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Abstract 

One century ago, ferroelectricity and then piezoelectricity were discovered using Rochelle salt crystals. Today, 
modern societies are invited to switch towards a resilient and circular economy model. In this context, this work 
proposes a method to manufacture piezoelectric devices made from agro-resources such as tartric acid and 
polylactide significantly reducing the energy budget without requiring any sophisticated equipement. These 
piezoelectric devices are manufactured by liquid phase epitaxy grown Rochelle salt (RS) crystals into a 3D 
printed poly(Lactic acid) (PLA) matrix being the artificial squared meshes which mimic the natural wood 
anatomy. This composite material can easily be produced in any fablab with renewable materials and at low 
processsing temperatures, reducing then the total energy consumed. Manufactured biodegradable samples are 
fully recyclable and have good piezoelectric properties without any pooling step. The measured piezoelectric 
coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE. 
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1. Introduction 
The discovery of the piezoelectric effect is now more than one century old. Piezoelectricity consists in 
converting mechanical energy into electrical energy i.e. direct piezoelectric effect when a stress is applied 
on the sample.  On the other hand, electrical to mechanical conversion happens when the voltage is applied 
on the sample i.e. the reverse piezoelectric effect. Since then, a large number of natural[1,2] and synthetic 
materials[3,4] have been reported with heterogeneous piezoelectric properties for numerous applications: 
sensors, motors, actuators, and energy harvesters[5,6]. The major piezoelectric materials are inorganic 
ferroelectric perovskites such as Lead Zirconate Titanate (PZT) and Barium Titanate (BTO). 
Environmental incompatibilities (toxicity, high sintering temperatures, etc.), as well as complex 
manufacturing procedures, have not prevented the widespread use of these ceramic materials, which are 
still extensively employed in industry. They are still used due to their very high ferroelectric and 
piezoelectric coefficients. As a matter of fact, researchers have intended to continuously optimized these 
features over the years e.g. by modifying their composition[7,8]. However, nowadays, piezoelectric organic 
ferroelectrics are attracted increasingly attention due to their lower manufacturing environmental impact. 
Among them, single crystals of diisopropylammonium bromide (DIPAB)[9] and croconic acid[10] are 
shown remanent polarizations of hundreds of mC.m- 2. Piezoelectric constants d33 of nearly 110 pC.N-1 in 
polyamide 11/NaNbO3 nanowire composites[11] have been measured. A coefficient of 40 pm.V-1 in thin 
layers of imidazolium perchlorate [12,13], or even more than -60 pm.V- 1  has been obtained in devices of 
polyvinylidene-fluoride-trifluoroethylene (PVDF – TrFE) [14,15] or other organic crystals or materials [16–

18]. Even if new piezoelectric materials are continuously discovered, the traditional materials (PZT, BTO, 
quartz) are still used, integrated and studied[19], while the oldest ones are somewhat surprisingly 
abandoned. Amongst which, Potassium sodium tartrate tetrahydrate (KNaC4H4O6.4H2O), also known as 
Seignette or Rochelle salt (RS) is ferroelectric between - 18°C and 24.9°C (its two Curie temperatures)[20]. 
RS exhibits high piezoelectric and dielectric constants. RS has a monoclinic structure in the ferroelectric 
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phase and an orthorhombic structure in the paraelectric phase [21]. Rochelle salt is also soluble in water 
and non-toxic (RS: E337 food additive is an approved by the Food and Drug Administration). Its low cost 
and ease of synthesis are some of its additional assets. It exhibits piezoelectric coefficient that can be 
higher than 100 pm.V-1[22]. Nevertheless, direct piezoelectric coefficients and coupling factors have not 
been recently reported by the insight of performant new apparatus. This lack of interest might be due to 
its deprecated performances regarding its temperature and stability issues. Thus, this material has been 
excluded from technological applications during the past century. Nevertheless, from an environmental 
perspective, RS has some advantages in terms of ease of production, process simplicity, biocompatibility 
and biodegradability, resource scarcity, and intrinsic piezoelectric coefficient compared to most of lead-
based and lead-free piezoelectric elements. Additionally, some cooperatives still produce RS as a by-
product of the wine industry and thus can be considered as a renewable agro-resource. Recently, we have 
shown the possibility to grow RS crystals into cellulose-based sheets[23] or into the naturally orientated 
capillaries of wood[24] to create eco-friendly piezoelectric transducers.  

Here, an innovative perspective based on this green material is presented which consists in growing 
crystalline salt into a 3D printed biodegradable polymer matrix making its manufacturing feasible in any 
fablab. We have developed 3D printed fully biodegradable piezoelectric salt composites. After the 
additive manufacturing of the PLA matrix, liquid phase epitaxial growth of RS crystals is performed with 
controlled crystalline orientation. The 3D printed PLA matrix imitates the natural wood tubular structure 
which has been recently studied[24]. The biodegradable PLA matrix having some good mechanical 
properties reinforces the salt based composite by encapsulating the brittle RS crystals. The millimetric 
mesh size of 3D printed PLA matrix favours the growth of single crystals having the same crystal 
orientation and improves then the piezoelectric performance. 

 
 
2. Results and discussion 
Herein, a simple approach is initiated where disk shaped piezoelectric samples composed by a 3D printed PLA 
matrix and RS were manufactured by following the process described in the Experimental section (Fig. 1). The 
manufactured samples were characterized by using direct and converse piezoelectricity measurements associated 
to the impedance spectroscopy in order to illustrate the resonant device behavior and ferroelectricity. 
 
 

 
Figure 1. Manufacturing process flow of the piezoelectric samples. 
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2.1. Ferroelectricity  
In order to measure the effective ferroelectric behavior of devices, the capacitance under polarization were 
measured (Fig.2). A square shaped (10 mm side and 1 mm thick) pure RS crystal and PLA/RS composite 
disk (28 mm of diameter and 1 mm thin) have been pooled from -40V to +40V (and from +40V to -40V 
in order to highlight hysteresis loop) and capacitance at 10kHz were mesured each 200 mV (ten times). 
The impedance of the RS is strongly dependent on the temperature up to 10% of impedance variation per 
degree [25]. A precise temperature control (+/- 0.1 ° C) was necessary in order to observe ferroelectric 
behavior whith minimized temperature effects. Thus, impedance variation with respect to polarization was 
varying in the same range (10% of impedance variation for the full scale of bias voltage available : 40V). 
Pure RS sample has capacitance variation from 65 to 85 pF during the polarization cycle (and impedance 
from 0.9 to 1.2 MΩ  with bias voltage varying from -40V to +40V). PLA/RS disk has similar behavior 
with capacitance variation of 116 to 128 pF during the polarization cycle. These measurement were 
performed near 10°C and similar curves have been obtained up to 15°C. The typical hysteresis loop can 
be observed on capacitance measurement on both devices (Fig. 2). Therefore, the ferroelectric 
characterization of Rochelle salt established in 1947 [26] and after [27, 28] was only partially reproduced. 
The few experimental literrature sources on Rochelle salt ferroelectricity suggest that we could 
reinvestgate Rochelle salt ferroelectric specificities under several environmental conditions (temperature 
and humidity) with modern equipement and more sophisticated and dedicated experimental setup.   
 

 
Figure 2. Normalized capacitance hysteresis loop measured on (a,b) thin RS square single crystal and (c,d) on  RS/PLA thin 
sample, with bias voltage applied from -40 V to +40V. 
 
 

2.2. Direct piezoelectricity 
In order to measure the effective d33 coeficient a controlled force step was applied on the sample and the 
sample output current was recorded (Fig.3). Then the amount of charges was integrated in order to get the 
d [pC.N-1] coefficient by using the known applied effective force.   For a same applied force, most of the 
composite samples were responding with a higher electrical current than commercial PVDF-TrFE samples 
(MEAS piezoelectric film provided by TE Connectivity, dimensions: 41mm*16mm*40μm) loaded on 
1MΩ.  
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Figure 3. Harvested current respectively for one RS/PLA sample and the commercial PVDF-TrFE sample measured throw 
1MΩ input impedance under a pressure step of 0 to 1 bar. 
 
 
The d33 coefficients (Table 1) were calculated from electrical charges harvested under the same pressure 
step of 0 to 1 bar for manufactured PLA/RS composite samples for two different  thicknesses and for a 
commercial PVDF-TrFE sample. The results  show that RS/PLA samples have higher d33 coefficient under 
this pressure. The commercial PVDF-TrFE has a repeatable d33 of 21 pC.N-1. The manufactured 2.5 mm 
and 1.5 mm thick RS/PLA samples have an average d33 of 39 pC.N-1 and 119 pC.N-1 respectively at the 
same ambient conditions. Therefore our manufactured composite thick disks have suprisingly high 
piezoelectric characteristics compared to commercial ultra-thin PVDF-TrFE. In our recent work where 
RS crystals have been grown in a natural wood matrix structure, an avarage value of 11. pC.N-1 for d33 has 
been found [24]. It is worth noting that some thin PLA/RS samples (thickness of 1.5 mm) have non 
negligeable residual stress due to the 3D printing process, resulting in a curved shape rather than a flat 
sample. A stronger electrical response is thus recorded in this case due to the fact that the mechanical 
deformation includes not only pure compression but also deflection of the disk. Then, the piezoelectricity 
in other directions is probably induced and other coefficients like d13 and d14 are probably solicited. Note 
that those coefficients could not be measured on our samples. The average coefficients are included into 
a large uncertainty interval for RS/PLA samples due to reproducibility of the manufacturing process. In 
fact, cristallisation around defects of 3D printed PLA matrices and residual stress issues led to samples 
with varying performances. Nevertheless these results are confirmed by converse piezoelectricty 
measurements.  Injected PLA matrices with a clean surface state could enhance the reproducibility.  
 
 
Table 1. Average values (μ), and their corresponding standard deviation (σ) of direct piezoelectric coefficients calculated 
from charges harvested under a pressure step of 0 to 1 bar, converse piezoelectric coefficients calculated from static 
displacement and applied voltage, resonant frequencies (fr [Hz]), quality factors (Q), and coupling factors (kp) extracted from 
impedance spectra. for two thicknesses (1.5 mm and 2.5 mm) of RS/PLA composite samples and for a commercial PVDF-
TrFE sample.  
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2.3. Converse piezoelectricity 
AC signals have been applied to the manufactured RS/PLA composite samples and their displacements 
and electrical characteristics recorded with a laser vibrometer and impedance analyser. Both 
characterizations highlighted the same converse piezoelectric effect. For instance, the same sample 
measured with both techniques (Fig.4) shows the same principal resonant mode on conductance and out-
of-plane displacement. The converse effective d33 [pm.V-1] coefficient was calculated by measuring the 
static displacement of the sample using the second order approximation of spring-mass-damper system 
given by: 

𝐻 = 2𝜉𝐻(𝑓 )                (1) 
with 𝐻  is the static displacement, 𝜉 is the damping ratio and 𝐻(𝑓 ) is the maximum displacement at the 
Eigen frequency 𝑓 . The static displacements were calculated for several applied voltages U, oscillating 
at 𝑓  and reported (Fig.5). The displacement was found to increase linearly with the applied voltage. The 
slope of this linear function leads to the experimental effective converse d33 coefficient. The comparison 
of converse piezoelectric coefficients calculated from static displacement and applied voltage, for two 
thicknesses of RS/PLA manufactured samples (Table 1) confirms the general trend measured for direct 
piezoelectric effect characterization. 2.5 mm thick fully biodegradable RS/PLA samples have an average 
d33 of 31 pm.V-1 and 1.5 mm thick RS/PLA samples have 80 pm.V-1. Reminding that, under laser 
vibrometer, displacement is measured in the same direction of applied electric field (more consistent d33 
measurement), the sample residual stress is mostly eliminated from the sample out-of-plane response 
(measured only in this direction). Therefore, the coefficient calculated from converse piezoelectricity for 
thin samples is lower compared to the average one measured under mechanical solicitation. Additionally, 
the coefficient from converse piezoelectricity for thick PLA/RS sample is closer to the one obtained in 
direct piezoelectricity. This should be due to the absence of residual stress in thicker samples.   
Thicker samples have lower effective d33 coefficient than thinner ones. It is then important to clarify the 
thickness dependence of effective d33 coefficient. Theoretically, liquid phase epitaxy permit crystals 
growth in only one crystallographic direction which is the seed crystal direction (homogenous growth). 
Nevertheless, in our case, the crystallisation can also be initiated on the walls of PLA matrix due to the 
defects on its rough surface (heterogeneous growth). Thus, as the crystallisation progresses without facing 
the imperfect PLA matrix surface, the initial seed crystallisation direction is further conserved.  The 
increased contact surface in thicker PLA matrices increases other potential  nucleation points for RS 
crystal growth on PLA walls. This is then a competition between homogenous and heterogeneous crystal 
growth. Therefore, in thicker samples the RS crystals growth in the PLA channels are probably more 
randomly oriented than in thin ones, resulting in a deprecated effective d33.  
 

 
Figure 4. Conductance vs displacement spectra recorded on the same sample (2.5 mm thick) respectively using impedance 
spectrum (U=1V) and laser vibrometer (U=2V). 
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Figure 5. Static displacement (computed from vibrometer measurements) vs applied voltage measured on one RS/PLA 2.5 
thick sample. 
 
 

Then, impedance spectroscopy was used to characterize each manufactured RS/PLA composite sample. The 
conductance and susceptance spectra (Fig.6) allowed to identify the resonant behavior of the piezoelectric samples 
and define their resonance frequency (fr), quality factor (Q) and coupling coefficient (kp). The average values and 
standard deviation of those parameters (Table 1) are shown for the two geometries of manufactured disks. Thicker 
(2.5 mm) samples have higher resonance frequencies (𝑓 ≈ 49 kHz) and quality factors (𝑄 ≈ 80) than thinner (1.5 
mm) samples (𝑓 ≈ 38 kHz and 𝑄 ≈ 37). This is probably due to the increased stiffness of thicker RS/PLA samples 
compared to thinner ones. In terms of coupling factors, thinner disks have better coefficients (𝑘 ≈ 0.25 for 1.5 

mm and 0.15 for 2.5 mm). We can notice that Q factors obtained are the higher reported for RS with such simple 
and environmentally friendly technology. 

 
Figure 6. Conductance and susceptance spectra of 2.5 mm thick RS/PLA manufactured sample. 

 

 
3. Conclusion 
In this work, we demonstrated the ferroelectric and piezoelectric performance of ecofriendly PLA/RS 
composites obtained by using additive manufacturing techniques. The samples are made by growing the 
Rochelle salt crystals into a 3D printed biodegradable PLA matrix with millimetric meshes. A RS seed is 
attached to one side of the disk shaped PLA matrix and used for favouring the crystal orientation into the 
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matrix capillaries. Then, the direct and converse piezoelectric properties of RS/PLA composite samples 
were characterized. Additionally the ferroelectric behaviour has been illustrated below Curie point at 
24.9°C. In terms of piezoelectric performance, we achieved an effective d33 of 30 pC.N-1 and 120 pC.N-1 
on 2.5 mm and 1.5 mm thick PLA/RS composite samples, respectively. The transducers have a resonance 
frequency in the kilohertz range with quality factors ranging from 20 to 100. The d33 of manufactured 
samples is higher than most of commercial PVDF-TrFE films. We demonstrated that RS/PLA samples 
can easily be made at low cost in any fablab and with an eco-friendly approach. They have strong 
advantages in terms of cost, environmental impacts and energy budget, compared to most of lead-based 
and lead-free piezoelectric components. This is partially due to process simplicity and few (thermal) 
energy required. The performances of such 3D printed fully biodegradable piezoelectric composites could 
be of great interest for disposable harvester, sensor or actuator applications. In the future, circular 
manufacturing of such piezoelectric-salt based components could be further developed to produce some 
components limiting the material intensity and minimizing the environmental impacts. For the moment, 
this technology perfectly match actual pedagogical needs and application, illustrating advanced physical 
or technological concepts and applications with “low systemic environmental footprint” process in 
coherence with student requests. They recently asked academic institutions to switch urgently to contents 
and concrete experiments that could help to prepare themselves to climate change challenges. To start to 
achieve this request, “green” experimental matters and materials, could be used to highlight industrial 
(more polluting) equivalent technological concepts or elements. Authors think that the methods, materials 
and experiments presented in this work are in accordance with this eco-friendly academic transition, 
especially in the field of sensors and transducers development.  

 
4. Experimental Section  
PLA/RS sample manufacturing:  
First PLA matrices have been printed using Ultimaker 3D printer (V1.1) and PLA filament also provided by the 
same company. In parallel, some RS crystal seeds were grown in order to get large single crystals at least 2 cm 
wide. The crystal growth was performed in an over saturated solution at room temperature (around 21°C) by 
mixing deionized water and RS powder provided by APC pure company (UK). Then a RS seed was attached to a 
disk shaped PLA matrix on one side and deep into the solution kept at 10°C in order to initiate the liquid phase 
crystal epitaxy through the PLA disk as shown in Fig.1. Once the PLA sample was completely embedded into the 
growing RS crystal (after 36 to 48 hours), it is removed from the solution. Then the samples were naturally dried 
and the exceeded RS from PLA matrix was removed by cutting the RS crystal close to both sides of disk and 
polished by sanding paper until the PLA matrix surfaces appear again. Finally, electrodes were placed on the 
sample: two aluminium disks (10 µm thin) were cut into a commercial aluminium foil and stick on both faces of 
the disk with Bare conductive ink (commercial name: “electric paint”).  As mentioned previously, this 
manufacturing process is simple and feasible in any fablab without any sophisticated equipment. Both energy and 
financial budgets of such a process are low compared to standard piezoelectric ceramic or even organic samples 
in terms of costs and of complexity. 

 

Experimental setup and characterization tools:  
For each 3D printed fully biodegradable piezoelectric composite sample, we measured the impedance 
spectrum of the PLA/RS samples by using E4980A, Keysight impedance analyser. The displacement 
spectra were acquired by employing a MSA-500 laser vibrometer from Polytech. The direct piezoelectric 
effect was evaluated with a dedicated setup described in Fig.7. It consists of a pressure-controlled 
compressed air piston applying a controlled pressure to the sample, behind which a sensor indicating the 
applied force to the sample. The output piezoelectric signal is measured on a scope (TDS2014C, 

Tektronix) loaded on 1 M or 10 M. The calculation of electrical charges (Coulombs) is performed 
using a digital integration after noise reduction of the signal.  
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Figure 7. Dedicated direct piezoelectric coefficients measurement setup. 
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