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Abstract: In this paper, the problem of observer-based adaptive sliding mode control is discussed1

for nonlinear systems with sensor and actuator faults. The time-varying actuator degradation2

factor and external disturbance are considered in the system simultaneously. In this study, the3

original system is described as a new normal system by combining the state vector, sensor faults4

and external disturbance into a new state vector. For the augmented system, a new sliding mode5

observer is designed, where a discontinuous term is introduced such that the effects of sensor6

and actuator faults and external disturbance will be eliminated. In addition, based on a tricky7

design of the observer, the time-varying actuator degradation factor term is developed in the8

error system. On the basis of the state estimation, an integral-type adaptive fuzzy sliding mode9

controller is constructed to ensure the stability of the closed-loop system. Finally, the effectiveness10

of the proposed control methods can be illustrated with a numerical example.11

Keywords: Fault tolerant control, Adaptive fuzzy control, Time-varying actuator faults, Sliding12

mode control, Sliding mode observer13

1. Introduction14

In industrial process, actuator and/or sensor always occur various components15

faults due to unexpected physical constraints and reasons [3,10,13,14]. In order to16

maintain the reliability of the overall control systems, fault detection and isolation (FDI)17

and fault-tolerant control (FTC) have been paid to increasing research investigation18

during the past decade [11,12,15,16]. The design scheme of FDI is to generate a residual19

signal to judge whether the faults occur and provide a solution to determine the location20

of the faults [17,18]. However, in practice it is difficult to obtain the exact information21

of the fault. In this sense, the fault estimate has been developed and become an ideal22

design basis of FTC [5,19]. In recent years, a great number of fault estimation methods23

have been reported in the existing literature, for instance, nonlinear observer method,24

adaptive learning observer method, filter-based estimation method and differential25

geometry methods, etc [1,2,6].26

Among these existing fault estimation approaches, sliding mode observer (SMO)[20–27

22] refers to one of the most papular nonlinear observer methods, where the fault is28

reconstructed by the so-called equivalent output error injection principle [1]. In this29

research forefront, a few fault estimation SMO results have been developed for various30

systems by the researchers. In [4] a fault estimation SMO was developed for mismatched31

nonlinear systems with unknown disturbances, where an adaptive law was designed32

to update the sliding mode gain online. In [9], the authors proposed a cascaded SMO33

method to cope with the fault estimation problem for the case that the first Markov34

matrix of the system is of not full rank. In [8] and [7], based on a descriptor system35
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augmentation strategy, the authors proposed a new type of extended SMO approach,36

which was applied to Itô stochastic systems and Markovian jump systems, respectively.37

It should be pointed out that, however, most existing fault estimation results are38

concerned only on actuator faults or sensor faults. Moreover, most of the reported work39

has been focused on only additive actuator fault, while multiplicative type actuator40

fault (also called fault degradation factor) has been received little research attention.41

In fact, in many practical control systems such as satellite systems, the multiplicative42

actuator faults may always occur with a time-varying characterization. However, the43

existing SMO methods in the aforementioned literature cannot be applied directly to44

solve this design problem due to technique constraints and only additive actuator faults45

are considered there. It is thus desirable to develop new effective SMO approach to46

investigate this problem.47

In this paper, we are dedicated in the researching of the fault estimation and FTC48

design problem for continuous-time nonlinear system, where sensor fault, external49

disturbance, time-varying multiplicative actuator faults and unknown nonlinearity are50

considered simultaneously in a unified framework. A new type of SMO based on system51

augmentation scheme is developed for the investigated plant. The designed observer can52

estimate state vector, sensor faults and external disturbance which thus possesses a more53

extensive estimation performance compared to traditional SMO method. Moreover, due54

to the tricky structure of the observer, the time-varying actuator degradation factor in55

the derived error system can be eliminated. Based on the state estimation of the SMO, an56

adaptive integral-type sliding control law is designed to ensure the asymptotic stability57

of the overall fault control systems, where an adaptive fuzzy updating law is involved58

with the controller gain to approximate the unknown nonlinearity of the plant. Finally, a59

simulation example is given to verify the effectiveness of the proposed FTC methods.60

Notation: The n-dimensional Euclidean space is defined by Rn denotes. The set of61

all m× n real matrices is represented as Rm×n. Positive-definite (negative definite) matrix62

A is defined byA > 0 (< 0). An identity matrix is defined by In (n is the dimension of63

matrix I ). diag{...} denotes a block diagonal matrix.64

2. Problem Formulation and Preliminaries65

2.1. Problem statement66

Consider the following uncertainty non-linear system subject to time-varying actu-
ator fault, sensor fault and external disturbance

ẋ(t) =Ax(t) + B(ρ(t)u(t) + fa(t)) + E f (x) + Dxd(t)

y(t) =Cx(t) + Ds fs(t) + Dyd(t). (1)

where x(t) ∈ Rn, u(t) ∈ Rm, fa(t) ∈ Rm, f (x) ∈ Rn f , d(t) ∈ Rnd , y(t) ∈ Rp, fs(t) ∈ Rq,67

ρ(t) = diag{ρ1(t), ρ2(t), ..., ρh(t)}, ρh(t)(h = 1, 2, ..., m) represent the immeasurable68

system state, control input, unknown stuck actuator fault, unknown smooth non-linear69

function, unknown external disturbance, measurable output, unknown sensor fault,70

unknown time-varying actuator efficiency factor, hth actuator, respectively. It is assumed71

that 0 ≤ ρ
h
≤ ρh(t) ≤ ρ̄h ≤ 1, for h = 1, 2, ..., m, where ρ

h
and ρ̄h are the known constants.72

Then, defining that diag{ρ̄1, ρ̄2, ..., ρ̄h} = ρ̄, diag{ρ
1
, ρ

2
, ..., ρ

h
} = ρ, the following cases73

of hth actuator failure are considered:74 

Case 1 : ρh(t) = 1, the hth actuator has no fault;
Case 2 : ρh(t) = 0, the hth actuator is outage;
Case 3 : ρh(t) ∈ (0, 1), the hth actuator is partial lo-

ss of effectiveness;
Case 4 : fa(t) 6= 0, the hth actuator undergoes

stuck fault.
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For the given system matrices A, B, C, Ds, Dx, Dy, E, the matrix E is supposed to
satisfy that E = BB f in this paper. Without loss of generality, we suppose that the pair
(A, B) is controllable, and the pair (A, C) is observable. In order to study the problem
of the redundancy actuator fault, we assume that rank(B) = l ≤ m. Thus, we have
B = B1B2, where B1 ∈ Rn×l and B2 ∈ Rl×m. Then, the state equation of the original
system (1) can be rewritten as

ẋ(t) = Ax(t) + B1B2(ρ(t)u(t) + fa(t)) + E f (x) + Dxd(t). (2)

Remark 1. Different from the existing results of the simultaneous actuator fault and sensor fault75

in [23], the fault problem in this paper will be more complex. The time-varying actuator fault76

including loss of effectiveness fault, outage fault and stuck fault, combined with bias sensor fault77

are first studied simultaneously. Due to more general character of actuator fault, the traditional78

observer-based controllers are unable to provide the desired estimation and control performance,79

this is also the difficulty in FTC design.80

In this paper, we give the following assumptions.81

Assumption 1. The stuck actuator fault fa(t), bias sensor fault fs(t) and external disturbance
d(t) are supposed to satisfy that

‖ fa(t)‖ ≤ fa1, ‖ ḟs(t)‖ ≤ fs1, ‖ fs(t)‖ ≤ fs2,

‖ḋ(t)‖ ≤ d1, ‖d(t)‖ ≤ d2 (3)

where fa1, fs1 , fs2, d1, d2 are unknown scalars.82

Assumption 2. [8] It is assumed that the actuators satisfy the redundancy condition: rank(B2) =83

rank(B2ρ(t)) = l.84

Assumption 3. The system matrix dimensions satisfy: rank(B1) = rank(CB1) = l, and a
scalar σ can be found such that

rank
[

σI + A Dx
C Dy

]
= n + nd. (4)

Remark 2. Compared to the traditional methods in ([24]), the Assumption 2 will relax the85

restriction that the norm bound of the external disturbance, stuck actuator fault, and bias sensor86

fault, which will be applicable to a larger class of practical systems.87

2.2. Fuzzy logic systems88

The fuzzy IF–THEN rules of FLS are given as follows:

Ri : If x1(t) is F1i and x2(t) is F2i, · · · , and xn(t) is Fni,

then ȳ(t) is Gi

where x(t) = [x1(t), x2(t), ..., xn(t)]T and ȳ(t) represent the input and output of the FLS,
respectively. Fιi and Gιi are fuzzy sets (ι = 1, 2, ..., n). i = 1, 2, · · · , N (N is the number of
the fuzzy rules).Obviously, the FLS can be represented as follows

ȳ(x) =
∑N

i=1 ȳi(∏n
ι=1 µFιi (xι))

∑N
i=1(∏

n
ι=1 µFιi (xι))

(5)
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where µFιi (x(t)) is the membership functions, and ȳi is the point at which µGi =89

max{µGi} , and it is assumed that µGi (ȳi) = 1. Define the following fuzzy basis functions90

ϕi(x) =
∏n

ι=1 µFιi (xι)

∑N
i=1 ∏n

ι=1 µFιi (xι)
, i = 1, 2, ..., N. (6)

Denoting θ = [ȳ1, ȳ2, ..., ȳN ]
T and ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕN(x)]T . Then, (5) can be91

rewritten as92

ȳ(x) = θT ϕ(x). (7)

Lemma 1. ([25]) For any continuous function f (x) defined over a compact set Ω and any given93

positive constant δ0, there exists θ such that94

sup
x∈Ω
| f (x)− θT ϕ(x)| ≤ δ0. (8)

Since x(t) is not measurable, the function f (x) can be represented by the following
FLSs:

f (x) = θT ϕ(x) + δ f (t)

= θT ϕ(x̂) + θT(ϕ(x)− ϕ(x̂)) + δ f (t) (9)

where δ f (t) is the approximation error. Then, the reconstruction error δ(t) can be
obtained

δ(t) = θT(ϕ(x)− ϕ(x̂)) + δ f (t). (10)

In general, δ(t) is assumed to be bounded with

‖δ(t)‖ ≤ δ̄, (11)

where δ̄ > 0 is an unknown constant.95

To design the adaptive law for the unknown vector θ, we suppose that θ > 096

throughout the paper, which is not lose the generality, and also used in the FTC problems97

of fuzzy logical systems ([25]).98

3. Main Results99

3.1. Observer Design100

Consider the following augmented system:

˙̄x(t) = Āx̄(t) + B̄1B2ρ(t)u(t) + B̄1B2B f f (x) + D̄ω̄(t)

y(t) = C̄x̄(t) (12)
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where

x̄(t) =

 x(t)
d(t)

Ds fs(t)

, ω̄(t) =

 fa(t)
σd(t) + ḋ(t)

σ fs(t) + ḟs(t)

,

Ā =

 A Dx 0
0 −σInd 0
0 0 −σIp

, B̄1 =

 B1
0
0

,

D̄ =

 B 0 0
0 I 0
0 0 Ds

, C̄ =
[

C Dy Ip
]
,

n̄ = n + nd + p, 0 < σ < 1. (13)

From assumption 3, we have101

rank(C̄B̄1) = rank(CB1) = l. (14)

Hence, C̄B̄1 is fully column-rank. Then we define that

H =B̄1((C̄B̄1)
TC̄B̄1)

−1(C̄B̄1)
T

+ ζ[I − C̄B̄1((C̄B̄1)
TC̄B̄1)

−1(C̄B̄1)
T ], (15)

where ζ ∈ Rn̄×p is a free matrix to be selected. Before the design of fault-tolerant
observer, we define the following matrices,

A0 = Ā− HC̄Ā, L2 = (A0 − L1C̄)H,

Ls = (I − HC̄)D̄, L = L1 + L2 (16)

where L1 ∈ Rn̄×p is the gain matrix to be design later. Now we introduce the following102

lemma for the existence of L1, which will be used in the observer design.103

Lemma 2. The pair (A0, C̄) is detectable, if there exists a matrix ζ such that (I − HC̄) is104

invertible.105

Proof. Since (I − HC̄) can be invertible through selecting an appropriate matrix ζ,

the matrix
[

I − HC̄ sH
0 Ip

]
is of full column rank for ∀ s ∈ R+. Then, it can be obtained

that

rank
[

sI − A0
C̄

]
= rank

([
I − HC̄ sH

0 Ip

][
sI − Ā

C̄

])
= rank

[
sI − Ā

C̄

]

= rank


sI − A −Dx 0

0 (s + σ)Id 0
0 0 (s + σ)Ip
C Dy Ip


= rank

 sI + A Dx
0 (s + σ)Id
C Dy

+ p. (17)
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Since the pair (A, C) is detectable, when s 6= −σ, it is obvious that

rank

 sI + A Dx
0 (s + σ)Id
C Dy


=rank

[
sI + A

C

]
+ nd = n + nd. (18)

When s = −σ, the following equation holds from Assumption 3

rank

 sI + A Dx
0 (s + σ)Id
C Dy


=rank

[
−σI + A Dx

C Dy

]
= n + nd. (19)

Summarizing the analysis above, we have106

rank
[

sI − A0
C̄

]
= n + nd + p = n̄. (20)

Consequently, the pair (A0, C̄) is detectable. It completes the proof.107

Then, the following sliding mode observer for system (12) is developed,

ż(t) = (A0 − L1C̄)z(t) + Ly(t) + Lsus(t)
ˆ̄x(t) = z(t) + Hy(t) (21)

where z(t) ∈ Rn̄; ˆ̄x(t) = [x̂(t), d̂(t), Ds f̂s(t)]T is the estimation of x̄(t); us(t)Rn̄ is the
discontinue input to be designed; the matrices A0, L1, L, ls, H are defined in (16). Then,
we have

˙̄̂x(t) =(A0 − L1C̄)z(t) + Ly(t) + Lsus(t) + HC̄ ˙̄x

=(A0 − L1C̄) ˆ̄x(t)− (A0 − L1C̄)Hy(t) + L1y(t)

+ L2y(t) + Lsus(t) + HC̄ ˙̄x

=(A0 − L1C̄) ˆ̄x(t) + L1C̄x̄(t) + Lsus(t) + HC̄ ˙̄x. (22)

The augment system (12) can be rewritten as

˙̄x(t) =(A0 − L1C̄)x̄(t) + B̄1B2ρ(t)u(t) + B̄1B2B f f (x)

+ HC̄Āx̄(t) + L1C̄x̄(t) + D̄ω̄(t)

=(A0 − L1C̄)x̄(t) + Lsω̄(t) + L1C̄x̄(t) + HC̄D̄ω̄(t)

+ HC̄(B̄1B2B f f (x) + Āx̄(t) + B̄1B2ρ(t)u(t))

=(A0 − L1C̄)x̄(t) + Lsω̄(t) + L1C̄x̄(t) + HC̄ ˙̄x. (23)

Define that ē(t) = ˆ̄x(t)− x̄(t), we have108

˙̄e(t) = (A0 − L1C̄)ē(t) + (I − HC̄)D̄(us(t)− ω̄(t)). (24)

Remark 3. It can be seen that the effect of the time-varying actuator degradation has been109

removed in the error dynamics (24) by using of an interesting matrix parameter design of H.110

This will help us to employ the sliding mode observer (SMO) technology to obtain the estimation111

of the system state x̂(t).112
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Since the constants fa1, fs1 , fs2, d1, d2 are unknown in Assumption 1, we introduce113

a positive constant ψ such that114

fa1 + fs1 + σ fs2 + d1 + σd2 ≤ ψ (25)

where σ is given in (13). It can be seen that ψ is also unknown in (25), so we will115

substitute the estimation ψ̂(t) for ψ in the observer design, and the adaptive law for ψ is116

presented,117

˙̂ψ(t) = ce‖se(t)‖, ψ̂(0) ≥ 0 (26)

where se(t) is defined in (27), and ce is the adaptive gain parameter.118

Now the sliding mode is defined as follows:119

se(t) = D̄T(I − HC̄)T Pē(t) (27)

where se(t) ∈ Rn̄, and P > 0 is the Lyapunov matrix such that120

D̄T(I − HC̄)T P = RC̄ (28)

where the parameter matrix R ∈ R(m+nd+q)×p is to be determined. Then, we design the121

discontinuous input us(t) as follows122

us(t) = −(ε + ψ̂(t))sgn(se(t)). (29)

where ε is a positive constant designed later.123

3.2. Controller Design124

Let u(t) = BT
2 ũ(t), we have

ẋ(t) =Ax(t) + B1B2ρ(t)BT
2 ũ(t) + B1B2 fa(t)

+ E f (x) + Dd(t). (30)

In the following part a Lemma is presented.125

Lemma 3. For the non-singular matrix B2ρ(t)BT
2 in (30), a positive scalar µ can be found such126

that B2ρ(t)BT
2 ≥ µIl .127

Proof. Based on Assumption 3, we have128

rank(ρ(t)) ≥ rank(B2ρ(t)) = l (31)

that is, m(m ≥ l) actuators do not surfer outage. Without loss of generality, the first
l actuators are assumed to kept from outage, and ρo(t), ρa(t) ∈ Rm×m are defined as
follows

ρo(t) = diag{ρ1/2
1 (t), ρ1/2

2 (t), ..., ρ1/2
l (t), 0, ...0},

ρa(t) = diag{ρ1/2
1 (t), ρ1/2

2 (t), ..., ρ1/2
l (t), ρ1/2

1 (t), ...ρ1/2
1 (t)}, (32)

where 0 < ρh(t) ≤ 1 with h = 1, 2, ..., l. So we have

rank(B2ρo(t)) = rank(B2ρo(t)ρa(t)) = rank(B2ρ(t)) = l. (33)

Obviously,129

rank(B2ρ(t)BT
2 ) = rank(B2ρo(t)ρo(t)BT

2 ) = l. (34)
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Consequently, the matrix B2ρ(t)BT
2 is invertible. Then, we have

B2ρ(t)BT
2 − B2ρBT

2 = B2(ρ(t)− ρ)BT
2 ≥ 0

B2ρBT
2 − µIl ≥ 0 (35)

where µ = λmin(B2ρBT
2 ). Hence, we have130

B2ρ(t)BT
2 ≥ µIl . (36)

It completes the proof. Then, the following integral sliding surface is constructed131

s(t) = Fyc(t) +
∫ t

0
Kx̂(t)d(t) (37)

where

yc(t) = y(t)− Ds f̂s(t)− Dyd̂(t),

F = ((CB1)
TCB1)

−1(CB1)
T (38)

and K ∈ Rl×n is designed later. Ds f̂s(t) and d̂(t) can obtained in the observer (21) that132

Ds f̂s(t) = [0, 0, Ip] ˆ̄x(t), d̂(t) = [0, Ind, 0] ˆ̄x(t). (39)

Denoting e f s(t) = f̂s(t)− fs(t), ed(t) = d̂(t)− d(t), we have

ṡ(t) =FCẋ(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)

=FC(Ax(t) + B1B2ρ(t)B2ũ(t) + B1B2 fa(t) + E f (x))

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)

=FCAx(t) + B2ρ(t)B2ũ(t) + B2 fa(t) + B2B f f (x)

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t). (40)

It can be seen that B2ρ(t)BT
2 is invertible according to lemma 1. Therefore, the equivalent

control law in the sliding mode can be obtained from ṡ(t) = 0 that

ũeq(t) =− (B2ρ(t)BT
2 )
−1[FCAx(t) + B2 fa(t) + B2B f f (t)

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)]. (41)

Substituting (41) into (30), the sliding mode dynamics can be obtained as follows

ẋ(t) =(A− B1FCA− B1K)x(t)− B1KIe ē(t)

+ B1F(Ds ė f s(t) + Dy ėd(t)) + (Dx − B1FCDx)d(t)

=(Aa − B1K)x(t)− B1KIe ē(t) + BΦΦ(t) (42)

where Aa = A − B1FCA, Ie =
[

In 0
]
, BΦ =

[
B1FDs B1FDy Dx − B1FCDx

]
,133

Φ(t) =
[

ėT
f s(t) ėT

d (t) dT(t)
]T

.134

According to Assumption 2, it can bee shown that ė f s(t), ėd(t) are bounded, and135

they will both converge to 0. Besides, the disturbance d(t) is also been assumed in the136

sense of L2 norm in (1). Therefore, we assume Φ(t) ∈ L2[0, ∞].137

In the following theorem, the stability condition for the overall closed-loop system138

is given.139

Theorem 1. Given a positive scalar γ, the closed-loop system (24) and (42) is robust stable with
an H∞ performance γ, that is ‖x(t)‖2 + ‖ē(t)‖2 ≤ γ2‖Φ(t)‖2, if there exist symmetric positive
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definite matrices P ∈ Rn̄×n̄, Q ∈ Rn×n, matrices X ∈ Rn×n, Y ∈ Rn̄×p, R ∈ R(m+q)×p such
that

Ω =

 Ω11 + I −XIe QBΦ
∗ Ω22 + I 0
∗ ∗ −γ2 I

 < 0 (43)

DT(I − HC̄)T P = RC̄ (44)

where

Ω11 = QAa + AT
a Q− X− XT ,

Ω22 = PA0 + AT
0 P−YC̄− C̄TYT . (45)

The proportional gain L1 in (24) and K in (42) can calculated as140

L1 = P−1Y, K = (BT
1 B1)

−1BT
1 Q−1X. (46)

Proof. First, we define the error variable ψ̃(t) = ψ̂(t)− ψ, where ψ and ψ̂(t) are141

defined in (25) and (26), respectively. Choose the following Lyapunov function,142

V(t) = Vx(t) + Ve(t) + Vψ(t) (47)

where143

Vx(t) = xT(t)Qx(t), Ve(t) = ēT Pē, Vψ(t) =
ψ̃2(t)

ce
. (48)

Then, we have

V̇x(t) =xT(t)[(Aa − B1K)TQ + Q(Aa − B1K)]x(t)

− 2xT(t)QB1KIe ē(t) + 2xT(t)QB̄ΦΦ(t)

V̇e(t) =ēT(t)[P(A0 − L1C̄) + (A0 − L1C̄)T P]ē(t)

+ 2ēT(t)P(I − HC̄)D̄(us(t)− f̄ (t))

V̇ψ(t) =
2ψ̃(t) ˙̃ψ(t)

ce
. (49)

Since ˙̃ψ(t) = ˙̂ψ(t), it can be derived from the adaptive law (26) and (27) that,

2ēT(t)P(I − HC̄)D̄(us(t)− f̄ (t)) +
2ψ̃(t) ˙̃ψ(t)

ce

≤− 2sT
e (t)(ε + ψ̂(t))sgn(se(t)) + 2‖se(t)‖‖ f̄ (t)‖+ 2ψ̃(t) ˙̂ψ(t)

ce

≤− 2‖se(t)‖(ε + ψ̂(t)) +
2ψ̃(t) ˙̂ψ(t)

ce

+ 2‖se(t)‖( fa1 + fs1 + σ fs2 + d1 + σd2)

≤− 2ε‖se(t)‖ − 2‖se(t)‖ψ̃(t) +
2ψ̃(t) ˙̂ψ(t)

ce

≤− 2ε‖se(t)‖. (50)
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Let QB1K = X and PL1 = Y, when Φ(t) = 0, after some algebraic manipulation, it can
be obtained from (49) and (50) that

V̇(t) =V̇x(t) + V̇e(t) + V̇ψ(t)

≤xT(t)[Q(Aa − B1K) + (Aa − B1K)TQ]x(t)

− 2xT(t)QB1KIe ē(t) + ēT(t)[P(A0 − L1C̄)

+ (A0 − L1C̄)T P]ē(t)− ε‖se(t)‖

≤
[

x(t)
ē(t)

]T[ Ω11 −XIe
∗ Ω22

][
x(t)
ē(t)

]
. (51)

If we can obtain the feasible solutions to (43), then it can be concluded that V̇(t) < 0 in144

(51). Therefore, system (24) and (42) is asymptotically stable when Φ(t) = 0.145

Now we will consider the H∞ performance under zero initial conditions that,

J =
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t))dt

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t)

+ V̇(t))dt−
∫ ∞

0
V̇(t)dt

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t)

+ V̇(t))dt−V(∞) + V(0)

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t) + V̇(t))dt. (52)

From (49) and (50), we have

xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t) + V̇(t)

≤
[

xT(t) ēT(t) ΦT(t)
]
Ω
[

xT(t) ēT(t) ΦT(t)
]T

<0 (53)

where Ω is defined in (43). From (52) and (53), it can be obtained that J < 0, and the H∞146

performance has been established.147

Since B1 is of full column rank, BT
1 B1 is nonsingular. Hence, we have K = (BT

1 B1)
−1BT

1 Q−1X.148

It completes the proof.149

Remark 4. It is obviously that there is linear matrix equality in theorem 1, the LMI toolbox can
not be used directly. According to the algorithm in [25], (44) can be taken as

Trace[(DT(I − HC̄)T P− RC̄)T(DT(I − HC̄)T P− RC̄)]

= 0.

Thus, the following inequality can be obtained

(DT(I − HC̄)T P− RC̄)T(DT(I − HC̄)T P− RC̄) < η In̄ (54)

where ηi is a parameter to be designed. By the Schur complement, it is derived that150 [
−η In̄ (DT(I − HC̄)T P− RC̄)T

∗ −Im+nd+q

]
< 0. (55)
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Then, the following minimization problem is equivalent to Theorem 1151

min η (56)

subject to (43) and (55)

which can be solved by the LMI toolbox in Matlab directly.152

3.3. Reachability analysis of sliding motion153

In the following part, the reachability of the sliding surfaces s(t) in (37) will be154

analyzed.155

Before designing the sliding mode control law u(t), we present the following
adaptive laws.

˙̂θh(t) = cθh‖s(t)‖‖B2B f ‖ϕh(x̂), θ̂(0) ≥ 0, h = 1, 2, ..., N,
˙̄̂
δ(t) = cδ‖s(t)‖‖B2B f ‖, ˆ̄δ(0) ≥ 0,
˙̂ξ(t) = cξ‖s(t)‖, ξ̂(0) ≥ 0, (57)

where cθh, cδ, cξ are the positive adaptive gains to be designed, and ξ̂(t) is the estimation
of ξ such that

‖B2 fa(t)‖+ ‖FCDxd(t)‖+ ‖FDs ḟs(t)‖
+‖FDyḋ(t)‖+ ‖FCAex(t)‖ ≤ ξ. (58)

Obviously, we have θ̂h(t), ˆ̄δ(t), ξ̂(t) ≥ 0. The sliding mode law ũ(t) is designed as

ũ(t) =− 1
µ
(η + ζ(t) + ξ̂(t) +

N

∑
h=1

θ̂h(t)ϕ(x̂(t))

+ ˆ̄δ(t))sgn(s(t)), (59)

where η > 0 will be designed later,

ζ(t) = ‖FCAx̂(t)‖+ ‖Kx̂(t)‖+ ‖FDs
˙̂fs(t)‖+ ‖FDy

˙̂d(t)‖. (60)

By analyze the reachability of sliding motion, we have the following theorem.156

Theorem 2. If there exist matrices 0 < PT = P ∈ Rn̄×n̄, 0 < QT = Q ∈ Rn×n, and matrices157

R ∈ R(m+nd+q)×p, X ∈ Rn×n, Y ∈ Rn̄×p, such that (43)– (44) hold. Based on the input u(t)158

defined in (59), the system state of (42) can be driven onto the sliding surface s(t) = 0 in finite159

time.160

Proof. First, denoting that

θ̃h(t) = θ̂h(t)− θh, h = 1, 2, ..., N,

ξ̃(t) = ξ̂(t)− ξ, ˜̄δ(t) = ˆ̄δ(t)− δ̄. (61)

Then, we define that161

V0(t) = Vs(t) + Vξ(t) + Vθ(t) + Vδ(t) (62)
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where

Vs(t) =
1
2

sT(t)s(t), Vθ(t) =
N

∑
h=1

θ̃2
h(t)

2cθh
,

Vξ(t) =
ξ̃2(t)
2cξ

, Vδ(t) =
˜̄δ2(t)
2cδ

(63)

We have

V̇s(t) = sT(t)ṡ(t)

=sT(t)[FCAx(t) + B2d(t) + B2ρ(t)BT
2 ũ(t) + Kx̂(t)]

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]
− sT(t)B2ρ(t)BT

2 ϕ(t)sgn(s(t))

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]
− sT(t)B2ρBT

2 ϕ(t)sgn(s(t))

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]− µ|s(t)|ϕ(t)
≤‖s(t)‖[‖FCAx̂(t)‖+ ‖FCAex(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− |s(t)|(‖FCAx̂(t)‖+ ‖FCABn‖
ε(t)√

λmin(P)

+ ‖B‖d̄ + ‖Kx̂(t)‖+ η)

≤− η‖s(t)‖. (64)

The proof is completed.162

Remark 5. Specifically, when the unknown actuator efficiency factor is constant as ρ(t) = ρ, the163

estimation of the ρ can be given in the proposed methods, and the stabilization of the closed-loop164

system can be also guaranteed simultaneously.165

Now, the adaptive law for ρh is given by

˙̂ρh(t) = Proj[ρ
h
, ρ̄h ]
{Lh(t)}

=


0, if ρ̂h(t) = ρ

h
, and Lh(t) ≤ 0

or ρ̂h(t) = ρ̄h, and Lh(t) ≥ 0
Lh(t), otherwise

(65)

where166

Lh(t) = chsT(t)B(h)
2 (B(h)

2 )T ũ(t) (66)

where Bh
2 is the hth column of B2. The SMC law ũ(t) is designed in (59).167

Theorem 3. If there exist symmetric positive definite matrices P ∈ Rn̄×n̄, Q ∈ Rn×n, matrices168

R ∈ R(m+q)×p, X ∈ Rn×n, Y ∈ Rn̄×p, such that (43) and (44) hold. Under the control input169

u(t) in (59), the trajectory x(t) of the closed-loop system (42) will be driven onto the sliding170

surface s(t) = 0 in finite time.171

Proof. Define that

ρ̃h(t) = ρ̂h(t)− ρh, Vs = 0.5sT(t)s(t) +
m

∑
h=1

ρ̃2
h(t)
ch

. (67)
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Then, we have

V̇s(t) =sT(t)ṡ(t) +
m

∑
h=1

ρ̃h(t) ˙̃ρh(t)
ch

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− 1
µ

sT(t)B2ρBT
2 ϕ1(t)sgn(s(t)) +

m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− 1
µ

sT(t)B2ρ̂(t)BT
2 ϕ1(t)sgn(s(t))

+
m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

− sT(t)B2ρ̃(t)BT
2 ũ(t)

≤− η‖s(t)‖ −
m

∑
h=1

ρ̃h(t)Lh
ch

+
m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

≤− η‖s(t)‖. (68)

The proof is completed.172

4. Simulation examples173

In this section, a numerical example is given and the correctness of the theorem is
verified. Consider the uncertainty non-linear system subject to time-varying actuator
fault, sensor fault and external disturbance as form (1), where

A =

[
−1 1
−8 −1

]
, B =

[
−1 0
−5 −4

]
,

C =

[
0.14 0.1
−1 2

]
, B1 =

[
−1 0
−5 −4

]
,

B2 =

[
1 0
0 1

]
, Ds =

[
2
1

]
, B f =

[
1
2

]
,

Dx =

[
2 1
0 1

]
, Dy =

[
1 0
0 1

]
, E = BB f =

[
−1
−13

]
with n = 2, m = 2, p = 2, l = 2, q = 1, nd = 2, σ = 0.2, n̄ = n + nd = 4. It can174

be checked that (A, B) is controllable and (A, C) is observable. Let f (x) = sin(x1(t)),175

σ = 0.2, fa(t) =
[

1
1

]
denote the stuck actuator fault.176

1. Observer Design: In the first step, the fault-tolerant observer is designed. Given the
following matrices

H =



5.2763 0.8476
2.6131 0.9185

0 0
0 0
0 0
0 0

, A0 =



3.3368 3.3318 3.2731 −0.9444 1.0552 0.1695
1.6441 1.6511 1.6281 −0.3620 0.5226 0.1837

0 0 −0.2 0 0 0
0 0 0 −0.2 0 0
0 0 0 0 −0.2 0
0 0 0 0 0 −0.2


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Ls =



1.11396 8.8916 −5.2763 −0.8476 −11.4002
0.5457 4.3937 −2.6131 −0.9185 −6.1448

0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
0 0 0 0 1



L2 =



−257676 −160190
−202696 −128852
−36008 −24683
87374 57837
87818 57410
43079 28139

, L =



5323 54247
4321 42672
855 7580
−1972 18394
−1946 18488
−953 9069


2. Design of controller us(t): Next, we design the sliding mode function (27). Accord-

ing to 24 and the adaptive gain ce = 0.1, the discontinuous input us(t) is given
by

se(t) =
−2.3389 9.0417 14.3679 3.8213 14.1294 4.0084
−29.7330 95.3811 116.8905 43.4552 116.2150 43.5985

3.6878 −1.8811 19.6842 −1.7707 18.8433 −5.1520
−15.3572 26.7646 −14.2582 18.1904 −14.3375 14.4901
−22.5776 52.2656 19.5038 25.2978 24.8239 25.2804

ē(t)

˙̂ψ(t) = 0.1‖se(t)‖
us(t) = −

(
0.2 + ψ̂(t)

)
sgn(se(t))

3. Design of controller: The state feedback gain matrix K as

K =

[
−3005 401
4762 −1179

]
and the matrix F is

F =

[
−5.2631 0.2631

0 −1.2500

]
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Figure 1. Trajectories of ē(t)
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Figure 2. Trajectories of se(t)
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Figure 3. The discontinuous input us(t)
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Figure 4. x(t) and its estimation
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Figure 5. d(t) and its estimation
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Figure 6. fs(t) and its estimation
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The simulation results for system (2) are shown in Figures 2–6 below. The trajec-177

tory of error vector ē(t) is shown in Figure 1, the trajectories of output error sliding178

surface se(t) and discontinuous term us(t) are shown in Figures 2–3, respectively. The179

comparisons of state vector x(t), external disturbance d(t) and sensor fault fs(t) and180

their estimations are illustrated in Figures 4, 5, and 6, respectively. It can be seen that the181

proposed FTC approach an ensure the asymptotically stability of the closed-loop fault182

system.183

5. Conclusions184

In this paper, the adaptive fuzzy FTC problem has been addressed for a class185

of nonlinear systems with actuator fault, sensor fault and external disturbance. By186

augmenting the original plant into a normal system, a new SMO is designed to obtain187

the estimation of the state vectors and faults information. Based on the state estimation,188

an integral-type SMC strategy is developed to stabilize the closed-loop fault system.189

Future work will focus on extending the designed methods to more complicated systems190

such as switched system and stochastic systems.191
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