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Abstract 

Introduction: Heat is a kinetic process whereby energy flows from between two systems; hot-
to-cold objects. In oro-dental implantology, conductive heat transfer/(or thermal stress) is a 
complex physical phenomenon to analyze and consider in treatment planning. Hence, ample 
research has attempted to measure heat-production to avoid over-heating during bone-cutting 
and -drilling for titanium (Ti) implant-site preparation and insertion, thereby 
preventing/minimizing early (as well as delayed) implant-related complications and failure. 
Objective: Given the low bone-thermal conductivity whereby heat generated by osteotomies 
is not effectively dissipated and tends to remain within the surrounding tissue (peri-implant), 
increasing the possibility of thermal-injury; this work attempts to obtain an exact analytical 
solution of the heat equation under exponential thermal-stress, modeling transient heat 
transfer and temperature changes in Ti implants upon hot-liquid intake. Materials and 
Methods: We investigate the impact of the material, the location point along implant length, 
and the exposure time of the thermal load on temperature changes. Results: Despite its 
simplicity, the presented solution contains all the physics and reproduces the key features 
obtained in previous numerical analyses studies. To the best of knowledge, this is the first 
introduction of the intrinsic time, a “proper” time that characterizes the geometry of the 
dental implant, where we show, mathematically and graphically, how the interplay between 
“proper” time and exposure time influences temperature changes in Ti implants, under the 
suitable initial and boundary conditions. Conclusions: This work aspires to accurately 
complement the overall clinical diagnostic and treatment plan for enhanced bone-implant 
interface, implant stability and success rates, whether for immediate or delayed loading 
strategies. 
 
Keywords: Dental implants; Thermal stress; Modeling of heat transfer; Temperature changes; 
Heat equation; Analytical solution.  
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I. INTRODUCTION 
 

Despite significant progress in the diagnosis, prevention, management and treatment of oro-
dental diseases, teeth and supporting tissues either damaged or lost due to disease or trauma, 
continue to embody a burden. The quality of life of men and women of all ages Worldwide is 
affected by a missing tooth in several ways. Speaking difficulties, pain, loss of confidence and 
poor eating (chewing/mastication) capacity, are only a few. Thus, reduction in number of teeth 
may deteriorate quality of life [1]. Also, several previously reported articles stated that missing 
teeth are closely related to death [2, 3, 4]. Nowadays a number of options exist for the 
replacement of missing teeth. Dental implants are used to replace missing teeth [5], a great 
option for patients missing natural teeth, because they act as a secure anchor for artificial 
replacement teeth and eliminate the instability associated with surface adhesives and 
removable bridges [6]. Hence, dental implants, titanium-based mainly, are a predictable 
treatment modality for the rehabilitation of partially and completely edentulous patients. 
Indeed, dental implant use has nearly tripled since 1986 [6a], and it is expected to continue to 
rise or grow, rapidly. People of all ages are turning to dental implants to replace a single tooth, 
several teeth or a full set of dentures. Leading reasons for choosing dental implants are: to 
restore normal eating and speaking abilities, to enhance facial appearance and confidence, and 
to increase denture retention. Dental implants changed (and continue to) the way people live, 
they are re-discovering the comfort and confidence to eat, speak, laugh and enjoy life [6]. 
 
Due to consumption of hot foods and liquids, the human tooth is daily subjected to thermal 
loading. Heat generated on the tooth surface from intra-oral temperature changes is 
transferred via conduction through the enamel, dentin and pulp. Since enamel and dentin 
have lower values of thermal conductivity, the pulp is protected against rapid thermal 
fluctuations [7]. The thermal behavior, however, of restored teeth is significantly different in 
comparison to intact teeth, as the metals used in clinical restorative applications, such as 
titanium or titanium alloy, are excellent thermal conductors [8, 9, 10, 11, 12, 13]. High 
temperatures may cause irreversible damage to tissues and organs [14], while the habitual 
consumption of extremely hot foods and beverages may affect implant treatment modality. 
Mechanical stability of dental implants is a prerequisite for successful rehabilitative and 
restorative therapy, and furthermore, it can be stated that the cornerstone of successful 
dental implant therapy is an intact biological osseointegration around the implant (fixture), 
thereby playing an important role in provision of the pursued stability. Osteoblast cells require 
in situ activation to increase bone density and establish high anchorage and subsequent high 
stability, survival and success of the implant [15]. Thermal injury to the implant-bone interface 
may lead to bone necrosis and loss of osseointegration. Previous studies have shown that 
osteoblasts may be severely damaged by a thermal impulse of 42 degrees (10 minute heat 
shock) [16], and that some bone proteins are lost [17]. Furthermore, it was stated that the 
temperature threshold for necrosis of the bone (cortical) is 47 degrees (for 1 minute) [18, 19, 
20]. Yet, literature reports intra-oral temperatures reaching 67-77 degrees during the 
consumption of hot water [21, 22]. 
 
Intra-bony heat generation, during surgical implant insertion, is another story (alarming), with 
few serious reports on temperatures at the implant-bone interface, whether during, post-
surgical preparation and/or during and post-hot substance consumption. Questions pertinent 
to threshold level(s) and probable transient changes in osteoblasts are raised. 
 
Thus, the transient heat transfer under thermal load is of vital significance in dentistry, in 
general, and in practical oro-dental implantology, in specific. In the literature already exist 
some previous works on the subject, where the authors attempt to model and investigate the 
effects of “thermal load(s)” on the bone-implant interface system [23, 24, 25, 26, 27] (see, 
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however, e.g.[27a,27b] for heat transfer from warm water to foot in a footbath). In this work, 
our approach is distinct in two main respects: (1) in the other studies, authors tend to solve 
the heat equation with a source term that accounts for the temperature excess T-Ts, with (T) 
being the temperature at a given point and (Ts) the temperature from the surroundings. 
Herein, we find it more natural to integrate the heat equation without the additional source 
term and take into account the thermal load into the imposed boundary conditions; and (2) in 
other works, the investigation is often based on numerical analysis, and, to the best of our 
knowledge, an exact analytical solution, is still missing. Obtaining an exact analytic expression 
for the solution is always challenging and desirable, since the physics is more transparent, 
while at the same time is is accessible to everyone. In particular, the interested reader may use 
the analytic expression either to check/reproduce the results shown in articles or to study 
other aspects of the solution not considered in publications. 
 
Therefore, in the present work, our goal is two-fold: (A) We propose to solve the standard heat 
equation, modifying the imposed boundary conditions without any additional source term, and 
on the other hand (B) We fill a gap in the literature by obtaining an exact analytical solution of 
a somewhat simplified problem, which nevertheless, encapsulates the physics and reproduces 
the results already found in previous works via numerical analyses. In addition, for the first 
time, we introduce and involve herein, the intrinsic time, a “proper” time that characterizes 
the geometry of the dental implant fixture and overall system, and we show how the interplay 
between that time and the exposure time influences temperature changes, and subsequent 
implant survival. Therefore, this work aims to complement the overall clinical diagnostic and 
treatment plan for enhanced biological bone-implant interface and mechanical implant 
stability and success rates, whether for immediate or delayed implant loading strategies. 
 
To simplify flow, the plan of our work is the narratively, as follows: Following  problem 
formulation, we obtain an analytical solution, followed with the appropriate figures 
demonstrating its main features . Two appendices are included for self-completeness and to 
not interrupt the flow of the discussion. 
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II. THERMAL LOAD AND HEAT TRANSFER 
 
 
A. Formulation of the physical problem 
 
 
The dental implant system, typically, consists of three parts, namely the root or fixture (good 
conductor), the abutment (good conductor) as well as the crown (moderate to poor 
conductor), see Figure 1. In principle, one must solve the full three-dimensional heat equation 
for the temperature T(x,y,z) 
 
 
 
 
                                                                                                          (1) 
 
 
where α is the thermal diffusivity, which is assumed to be a constant, space and temperature 
independent. For a derivation of the heat equation the interested reader may consult 
Appendix A. An additional source term q(t)=m (T-Ts), where m is a constant depending on the 
type and the geometry of the implant, may be added to take into account the temperature 
excess due to the thermal loading [24, 25].  
 
Here, however, as already mentioned in the introduction, we propose to solve the standard 
heat equation (1) and consider thermal stress via imposing the appropriate boundary 
condition, see the discussion below. 
 
Given the geometry of the implant, it may be modeled as a cylinder with length L and radius R, 
and so one expects to obtain an axisymmetric solution where the temperature will not depend 
on the rotation angle, and therefore the problem is essentially two-dimensional. During heat 
transfer along the axis of the implant, heat loss occurs in the radial direction as well. In the 
present work, however, since we are mostly interested in temperature changes along the axis 
of the implant, we shall ignore the radial dependence, and thus we shall solve the one-
dimensional heat equation (an approximation also justified by the fact that typically the length 
is considerably larger than the radius of the implant) for the temperature T(t, y) 
 
 

                                       
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑦2
                                           (2) 

 
 
in the domain t > 0, and 0 < y < L, assuming for simplicity a single value of the thermal 
diffusivity throughout the length of the implant, corresponding to that of the abutment. 
 
In this work we shall consider two numerical values between the diffusivity of titanium and 
that of ceramic. The endpoint y=0 corresponds to the bone, while the other endpoint y=L 
corresponds to the oral cavity. 
 
This partial differential equation must be supplemented with the initial condition T(t = 0, y) = 
f(y) as well as with the two boundary conditions at the surface (oral cavity) and at the bone, 
namely T(t, y = L) = Tsurface(t) and T(t, y = 0) = Tbone(t), where the functions Tbone(t), 
Tsurface(t) an f(y) are given functions depending on the physics of the problem at hand. This 
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problem is well posed, and it has a unique solution [28]. For example, in the simplest case, in 
which  
 
 
                                       𝑇(𝑡 = 0, 𝑦) = 𝑇0                                     (3) 
                                                           
                                       𝑇(𝑡, 𝑦 = 𝐿) = 𝑇0                                    (4) 
                                                                       
                                       𝑇(𝑡, 𝑦 = 0) = 𝑇0                                     (5)            
 
where T0 is a constant temperature (e.g. room temperature or body's natural temperature) 
the unique solution must be T(t, y) = T0, as it clearly satisfies the heat equation and all 
conditions.  
 
In the present work we are interested in studying the effect of thermal stress, where it is 
assumed that the temperature of the oral cavity starts from, a high temperature T1 = 60 
degrees, and then it decreases monotonically until it eventually reaches the body temperature 
T2 = 37 degrees.  
 
We can model this behavior in a simple and at the same time realistic way introducing an 
elementary function exhibiting a smooth and continuous transition from T1 down to T2. In 
particular, in the discussion to follow we shall consider an exponential function as follows 
 
 
 
                        𝑇𝑜𝑟𝑎𝑙𝑐𝑎𝑣𝑖𝑡𝑦(𝑡) = (𝑇1 − 𝑇2)𝑒𝑥𝑝(−𝑡 𝑡0⁄ ) + 𝑇2                               (6) 

 
 
where t0 is the thermal stress exposure time that shows how fast the temperature of the oral 
cavity drops to the body's natural temperature (Figure 3). As a matter of fact, if we take t0 
=0.2 sec, which corresponds to a duration of approximately 1 sec, or t0=2 sec, which 
corresponds to a duration of 10 sec, our thermal loading resembles the ones commonly 
considered in previous works [21,24,26-30]. Therefore, in what follows we assume an initial 
condition T(t = 0, y) = T2, a boundary condition at the bone T(t, y = 0) = T2 and a boundary 
condition at the surface T(t, y = L) = Toralcavity(t) given in (8), and we define ΔT = T1 -T2 = 23 
degrees. 
 
 
B. Exact analytical solution of the initial/boundary value problem 
 
We now proceed to find the solution of the one-dimensional heat equation with the above 
initial and boundary conditions. Since the boundary conditions are non-homogeneous, we 
employ the standard trick by writing T(t, y) as a sum of two functions 
 
 
                          𝑇(𝑡, 𝑦) = 𝑢(𝑡, 𝑦) + 𝑤(𝑡, 𝑦)                                         (7) 
 
 
where w(t, y) is a particular function that absorbs the non-homogeneous boundary conditions, 
so that the second function u(t, y) satisfies homogeneous boundary conditions. It is easy to 
check that the function w(t, y) is given by 
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                            𝑤(𝑡, 𝑦) = 𝑇2 +
𝛥𝑇

𝐿
𝑦𝑒𝑥𝑝(−𝑡 𝑡0⁄ )                                     (8)                                               

 
 
while u(t, y) satisfies the following partial differential equation  
 
 

                           
𝜕𝑢

𝜕𝑡
− 𝛼

𝜕2𝑢

𝜕𝑦2
=

𝛥𝑇

𝐿𝑡0
𝑦𝑒𝑥𝑝(−𝑡 𝑡0⁄ )                                      (9)                                             

 
 
and the conditions 
 

                         𝑢(𝑡 = 0, 𝑦) = −𝑦
𝛥𝑇

𝐿
                                                          (10)  

  
                              𝑢(𝑡, 𝑦 = 𝐿) = 0                                               (11) 
        
                              𝑢(𝑡, 𝑦 = 0) = 0                                                 (12)        
 
 
We see that the price to pay is that u(t, y) satisfies a non-homogeneous differential equation. 
However, this does not pose a problem since we can make the following ansatz by expanding 
on a complete basis of functions 
 

                          𝑢(𝑡, 𝑦) = ∑ 𝐶𝑛
∞
𝑛=1 (𝑡)𝑠𝑖𝑛 (

𝑛𝑦

𝐿
)                                              (13) 

 
where n = 1, 2, … is an integer, and Cn(t) are unknown functions of time depending on n. The 
homogeneous boundary conditions at y = 0, L are automatically satisfied, while the coefficients 
Cn(t) can now be determined by using the differential equation and the initial condition. First 
of all we use the fact that any function g(y) can be expanded on the basis sin(n 𝜋 y/L) in the 
following form 
 
 

                                  𝑔(𝑦) = ∑ 𝐴𝑛
∞
𝑛=1 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝐿
)                                         (14) 

 
 
with coefficients An that are given by 
 
 

                               𝐴𝑛 =
2

𝐿
∫ 𝑑𝑦𝑔(𝑦)𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝐿
)

𝐿

0
                                        (15) 

 
 
using the orthogonality of the basis 
 
 

                        ∫ 𝑑𝑦
𝐿

0
𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝐿
) =

𝐿

2
𝛿𝑛,𝑚                                      (16) 

 
 
where δn,m is the Kronecker symbol taking the value 1 when n = m and 0 otherwise. For the 
function g(y) = y the coefficients are given by 
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                              𝐴𝑛 =
(−1)𝑛+12𝐿

𝜋𝑛
                                                          (17) 

 
 
Now the initial condition implies Cn(0) = -ΔT An/L, while if we plug the ansatz into the partial 
differential equation we obtain an ordinary differential equation for Cn(t) as follows 
 
 

            
𝑑𝐶𝑛(𝑡)

𝑑𝑡
+ 𝛼 (

𝑛𝜋

𝐿
)
2
𝐶𝑛(𝑡) =

𝛥𝑇𝐴𝑛

𝐿𝑡0
𝑒𝑥𝑝(−𝑡 𝑡0⁄ )                                    (18) 

 
In Appendix B, we describe how to obtain the solution to the above differential equation. 
Putting everything together, and defining τ= 𝐿2/(α 𝜋2) to be the intrinsic time of the dental 
implant, the exact analytical solution to the initial/boundary value problem is given by 
 
 

𝑇(𝑡, 𝑦) = 𝑇2 +
𝛥𝑇

𝐿
𝑦𝑒𝑥𝑝(−𝑡 𝑡0⁄ ) +

2𝛥𝑇

𝜋
∑ 𝐷𝑛(𝑡)𝑠𝑖𝑛⁡ (

𝑛𝜋𝑦

𝐿
)∞

𝑛=1                                (19) 

 
 

𝐷𝑛(𝑡) =
(−1)𝑛+1

𝑛
[
𝑒𝑥𝑝(−𝑡 𝑡0⁄ )

−1+𝑛2(𝑡0 𝜏⁄ )
− (1 +

1

−1+𝑛2(𝑡0 𝜏⁄ )
) 𝑒𝑥𝑝(−𝑛2 𝑡 𝜏⁄ )]                      (20) 

 
 
We notice that the solution does not depend on L and α separately, but only through the 
intrinsic time τ. It is easy to check that the initial and boundary conditions are satisfied. Also 
we see that the above solution approaches the body's natural temperature after sufficiently 
long time, T(t, y)  → T2 as t → ∞.  
 
This is to be expected, since the temperature of the oral cavity eventually drops to the body's 
natural temperature, and from that moment on the unique solution of the heat equation with 
constant initial/boundary conditions corresponds to the constant temperature T(t, y) = T2. As 
we will see shortly, the temperature changes versus time at a certain location, e.g. close to the 
surface or close to the bone, depend on the interplay between the exposure time t0 and the 
intrinsic time of the implant  τ= 𝐿2/(α 𝜋2), which for a given length L is low for good thermal 
conductors and high for poor conductors. We remark in passing that in works studying thermal 
therapies, a very important concept is that of thermal dose. First described by Sapareto and 
Dewey [30a], it is computed cumulatively using an empirical formula, and in practice the way it 
works is that for every degree above 43  the required time to coagulate the tissue halves, i.e. 
120 minutes at 44, 60 minutes at 45  etc. For more details see also [30b]. 
 
For the length considered here (L=1.3 cm, see next section), for titanium the intrinsic time is 
found to be τ= 1.9 sec, while for ceramic it is computed to be τ=27.4 sec (Appendix A). 
 
 
III. MAIN FEATURES OF THE SOLUTION 
 
Herein, we attempt to demonstrate, in a pictorial way, the behavior and main features of the 
exact analytical solution obtained in the previous section. This is accomplished through a series 
of figures, in which we demonstrate/show temperature changes versus time for i) two types of 
implants A and B; ii) several different numerical values of the exposure time t0; and iii) the 
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location point along the axis of the implant. Our approach is theoretical, with no experimental 
validation feasible or at disposal. Still, the figures below clearly show that all key features 
observed in the earlier related studies are reproduced. 
 
 
The system in principle is characterized by three free parameters, namely the length of the 
implant L, the thermal diffusivity of the material α, and the exposure time t0 of the thermal 
load, although in practice the behavior of the solution depends on the interplay between t0 
and the intrinsic time of the implant (see discussion below). 
 
 
 
 
In the following we find it natural to split the free parameters in two ways, as follows: (i) from 
the one hand the duration of the load, roughly 5 t0; and (ii) on the other hand the intrinsic 
time τ of the geometry of the dental implant. The length of the dental implant varies from 7 
mm to 20 mm [23]. Here we fix the length at L=1.3 cm as in [24]. Moreover, for a given 
geometry and a certain thermal load, temperature changes depend on the location along the 
implant. Following the standard notation, we introduce the location points B1 at y=3L/4 
(superficial), B2 at y=L/2 (middle) and B3 at y=L/4 (deep) [25]. Finally, we consider two 
different types of implants, type A with α = 2 x 10−6(𝑚2/s) (moderate conductor), and type B 
with α = 5 x 10−6(𝑚2/s) (good conductor), with values comparable to those employed in 
[24,25]; consequently, our approach and findings may be directly compared to the results 
obtained therein. 
 
The main features of the obtained analytic solution for the implants A and B as well as for 
several values of the exposure time is shown graphically in Figures 4-8.  
 
Recall that for a given thermal load (i.e. known t0) and for given implant material (i.e. known 
thermal diffusivity ), the temperature depends on two independent variables, namely from the 
one hand on the time t and on the other hand on the location point y along the axis of the 
implant. Therefore, one may plot T versus t for a certain point y, or plot T versus y at a given 
instant of time. This is shown in Figures 4 and 5 below. 
 
First, to see how temperature varies along the implant at a given instant of time, in Figure 4 
we show the temperature distribution from y=0 up to y=L at four different instants of time, 
t=9,12,15 and 18 sec, for implant A and for t0 = 2 sec. At every instant of time the temperature 
at the end points remains the same due to the imposed boundary conditions, while at a certain 
location, i.e. fixed y point, the temperature decreases with time. 
 
The impact on the temperature of the location point along the implant is shown in Figure 5, 
where we show temperature varies with time at points B1, B2 and B3 for implant A and t0 = 2 
sec. As we go deeper the maximum temperature reached decreases and the time needed to 
reach it increases. The highest temperature is observed at point B1 due to its proximity to the 
thermal load.  
 
To see the impact of the material chosen on temperature changes, in Figure 6 we show 
temperature changes for both implants A and B at point B2 for t0 = 2 sec. The good conductor 
(type B in brown) reaches the highest temperature fast, while the moderate conductor (type A 
in orange) reaches a lower highest temperature later, due to the fact the heat is transferred 
slower in the case of implant A. Our results shown in Figure 4 and Figure 5 have been also 
observed in [24].  
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Finally, in Figures 7 and Figure 8, we show temperature changes at point B2 for 5 different 
exposure times t0 for implants A and B, respectively. In particular for implant A, with an 
intrinsic time 8.6 sec, we have considered t0=2, 5, 8, 11 and 14 sec, from bottom to top, while 
for implant B, with an intrinsic time 3.4 sec, we have considered t0=1,2,3,5 and 6 sec, from 
bottom to top. For both implants the curve in the middle corresponds to the case where the 
exposure time is very close to the intrinsic time of the implant. We see that the highest 
temperature observed increases with the exposure time both for implant A and implant B. 
Notice that when the exposure time approaches the intrinsic time of the implant, the highest 
temperature reached is approximately 41 degrees, just below the critical temperature of 42 
degrees, irrespectively of the material chosen.  
 
A typical implant system is made of titanium and metal alloys; hence, a continuous thermal 
conduction pathway (and heat reservoir) is created between the oral cavity and deeper parts 
of the jaw bone. Herein, heat conduction is mainly mitigated by implant design and diameter 
(and time). Temperature at the abutment–implant interface is vital. Likewise, are type and 
amount of metal in implant composition, whereby in situ heat transfer to supporting per-
implant tissues can be significantly accelerated. Therefore, to reduce risks of injury or damage, 
the exposure time should be lower than the intrinsic time, or, if it is higher it must be as close 
to the “proper” time as possible. Minimize heat generation during implantology procedures 
and advise patients to restrain from or avoid hot beverages as much as possible until 
satisfactory clinical stability or even full osseointegration are evident; especially in cases of 
delayed implant loading / restoration. 
 
 
Figures 2-7 have been produced employing a Wolfram (wolfram.com) Mathematica file. 
 

 

IV. CONCLUSIONS 
 
The cornerstone of successful dental implant therapy is osseointegration. Despite dental 
implants being a predictable treatment modality for the rehabilitation of partially and 
completely edentulous patients, high temperatures may cause irreversible damage to tissues 
and organs, with undesirable outcomes and sequels. In this work, to summarize, we have 
addressed the interesting problem of transient heat transfer and temperature changes in 
titanium dental implants upon hot liquid intake. To that end, we have solved the heat equation 
with appropriate initial and boundary condition assuming an exponential thermal load 
modeling the consumption of hot beverages. We have obtained an exact analytical solution 
filling a gap in the literature, since to the best of our knowledge it was something missing. We 
have investigated what the impact of the material chosen, the location point along the 
implant, and the exposure time of the thermal load is on temperature changes. Furthermore, 
we have introduced in this work for the first time the intrinsic time that characterizes the 
geometry of the dental implant, and we have shown graphically how the interplay between 
this “intrinsic” time and the exposure time of the thermal load influences temperature 
changes. We conclude that the exact analytical solution obtained here, despite its simplicity, 
encapsulates all the physics, and it nicely reproduces the key features previously obtained in 
other numerical analyses.  
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2021                   doi:10.20944/preprints202107.0501.v1

http://www.wolfram.com/
https://doi.org/10.20944/preprints202107.0501.v1


ACKNOWLEDGMENTS: Generous funding and operating grants supported this work by 
providing to the BioMAT’X Research Group, part of CiiB (Centro de Investigación e Innovación 
Biomédica), through the Faculty of Dentistry and Department for Research, Development and 
Innovation, Universidad de los Andes, Santiago de Chile.  
 
FUNDING: Author (G.P.P.) acknowledges the Fundaçao para a Ciencia e Tecnologia (FCT) in 
Portugal for the financial support provided to CENTRA (Center for Astrophysics and 
Gravitation), Instituto Superior Técnico, Universidade de Lisboa, through the Grant No. 
UIDB/00099/2020. The corresponding author (Z.S.H.) acknowledges supplementary operating 
funding provided from CONICYT-FONDEF Chile under awarded project/grant (national) 
#ID16I10366 (2016–2019) and Fondo de Ayuda a la Investigacion FAI—Universidad de los 
Andes No. INV-IN-2015-101 (2015–2020). 
 
 
CONFLICTS OF INTEREST: None. 
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2021                   doi:10.20944/preprints202107.0501.v1

https://doi.org/10.20944/preprints202107.0501.v1


APPENDIX A: 
 
The heat equation can be derived using energy conservation, Fourier's law for the heat flux, q 
= -k 𝛻T, with k being the thermal conductivity of the material, and the expression for heat, Q = 
m c T, where c is the specific heat of the material. In the one-dimensional case, applying 
energy conservation in an infinitesimal volume A Δx with mass ρ A Δx, where ρ is the mass 
density, we can see that during an infinitesimal time interval Δt the heat inside the volume 
changes according to Fourier's law 
 
 

                      𝑐𝜌
𝛥𝑇

𝛥𝑡
= 𝑘

𝜕𝑇

𝜕𝑥
(𝑥+𝛥𝑥)−

𝜕𝑇

𝜕𝑥
(𝑥)

𝛥𝑥
     (A1) 

 
 
and taking the limit 𝛥𝑥 → 0we finally obtain the heat equation 
 
 

                                 
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
      (A2) 

 
 
where the thermal diffusivity is given by α = k/(c ρ). For a given material one can find in tables 
the values of k, c, and ρ, and then using the previous simple formula he can compute α for that 
material. Typically, in the International System of units (S.I.) the mass density is of the order of 
1000 (kg 𝑚−3), the thermal conductivity of the order (1-10) J per (m sec oC), and the specific 
heat of the order of 1000 J per (kg oC), see e.g. Table 1 of [21,22]. Therefore the thermal 

diffusivity turns out to be (10−6 – 10−5) (𝑚2/s) . For example, for titanium α = 9.0 x 
10−6(𝑚2/s) [34], while for ceramic α = 6.2 x 10−7(𝑚2/s) [35]. 
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APPENDIX B: 
 
We briefly summarize how to solve an ordinary, inhomogeneous first order linear differential 
equation. First, we find the solution of the corresponding homogeneous equation without the 
source term, and then we find a particular solution that satisfies the non-homogeneous 
equation.  
 
So, if the equation has the form 
 
 
                                   ż + 𝑎𝑧 = 𝛤𝑒𝑥𝑝⁡(−𝜆𝑡)                                             (B1) 
 
 
with the initial condition z(0) = z0, then the solution of the corresponding homogeneous 
equation is given by zo(t) = C exp(-at) where C is an arbitrary constant. To obtain the partial 
solution we assume that it is of the same form with the source term, namely zp(t) = Δ exp(-λ t), 
and by plugging it into the equation we find that Δ = Γ/(α - λ). Taking the initial condition into 
account, the final expression for the solution is given by 
 
 

𝑧(𝑡) = (𝑧0 +
𝛤

𝜆−𝑎
) 𝑒𝑥𝑝(−𝑎𝑡) +

𝛤

𝑎−𝜆
𝑒𝑥𝑝(−𝜆𝑡)                                             (B2) 

 
 
To obtain the above solution it is assumed that the parameters a and λ are different. However, 
in the special case in which they coincide, the partial solution of the differential equation  
 
 
                               ż + 𝑎𝑧 = 𝛤𝑒𝑥𝑝⁡(−𝑎𝑡)                                                 (B3)                                  
 
 
turns out to be zp(t) = Γ t exp(-a t), and thus the full solution is given by 
 
                              𝑧(𝑡) = (𝑧0 + 𝛤𝑡)𝑒𝑥𝑝(−𝑎𝑡)                                           (B4) 
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FIG. 1: Oro-Dental Implantology; illustrating main parts of a dental implant system and the 
implant-bone interface. 
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FIG. 2: Experimental Set-up; developed in-House as an ex-vivo heat distribution model 
employing human patient-grade titanium dental implants placed into porcine ribs (without 
coolant) and thermal changes monitored/recorded (quantified) using a CorDEX TP3R ToughPix 
DigiTherm Digital Thermal Camera. 
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FIG. 3: Thermal load for two different exposure times, t0 = 0.2 sec (black color) and t0 = 2 sec 
(blue color). The first one drops faster. 
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FIG. 4: Temperature distribution (in degrees oC) versus location at four different instants of 
time (from top to bottom 9 sec, 12 sec, 15 sec and 18 sec) for implant A () and for t0 = 2 sec. 
 
 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2021                   doi:10.20944/preprints202107.0501.v1

https://doi.org/10.20944/preprints202107.0501.v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 5: Temperature changes (in degrees oC) versus time (in sec) for implant A and for t0 = 2 sec 
at three different locations, namely B1 (y=3L/4) in red, B2 (y=L/2) in orange, and B3 (y=L/4) in 
blue. 
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FIG. 6: Temperature changes versus time at point B2 for implants A (orange) and B (brown) 
and for t0 = 2 sec. 
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FIG. 7: Temperature changes versus time at point B2 for implant A (=8.6 sec) and for t0 = 2 sec, 
5 sec, 8 sec, 11 sec and 14 sec from bottom to top. 
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FIG. 8: Temperature changes versus time at point B2 for implant B (=3.4 sec) and for t0 = 1 sec, 
2 sec, 3 sec, 5 sec and 6 sec from bottom to top. 
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