumaTac tactile sensor is selected as the haptic data acquisition platform in this paper. 140 
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 141 

Figure 1. Robot operating platform that is picking up paper cup 142 

The Kinova arm has seven degrees of freedom, including a 6-DOF manipulator and 143 

a 1-DOF two-finger gripper. Two NumaTac tactile sensors are mounted on each finger of 144 

the two-finger gripper. NumaTac tactile sensor is shown in Figure 2. The original data 145 

collected by it includes DC pressure signal (PDC) at a sampling frequency of 100Hz and 146 

AC pressure vibration signal (PAC) at a sampling frequency of 2200Hz. 147 

 148 

Figure 2. The NumaTac 149 

The DC pressure value and AC pressure value per unit area can be calculated with 150 

Equations (1) and (2) : 151 

DC =（PDC -offset）×12.94Pa/bit                   （1） 152 

AC =（PAC -offset）×0.13Pa/bit                    （2） 153 

In Equation (1), offset is the DC pressure signal value of NumaTac tactile sensor sig-154 

nal under atmospheric pressure. In Equation (2), offset is the AC pressure vibration signal 155 

value of NumaTac tactile sensor signal under atmospheric pressure. PDC and PAC are in-156 

stantaneous DC pressure signal values and instantaneous AC pressure vibration signal 157 

values obtained by NumaTac tactile sensor when the two-finger gripper interacts with the 158 

object, and the unit is bit. 159 

The haptic data acquisition platform uses the Robot Operating System (ROS) as the 160 

software interface. ROS has a series of libraries and tools to help developers write Robot 161 

software programs, known as ROS nodes. When completing a complex task through a 162 

series of programs, ROS creates a network connecting all nodes, which is called ROS dia-163 

gram. Nodes interact with each other to obtain information published by other nodes 164 

through the ROS diagram. 165 

In this paper, the ROS diagram mainly included the Kinova Node, Syntouch Node 166 

and Data Processing Node, and the ROS Master managed the registration, communication 167 

and parameter servers of the node, as shown in Figure 3. 168 
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 169 
Figure 3. ROS diagram of data acquisition platform 170 

 ROS Master is the core of ROS. It registered the names of nodes, services and topics 171 

and maintains a parameter server. 172 

 Kinova Node is used to control the Kinova manipulator to move to the preset position 173 

and control the two-finger gripper to perform exploratory actions on the object. It 174 

consisted of three parts: the Bringup node to start all the nodes, to start some config-175 

urations for Kinova, and to activate the Kinova arm and the NumaTac tactile sensor; 176 

Moveit node starts the motion planning control component of the manipulator; 177 

Grasp node drives the manipulator arm to perform EPs on the target object. 178 

 The Syntouch Node is used to publish the haptic data generated by the interaction 179 

between the NumaTac tactile sensor and the object. During the execution of a com-180 

plete exploration action to generate haptic data, two NumaTac tactile sensors follow 181 

the two-finger gripper to physically interact with the object. The NumaTac tactile 182 

sensor data is continuously acquired and published to the ROS network at a fre-183 

quency of 100Hz. 184 

 The Data Processing Node subscribed to the haptic data released by the Syntouch 185 

node, and superimposed the data generated by two NumaTac tactile sensors released 186 

by the Syntouch node into a dual-channel haptic sample. Since Kinova manipulator 187 

first needs to reach the preset position before performing the exploration action, the 188 

NumaTac tactile sensor returns useless data. To solve this problem during this pro-189 

cess, a dual thread is established. Firstly, the haptic data is continuously received in 190 

the main thread and it is judged whether the NumaTac tactile sensor has an initial 191 

contact with the object. When the initial contact is generated, the branch thread is 192 

started. The branch thread first waits for 3s until all the sample data in the main 193 

thread is received, and then intercepts the data and saves it as the haptic sample. 194 

3.2. NumaTac Haptic Dataset 195 

In this paper, the above haptic data acquisition platform is used to repeatedly inter-196 

act with some common objects in daily life to collect a large number of haptic samples. 197 

After that, four experimenter is asked to interact with the objects physically to provide the 198 

elastic strength and hardness strength of each object to establish the object matrix label, 199 

and the haptic samples and matrix labels constitute the NumaTac Haptic Dataset (NHD). 200 

3.2.1. Objects 201 

Considering the foam material on the surface of the NumaTac tactile sensor and the 202 

motion limitations of the Kinova two-finger gripper. In this paper, as shown in Figure 4, 203 

32 different objects are selected after excluding objects with dangerous characteristics such 204 
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as sharpness, high temperature, humidity and unsuitable size. These 32 objects contain a 205 

variety of material properties and represent a wide range of physical properties. 206 

Water Bottle Garbage Bags Glue Bubble Paper Dental Box Plastic Box Metal Cyliner Can

Tennis Rubber Earphone Box Soap Box Hand Cream Glass Bottle Square Foam Foam Ball

Foam Board Black Sponge Square Sponge Round Sponge Jelly Ham Sausage Orange

Triangular Bandage White Thread Face Mask Black Bandage Towel Book

Middle Draw Paper

Paper Cup Small Draw Paper

 207 

Figure 4. 32 object pictures in NHD 208 

3.2.2. Data collection 209 

In general, humans use a series of exploratory actions when evaluating objects. Sim-210 

ilarly, the movements of Kinova's robotic arm to explore the object in this paper are de-211 

termined as: Squeeze, hold and release. Since the interaction between the robotic arm and 212 

the object are a continuous process. the above three exploratory actions are combined into 213 

a complete process to collect haptic data. 214 

The Kinova arm performs these explorations on each object to obtain tactile infor-215 

mation. Through adjusting the object location, the object are kept on the central axial plane 216 

of the two-finger gripper, setting up small posture change of uncertainty,and the squeez-217 

ing action occured so that both fingers of the gripper contact the object at almost the same 218 

time, which prevent the object centroid position on two fingers of the tactile sensor inter-219 

ference and reduce unnecessary changes between experiment. 220 

When the exploration begins, the grippers hand is closed at a uniform speed until 221 

the NumaTac tactile sensor on the two fingers make initial contact with the object. At the 222 

beginning of the object squeezing stage, NumaTac tactile sensors continue to deform to 223 

obtain haptic signals until a force threshold of 3493.8Pa is reached, i.e. the PDC value of 224 

one of the NumaTac tactile sensors reaches 270bits (offset reaches 238), and the callback 225 

function in the node sends a stop command to the grippers. Because the signal takes time 226 

to transmit , the gripper are going to continue to squeeze the object and send back data 227 

for a short time before receiving the stop command, but this situation is more realistic. 228 

When the object squeezing stage is over, the gripper enter the object holding stage. The 229 

opening angle of the gripper remains the same, and the NumaTac tactile sensor deforms 230 

unchanged to receive the haptic signal for a period of time. At the end of the object holding 231 

stage, the gripper opens at a uniform speed and enters the object release stage. The Nu-232 

maTac tactile sensor returns to its initial shape and state and generats haptic signals. 233 

The haptic data acquisition platform is used to perform the above continuous explo-234 

ration actions to touch 32 kinds of objects, each object is touched 50 times, and all PDC and 235 

PAC is recorded. 236 

3.2.3. Data preprocessing  237 
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The approximate time required for a complete data collection operation is 3S, and 238 

the frequency of the NumaTac haptic data returned to the ROS network is 100Hz, so the 239 

length of each sample data is set to 300 discrete data points. 240 

Considering the difference in data distribution between PDC and PAC, the data are 241 

normalized according to Equation (3). Then, looking at the haptic data collected and tak-242 

ing into account the symmetry of the mechanical structure when the dexterous robotic 243 

hand grabs the object,, In order to retain the integrity of the tactile information of the 244 

measured object and increase the characteristic quantity of the tactile information of the 245 

sample, the haptic data of the left and right fingers of each sample are superplaced into a 246 

double-channel sample. 247 

𝒙∗ = 
𝒙−μ

σ
                                  （3） 248 

In Equation (3), 𝑥∗is the normalized data, x is the original data, μ is the mean value 249 

of x, σ is the standard deviation of x. 250 

3.2.4. Label 251 

In order to match the haptic data of the object with its real label, four subjects are 252 

found, and then put on an eye mask and a headset. In the blind environment, two fingers 253 

are used to simulate the exploratory movement of the robot dexterous hand touching the 254 

object, and the strength of the object attribute is compared in pairs one by one. Then, all 255 

the experimenters are asked to give the grade of elastic strength and hardness strength for 256 

each object, and the grade range is limited to 10 grades from 1 to 10. After that, the grade 257 

is transformed into a binary label of 1×10 with a value of 1 at the strength level and 0 at 258 

the other positions. Finally, the point of value 1 is taken as the intersection point. The 259 

binary labels are vertically crossed into a 10×10 matrix, which contained the elastic 260 

strength label, hardness strength label and category label of the object. As shown in Figure 261 

5,it is the location map of all objects, and the matrix element of the object's location is at 262 

the strength level value 1. The 10×1 column vector of the location of the object is used as 263 

the elastic strength label, the 1×10 row vector is used as the hardness strength label, and 264 

the entire 10×10 matrix is used as the category label. 265 

 266 
Figure 5. Location map of 32 objects in the matrix in NHD 267 

For the problem of different intensity levels given by different experimenters, the 268 

experimenters can vote on all the intensity levels given, and the experimenters could agree 269 

with their own or others' judgment of the object. This process is completely decided by 270 

the internal discussion of the four experimenters, without the influence of other external 271 
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personnel. The experimenters is required to give unique elastic strength and hardness 272 

strength rating for each object that will not be changed. 273 

4. Method 274 

It is an important problem that tactile attribute strength and category recognition of 275 

objects, One way to obtain rich tactile information similar to human perception is to use 276 

more discrete categories to represent the strength of an object's attributes. According to 277 

the similarity of attributes and the difference of attribute strength among different objects, 278 

the objects are sorted to determine the strength of each attribute of each object, and then 279 

the category of objects is determined by the strength of all the attributes of the object., 280 

After that, the category of the object is determined by the intensity of all the attributes of 281 

the object. This process of determining the intensity of the attributes and the category label 282 

of the object needs to be completed jointly by several experimenters in the real scene. The 283 

feature extraction of tactile information is the basis of the recognition of the strength and 284 

category of the object's attributes. Considering the good feature extraction ability of CNN, 285 

this paper uses CNN to extract the tactile information features of the object, and used 286 

matrix-label to represent the elastic strength, hardness strength and category of the object. 287 

The structure and parameters of matrix-label CNN are shown in Figure 6. 288 

conv1

feature map
6*11*149

feature map
16*10*148 feature map

1*10*148

fc1
100 fc2

40 Output
10*10

fc3
10

haptic data

max 
pooling

conv2 conv3

feature map
6*22*299

BN
Sigmoid

Dropout

BCEWithLogitsLoss
Input

Label
 289 

Figure 6. The structures of matrix-label CNN 290 

CNN are born for images, but its application are not limited to images, so the char-291 

acteristic information of haptic data are extracted through the above matrix-label CNN, 292 

the relationship between the data are analyzed, and the parameters are optimized in the 293 

training process, as follows: 294 

 Input consists of two parts: one is a data layer that represented the object's haptic 295 

dataset. Each haptic sample is composed of data superimposed from two tactile fin-296 

gers. The other part represents the real matrix-label of the object. Take an orange as 297 

an example, as shown in Figure 6 ,the real label contained the orange's elastic strength 298 

(red box), hardness strength (blue box) and category label (matrix). 299 

 The conv1、conv2 and conv3 are the feature extraction layer. In order to match the 300 

output of the network with the dimension and scale of the matrix-label, the last con-301 

volution layer is set with 1×1 convolution kernel and single output channel. 302 

 The max pooling has the function of maximum pooling, which reduced the parame-303 

ters of the neural network and improved the calculation speed. 304 

 The fc1、fc2 and fc3 map the learned features to the sample mark space; Normalize 305 

the data in the BN layer; Sigmoid activation function is used to map the data within 306 

the range [0,1]. In order to prevent overfitting, Dropout regularization technology is 307 

adopted [34]. 308 

 Output a 10×10 matrix to calculate the distance from the real label. 309 

 The loss function is BCEWithLogitsLoss. Equation (4) is the calculation formula of 310 

BCEWithLogitsLoss. 311 

BCEWithLogitsLoss=-
1

𝑁
∑ (𝒘𝑖[𝒚𝑖 ∗  log σ(𝒙𝑖) + (1 − 𝒚𝑖) ∗ log(1 − σ(𝒙𝑖)

𝑁
𝑖=0 )])     (4) 312 

In Equation (4), i is the number of elements in the matrix label, N is the total number 313 

of elements in the matrix label, 𝒘𝒊 is the weight of the neural network, 𝒚𝒊 is the matrix 314 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 July 2021                   doi:10.20944/preprints202107.0530.v1

https://doi.org/10.20944/preprints202107.0530.v1


Sensors 2021, 21, x FOR PEER REVIEW 9 of 14 
 

 

label of the sample, 𝒙𝒊 is the predicted output of CNN network, σ was the Sigmoid acti-315 

vation function. 316 

Before starting the training, network parameters are initialized and parameters of 317 

the convolutional layer and the full connection layer are initialized to a normal distribu-318 

tion with an average value of 0 and a standard deviation of 1. 319 

5. Experiment and Results  320 

5.1. Experiment and Analysis of Object Attribute Strength and Category Recognition 321 

In this paper, PyTorch, a deep learning library based on Python, is used to build a 322 

neural network, and all haptic samples in NHD are trained and tested. Moreover, the ma-323 

trix label CNN method is compared with the multi-label CNN method in terms of attrib-324 

ute intensity perception and object recognition effect. 325 

Take an orange as an example, orange elastic strength, hardness strength and cate-326 

gory label form of multi-label CNN method are shown in Figure 6. 327 

 328 
Figure 7. Elastic strength, hardness strength and category label of orange 329 

In the experimental hyperparameter setting, all haptic samples in NHD are ran-330 

domly divided into training set and test set at a ratio of 4∶1. The Adam optimizer is used 331 

to set the initial learning rate as 0.05, the batch training quantity is 64 samples, and the 332 

total iteration training is 80 times. The recognition accuracy of training and testing of each 333 

method is shown in Table 1. 334 

Table 1.Comparison of elastic strength, hardness strength and category recognition Accuracy rate 335 

of each method 336 

 337 
It can be seen from Table 1 that, compared with the use of multi-label CNN, the ac-338 

curacy of the test is relatively high in the identification of the elastic strength and hardness 339 

strength of the object, as well as in the result of category identification, which increases by 340 

1.09%, 0.82% and 2.23% respectively. In addition, the accuracy gap of training and testing 341 

using matrix-label CNN is smaller than that of multi-label CNN. 342 

5.2. Experiment and Analysis of Novel Object Attribute Strength Perception 343 

In real life, it is not only impossible to collect, but also impossible to pre-train that 344 

the haptic data of all objects. Recognition of untrained novel object attributes by trained 345 

object attributes [35, 36] usually required attribute correlation between objects. Inspired 346 

by this idea, and by the ability of matrix-label CNN method proposed to identify object 347 

attribute strength, this paper tested the attribute strength of 5 novel objects. 348 

Considering the selection conditions of objects in NHD, five novel objects are se-349 

lected, which are Badminton, Warm Ears, Hard disk Pack, Inkpad Box and Nail Box. The 350 

test results of matrix-label CNN and multi-label CNN on the identification of the strength 351 

of the novel object's attribute and the occurrence times of the strength of the attribute are 352 

shown in Table 2 and Table 3 respectively. 353 

Table 2. Recognition results of elastic strength and hardness strength of novel objects based on ma-354 

trix-label CNN 355 
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 356 
Table 3. Recognition results of elastic strength and hardness strength of novel objects based on 357 

multi-label CNN 358 

 359 
As could be seen from Table 2 and Table 3, when each novel object is tested for 50 360 

times, various methods has a variety of prediction results for the strength of the object's 361 

attribute, and the occurrence times is different. However, each object has the strength with 362 

the most occurrence times, so it could be considered that the neural network has a ten-363 

dency for the strength of the attribute. 364 

In order to more intuitively display the recognition results of each method on the 365 

attribute strength of the novel object, the recognition accuracy of each method is judged 366 

by the Euclidean distance between the predicted value and the label. The recognition ac-367 

curacy results of each method is shown in Figure 8 and Figure 9. 368 

 369 
Figure 8. Matrix-label CNN accuracy chart based on euclidean distance 0 and 1 370 
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 371 
Figure 9. Multi-label CNN accuracy chart based on euclidean distance 0 and 1 372 

Similar to the matrix-label determination process in the NHD, the same four experi-373 

menters are asked to judge the attribute strength of the five novel objects. In Figure  8 374 

and Figure 9, the coordinates of the five dots are the elastic strength and hardness strength 375 

of the five objects jointly determined by the experimenters. The Euclidean distance be-376 

tween the attribute strength predicted by the neural network and the real attribute 377 

strength determined by the experimenter is used as the criterion of judgment, and two 378 

quantitative values of Euclidean distance 0 and 1 are selected. The X-axis value of the dot 379 

is the prediction accuracy of hardness strength under different Euclidean distances, and 380 

the Y-axis value is the prediction accuracy of elastic strength under different Euclidean 381 

distances. 382 

As can be seen from Figure 8 and Figure 9, except for Euclide distance 1, the accuracy 383 

rate of matrix-label CNN in testing Nail Box is 48% lower than that of multi-label CNN 384 

(98%), and the accuracy rate of Warm Ears is 96% lower than that of multi-label CNN 385 

(100%). All the others are matrix-label CNN with better testing effect on the strength of 386 

novel object attributes. In terms of elastic strength prediction, the best result is 100% accu-387 

racy of Warm Ears at Euclide distance 1, and the worst result is 26% accuracy of Nail Box 388 

prediction at Euclide distance 0, but the accuracy increased to 48% at Euclide distance 1. 389 

In terms of hardness strength prediction, the best result is 100% accuracy of Ink Box, and 390 

the worst result is the Hard disk Pack with 66% accuracy when the Euclide distance is 0, 391 

but 74% when the Euclide distance is 1. 392 

From the above results, it could be seen that the matrix-label CNN method has a 393 

good ability to predict the attribute strength of novel objects, and its performance is better 394 

than that of the multi-label CNN method. 395 

6. Discussion  396 

There are abundant tactile sensors on human palms, so it is an interesting idea to 397 

carry tactile sensors on robotic arms. By designing manipulator arm control algorithm and 398 

object recognition algorithm, the intelligent perception and interaction level of the robot 399 

can be enhanced.  400 

This paper aims to enable the robot not only to recognize the tactile properties of 401 

objects, but also to understand the strength of the properties of objects more delicately, 402 

and then to recognize the categories of objects. For this purpose, this paper uses Kinova 403 

manipulator and NumaTac tactile sensor to build the tactile attribute intensity dataset of 404 
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the object, which includes the haptic data samples and matrix labels of the object. Among 405 

them, the signals in the haptic samples of objects are force signals and vibration signals 406 

that change at any time, and these two signals can well reflect the elasticity and hardness 407 

properties of objects. In addition, there must be a correlation between the properties of 408 

objects. As an important part of deep learning algorithms, labels in the haptic dataset exist 409 

in the form of matrix, which can better reflect the relationship between the data, which is 410 

obviously very interesting. 411 

In this paper, a matrix-label CNN method is proposed to identify the attribute 412 

strength of an object. In order to verify the effectiveness of this method, this method is 413 

trained and tested by using the haptic dataset mentioned above. Experiments show that, 414 

compared with the multi-label CNN method, this method can better extract the haptic 415 

data features of the object, and can identify the elastic strength, hardness strength and 416 

object category of the object at the same time. In addition, the real world is a non-structural 417 

environment, so it is impossible to collect the haptic data of all objects. Therefore, some 418 

haptic samples of novel objects are tested. The results show that the matrix-label CNN has 419 

a good recognition effect on the strength of the object attribute, which proves the validity 420 

of the haptic dataset and the ability of the matrix-label CNN to recognize the strength of 421 

the object attribute. It is a good application direction to use robots to identify objects online, 422 

which may be carried out in future work. 423 

7. Conclusions 424 

In this paper, a 7-DOF robotic arm platform is used. The platform includes a 6-DOF 425 

robotic arm and a 1-DOF mechanical grip. Two fingers of the gripper are each equipped 426 

with a NumaTac tactile sensor. Through this operation platform, we set up an object at-427 

tribute intensity haptic dataset, and select the object the elasticity and hardness of dimen-428 

sion analysis. Since our purpose is to make a delicate analysis of the properties of objects, 429 

a method to identify the elastic strength and hardness strength of objects is proposed 430 

based on CNN, and the results prove that this method has a good effect. 431 

In the future work, we suggest focusing on the relationship between tactile dimen-432 

sions and a more delicate tactile attribute intensity classification method to identify the 433 

object intensity. In addition, how to apply it to the actual robot application is also a prob-434 

lem that should be considered. 435 
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