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Abstract: Low pressure fluid transport (1) applications often require low and precise volumetric 

flow rates (2) including low leakage to reduce additional costly and complex sensors. A peristaltic 

pump design (3) was realized, with the fluid’s flexible transport channel formed by a solid cavity 

and the wobbling plate comprising a rigid and a soft layer (4). In operation, the wobbling plate is 

driven externally by an electric motor, hence, the soft layer is contracted and unloaded (5) during 

pump-cycles transporting fluid from low to high pressure sides. A thorough characterization of the 

pump system is required to design and dimension the components of the peristaltic pump. To cap-

ture all these parameters and their dependencies on various operation-states, often complex and 

long-lasting dynamic 3D FE-simulations are required. We present, here, a holistic design method-

ology (6) including analytical as well as numerical calculations, and experimental validations for a 

peristaltic pump with certain specifications of flow-rate range, maximum pressures, and tempera-

tures. An experimental material selection process is established and material data of candidate ma-

terials (7) (liquid silicone rubber, acrylonitrile rubber, thermoplastic-elastomer) are directly applied 

to predict the required drive torque. For the prediction, a semi-physical, analytical model was de-

rived and validated by characterizing the pump prototype.  

Keywords: hydraulic pump 1; micro-dosing 2; peristaltic 3; hyper-elasticity 4; viscoelasticity 5; ho-

listic design methodology 6; elastomer compound 7  

 

1. Introduction 

Pumps have a broad field of application and can be considered as energy transduc-

ers, converting primary kinetic energy (e.g., linear, or rotational motion of a rigid body) 

to hydrodynamic energy [1]. A simplified view on the technical side of a pump reduces it 

into three main components which describe the operation principle [hydraulic pump very 

abstracted]: housing with fluid in- and outlet port, moving component(s) and transmis-

sion gear to drive the moved part via the primary energy source. Based on the operation 

principle hydraulic pumps, beside some exceptions like “the hydraulic ram” [2] which 

uses the water hammer effect [3] as primary energy source, can be categorized into two 

main groups, namely centrifugal pumps [4] and (positive) displacement pumps. [5] gives 

a good overview of hydraulics in general. Centrifugal pumps have an open fluid connec-

tion from in- to outlet port, the impeller accelerates the fluid due to its rotational move-

ment which causes centripetal forces (actio); in other words: the fluid is moved due to its 

centrifugal force caused by the impeller (reactio). In contrast to that, the in- and outlet 

ports of displacement pumps are disconnected by a sealing which is considered as “leak-

free” flow, so the fluid volume “the displacement” is encapsulated and transported by the 

motion per turn. Some pumps of this kind have multi-sectioned and even parallel, and 

phase shifted displacement to smooth the flow rate and, consequently, reduce pulsations.  

The most common types of displacement pumps are gear pumps, screw pumps, rotary 

vane pumps, as well as piston pumps, which can further be divided into axial and radial 
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piston pumps [6, 7] and, finally, peristaltic pumps [8]. Except for peristaltic pumps, those 

displacement pumps have several features in common. The dynamic sealings, which en-

close the displacement, are usually not intended to be made of soft materials and, there-

fore, consist of long and tight sealing gaps. Consequently, an acceptable amount of leak-

age occurs. Lower leakage requires more precise manufacturing and is expensive. The fact 

that such pumps mainly consist of rigid components with significantly higher strength 

than soft materials, higher maximum pressures (p > 21 MPa) can be withstood compared 

to peristaltic pumps. 

Our aim was to build a cost-effective and backflow-free (safety valve function) fluid 

transport system which can handle pressure ranges from nearly 0 MPa to 1 MPa with 

accurate but variable flow rates. Furthermore, it has to withstand the dry operation mode 

and also negative pressures (relative to atmospheric pressure). For these specifications, 

the most appropriate system is the peristaltic pump. However, some unfavourable issues 

like low durability or pulsation are well-known [8] and have to be addressed in the devel-

opment of peristaltic micro-dosing pumps.  

Figure 1 shows the main principle components of a peristaltic pump with three roll-

ers including a cross-section of it. The main problems include pulsations caused by dis-

continuity of displacement per turn as well as durability limitations and dynamic thermo-

mechanical behaviour of the wobbling plate’s soft material [9, 10, 11], among others. So, 

the problems can be related to the pump concept itself and the undesirable behaviour [12] 

(strength, aging, creep, relaxation, etc.) of the soft material. On the one hand the benefit of 

the hyper-elastic behaviour is the conformity, flexibility, and the tight dynamic sealing 

capability [13]. On the other hand, this soft (elastomeric) material will be adiabatically 

heated by the pump motion and accelerate the material’s aging. Standard tubes of com-

mon peristaltic pumps are pushed by one or more rotating rollers to encapsulate the dis-

placement (fluid) into one or more segments (Figure 1). Depending on the design such 

squeezing leads to high deformations and unbalanced contact-pressures. Due to zones of 

high inner stresses, especially on kinks (i.e., highly deformed contact regions), the material 

will embrittle over time and, ultimately, leading to total failure of the pump. To overcome 

these, in this article the main objective was to present a new mechanical design approach 

of a rubber-based fluid pump including prototyping and validation.  

  

(a) (b) 

Figure 1. Flexible tube based peristaltic pump principle with 3 rollers; (a) cross-section of the pump in frontal-view; (b) cross-

section of the pump in side-view. 
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2. Design concept and challenges 

Figure 2 shows the workflow of the design methodology. The methodology com-

prises the mechanical design of the peristaltic micro-dosing pump, the material selection 

approach of the wobbling plate’s soft layer and the optimization of the whole pump sys-

tem. It is an interwoven approach including analytical as well as numerical calculations 

and experimental validations.  

 With our methodology long-lasting FE-calculations to compute a functioning pump 

geometry at the maximum drive conditions (torque) is avoided to analyse leak-free fluid 

transport at pressure levels from 0 MPa to 1 MPa. Furthermore, it enables operation at 

variable flow rates (µl/min to ml/min) as well as service-temperatures (0°C ⎼ 60°C). 

 

 

Figure 2. V-model of the peristaltic micro-dosing pump. 

2.1. Mechanical design 

Figure 3 shows the mechanical design and a prototype of the peristaltic micro-dosing 

pump system. The pump concept has a mostly constant displacement, enclosed by the 

pump cavity and the moving dynamic wobbling plate, which transports the fluid through 

the provided channel. The flow rate can be varied by setting the wobble turn speed ap-

propriately. As primary pump systems drive, we chose a slightly oversized electronic 

commutated brushless direct current motor [14] due to the off-the-shelf availability and 

the good controllability.  

The design of the pump system was a result of an easy way to adjust the dynamic 

sealing pressure by altering the distance of the two subassemblies, namely pump and 

drive part.    
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(a) (b) 

Figure 3. Design of the micro-dosing pump, pump itself (1), primary drive with transmission gear (2) and the non-rotating 

wobble plate (3) with the soft material layer on top which forms the cavity together with the housing; (a) Cross-section view 

of the schematic illustration; (b) picture of the prototype. 

 

For the mechanical design of the peristaltic pumps’ primary drive, the estimation of 

the drive’s torque in relation to the established sealing pressure within the cavity is of 

particular importance. Here, the wobbling plate is made of a rigid and a soft layer (rubber) 

and, hence, the sealing pressure is mainly determined by the material behaviour of the 

soft layer. 

 

 

2.1.1. FE-calculations and design hypothesis 

 

For the geometric design Abaqus [15] was used to calculate material stresses and de-

formations. The main observed operating points are those in extreme conditions, which 

must be tolerated by the materials. The general pump design was simulated as a 2D axis-

symmetric model. The steps were primarily set as dynamic-implicit (quasi-static) without 

fluid dynamics but with pressures on the sealing boundary zones. In the first step, the 

mounting process was simulated. Therefore, the basic pump housing was fixed, and the 

other parts (y-axisymmetric) were moveable in y-direction and fixed in x-direction. The 

prestress-rings were now brought into its final positions. In the further Steps the boundary 

conditions were applied (rising with step time) from zero to its nominal values. On each 

step one of the boundary conditions was changed. Its limits were maximum and mini-

mum pressures (minimum 0 MPa, nominal 1MPa in operating condition, and maximum 

pressure of 3MPa in none-operating pump state for safety reasons) and wobble angles 

(which results in a maximum of 0.5mm and minimum of 0mm in y-deformation of the 

rubber) 

The soft material was modelled with isotropic and hyper-elastic via Mooney-Rivlin 

constitutive behaviour at certain temperatures and frequencies. For faster and more stable 

simulation results the step-types were set as dynamic, implicit with adiabatic heating ef-

fects. Due to large deformation of the rubber, the nonlinear geometric function is enabled. 

Several mesh sizes and elements were tested in order to find a stable model. Especially 

the rubber element is the crucial component and therefore needs a more specific consid-

eration. The seeds very applied evenly spaced around the circumference of the 2D axisym-

metric rubber element. The approximate global size was set to 0.12mm and curvature con-

trol was used for applying the global seeds. The maximum deviation factor was set to 0.1 

as set by default in ABAQUS CAE. In mesh controls the element shape was set to be 

“Quad” only. Also “Free” technique with “Advanced front” algorithm included “mapped 

meshing where appropriate” was chosen. Furthermore, the mesh element type was set as 
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“CAX8RH” (An 8-node biquadratic axisymmetric quadrilateral, hybrid, linear pressure, 

reduced integration). Now the rubber part can be meshed automatically, and as seen in 

Figure 4 (b) the mesh size and structure are evenly distributed, and the shape of the rubber 

element is sufficiently accurate.  

There contact formulations between the parts was separated into three segments. All 

part interactions were set to “all with itself” with cohesive contact (“Hard” contact for 

normal behaviour and default cohesive behaviour) excluding those surfaces which are not 

permanently attached to each other. The surface contacts between the rubber and the 

pump head, and between pump head and prestress ring (in Figure 4 Position 2 and 1, 

Position 1 and 3) were chosen to be of type surface-to-surface interaction. The rubber sur-

face and the prestress ring surface were set to be the slave-surfaces and the pump head 

was set as master surface. The contact behaviour was formulated as slip-friction. There-

fore, the tangential behaviour was set es penalty friction formulation with a coefficient of 

0.15 and isotropic directionality. Additionally, the normal contact behaviour was set as 

“Hard” contact for pressure-overclosure with default constraint enforcement method. 

Separation after contact was allowed to simulate other situations in further “Steps”. After 

the first “Step” was created the initial boundary conditions were applied. Further “Steps” 

were implemented with the appropriate change of boundary conditions and  loads. 

 

 

 

(a) (b) 

Figure 4. First results of 2D axisymmetric FE-Calculation: (a) resulting contact pressure of the static sealing lips after assem-

bling; (b) resulting stresses of the rubber due to the prestress. Due to reasons of presentability the geometry was flipped in 

contrast to detail A of Figure 3.  

The basic design parameters of the cavity geometry were chosen due to desired flow 

rate (50 ml/min), which is the product of displacement (33µl + 20% over-dimensioned for 

geometry tolerances) and motor speed (1500 rpm). From this point on, the 2D-FE-calcula-

tion procedure was iterated to find a basic pump design concept working for the given 

boundary conditions to fulfil all desired conditions like displacement and maximum pres-

sures without violating the maximum allowable stresses. The maximum contact pressures 

for “Step 1” on the sealing lips (see Figure 4)  are above the desired maximum static pres-

sure. It can be concluded that there will be no external leakage on the sealing lips, also the 

maximum allowed stresses were not exceeded. All steps results fulfilled the desired con-

ditions without violating the maximum allowed material conditions like maximum defor-

mation and maximum tensile and compressive stresses.  

The 2D calculation led to the final design parameters like rubber thickness, maximum 

deformation for prestressing the sealing lips and maximum compression at maximum 

wobble angle which separates high-pressure and low-pressure area. After the basic design 

was finalized, a 3D-FE-analysis was conducted for one single pump revolution at one spe-

cific operating point specified as room temperature and quasi-static movement. This spe-

cial situation represented very slow pump motions and, therefore, low flow rates. Of 

course, such a simulation is very time-consuming (several weeks of run-time). As a result, 

we received the verification of the functionality of the basic concept (closed displacement 

in every rotary angle) and a first scale of the necessary torque to move the wobble plate 
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properly. The necessary drive torque is mainly influenced by the rubber conditions like 

deformation frequency and temperature, but also by the required hydraulic power which 

can later be superimposed easily. To have a whole dynamic Abaqus 3D-design calcula-

tion, it would be necessary to simulate several operating points like maximum frequency 

at minimum temperature with the same pre-set assembling conditions, which has been 

omitted due to long simulation times. 

 

 

2.1.2. Analytical model for the estimation for the drive torque 

An analytical model estimating the necessary drive torque for several operating 

points (different speeds and temperatures) is derived to avoid expensive dynamic 3D-FE-

analyses by using the results of the viscoelastic characterization of the wobble plate’s soft 

layer by dynamic thermal mechanical analyses (DMTA). For the model, some level of ab-

straction is needed to describe the function as realistic as possible without too many devi-

ations. So, the first step is finding a simplified scheme of the pump system including the 

primary drive and power transmission which represents the rubber (soft layer) dominated 

required torque (idle mode) in a sufficiently accurate manner as seen in Figure 5 (a, b). 

 

  

(a) (b) 

Figure 5. Simplified abstracted model of the pump system: (a) wobble plate on top connected with the rubber ring in zero and 

maximum deflection; (b) illustration of the transmission from rotary drive to wobbling plate (the roller bearing allows a rota-

tion between wobble plate and drive shaft, the wobble plate itself is blocked due to the attached and fixed rubber).  

 

 

 

Figure 6. Wobbling plate with labelled kinematic parameters and torques 
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The mechanics of the wobbling plate according to Figure 6 can be formulated with 

the equation of motion for angular problems with 2 degrees of freedom 𝑞⃑ = (𝛼 𝛽)𝑇 and 

looks like  

 𝐽 ∙ 𝑞⃑̈ + 𝐷 ∙ 𝑞⃑̇ + 𝐶 ∙ 𝑞⃑ = 𝑇⃑⃑, (1) 

Considering a harmonic movement of the plate, where θ changes with 𝜑 = 𝜔𝑡  which 

leads to a harmonic wobbling, the state vector can be written as followed:  

𝑞⃑ = (
𝛼
𝛽) = (

𝜃 ∙ sin⁡(𝜔𝑡)
𝜃 ∙ 𝑐𝑜𝑠⁡(𝜔𝑡)

), (2) 

The first and second derivations lead to:  

𝑞⃑̇ = (
𝛼̇
𝛽̇
) = (

𝜃 ∙ 𝜔 ∙ 𝑐𝑜𝑠⁡(𝜔𝑡)
−𝜃 ∙ 𝜔 ∙ 𝑠𝑖𝑛⁡(𝜔𝑡)

), (3) 

and 

𝑞⃑̈ = (
𝛼̈
𝛽̈
) = (

−𝜃 ∙ 𝜔2 ∙ sin⁡(𝜔𝑡)

−𝜃 ∙ 𝜔2 ∙ 𝑐𝑜𝑠⁡(𝜔𝑡)
), (4) 

Furthermore, the needed power for each rotation is constant, therefore it is possible 

to observe the resulting values at a certain quasi-static position (e.g. 𝜑 = 𝜔𝑡 = 2𝜋𝑘⁡∀𝑘 ∈

ℕ), so the state vector and its first and second derivations simplify to 

𝑞⃑ = (
0
𝜃
), (5) 

𝑞⃑̇ = (
𝛼̇
𝛽̇
) = (

𝜃 ∙ 𝜔
0
), (6) 

𝑞⃑̈ = (
𝛼̈
𝛽̈
) = (

0
−𝜃 ∙ 𝜔2

), (7) 

The ideal power transmission from the rotary drive to the wobbling as illustrated in Fig-

ure 5 (b) results in following formulation: 

𝑇𝑚𝑜𝑡𝑜𝑟 ∙ 𝜔 = 𝑇𝛼 ∙ 𝛼̇ + 𝑇𝛽 ∙ 𝛽̇ (8) 

Considering the simplifications of the states in equations (5)(6)(7) due to quasi-static and 

position-based observation, the equation (8) further simplifies to 

𝑇𝑚𝑜𝑡𝑜𝑟 = 𝑇𝛼 ∙ 𝜃 (9) 

 

These results substituted by the original terms of equation of motion (1) lead to the fol-

lowing time invariant algebraic equation: 

⁡𝑇𝑚𝑜𝑡𝑜𝑟 = 𝑑𝜃 ∙ 𝜃
2 ∙ 𝜔 (10) 

The damping and stiffness coefficients for this problem “rubber ring with tilting load” 

according to Figure 5 (a) can be written as followed [16]:    

 

𝑐𝜃(𝑇,𝜔) =
𝐸′(𝑇, 𝜔) ∙ 𝜋𝑑𝑚

2 ∙
𝑏
ℎ

8

(

 
1 + (

𝑏
𝑑𝑚
)
2

1 − 𝜈2
+
𝑏2

3ℎ2

)

 , (11) 

 

and 

𝑑𝜃(𝑇,𝜔) = 𝑐𝜃(𝑇,𝜔)
tan⁡(𝛿)

𝜔
, (12) 
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Merging equation (10),(11) and (12) the required torque for idle mode can be estimated by 

the following equation: 

⁡𝑇𝑚𝑜𝑡𝑜𝑟 =
𝐸′(𝑇, 𝜔) ∙ 𝜋𝑑𝑚

2 ∙
𝑏
ℎ

8

(

 
1 + (

𝑏
𝑑𝑚
)
2

1 − 𝜈2
+
𝑏2

3ℎ2

)

 ∙ 𝜃2 ∙ tan⁡(𝛿), (13) 

With these considerations, an algebraic equation of the very abstracted model of the 

pump system was found to estimate the required torque which is influenced by tempera-

ture and frequency-depending material behaviour (modulus E’ and loss factor tan⁡(𝛿)) 

and the geometry parameters. The experimental set up for the validation can be seen in a 

following sub-chapter called evaluation process. If this torque values are also useable for 

scalable designs without the need of further investigations will be proven in chapter      re-

sults. 

 

2.1.3. Dynamic fluid gap 

Due to the nonlinear dynamic rubber behaviour, the displacement of the maximum 

pump pressure will be temperature and frequency dependent. Once the rubber’s dynamic 

thermomechanical behaviour is characterized, only operation temperature and pump 

speed are necessary to estimate the actual flow rate. The requirement for the pump system 

was a constant displacement independent of speed, temperature, and pressure. How-

ever, the dynamic fluid gap, which is formed between the squeezed rubber and the rigid 

pump cavity, has a huge impact on the pump’s displacement. For further investigations, 

the wobble plate is considered as a cubic piece of rubber with a rigid top which is fre-

quently excited and pressed against the pump cavity. The level of abstraction is shown in 

Figure 7. The distance varies from maximum lift (hmax) to the nominal compression to 

reach the target contact pressure at minimum lift (hmin).  

   

 
 

(a) (b) 

Figure 7. Analogous model of the complex pump system regarding the dynamic film on the contact area.: (a) illustration of 

the simplified wobble situation; (b) principal abstracted scheme. 

This dynamic fluid gap is influenced by the stiffness of the rubber, the occurring fluid 

pressure and the wobbling speed of the pump itself. A phenomenological mechanical 

model based on this system is illustrated in Figure 8. The rubber was described by the 

well-known Kelvin-Voigt model [17] (parallel connection of elastic spring and viscous 

damper). 
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Figure 8. The simplified mechanical model of the emerging fluid gap caused by the rubber on the 

wobble plate. 

The Reynolds equation [18, 19], which is a certain form of the Navier-Stokes equa-

tions [20] (no density or viscosity changes) for a fluid gap with such a short distance lead-

ing to dominating viscosity effects, can be written as below:  

𝜕

𝜕𝑥
(
ℎ3

𝜂

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(
ℎ3

𝜂

𝜕𝑝

𝜕𝑦
) = 6

𝜕ℎ

𝜕𝑥
(𝑈12 + 𝑈21) + 6

𝜕ℎ

𝜕𝑦
(𝑈12 + 𝑈21) + 12ℎ̇, (14) 

Furthermore, y-axis-depending terms and horizontal velocity-based terms (wobbling 

plate does not have a relative movement to the cavity in horizontal direction) can be elim-

inated 

𝜕

𝜕𝑥
(
ℎ3

𝜂

𝜕𝑝

𝜕𝑥
) = 12ℎ̇,  (15) 

By integrating this differential equation 2 times, and setting the boundary conditions to 

p(0)=p0 and p(L)=p1 the damping pressure below the rubber can be calculated. 

 

𝑝(𝑥) = −6𝜂
ℎ2(𝑡)∙̇ 𝑥2

ℎ2(𝑡)3
+ 𝑝0 + 𝑥 ∙ (6𝜂𝐿

ℎ2(𝑡)̇

ℎ2(𝑡)3
+
𝑝0

𝐿
+
𝑝1

𝐿
),  (16) 

 

The resulting force of the fluid cushion which hinders the rubber to get into contact with 

the cavity can be evaluated by integration over dx from 0 to the length L and dy from 0 to 

the width b of the strip. 

  

𝐹𝑓𝑙𝑢𝑖𝑑 = ∫ ∫ 𝑝(𝑥)𝑑𝑦
𝐿

0

𝑑𝑥 → 𝑓(ℎ2(𝑡), ℎ2̇(𝑡), 𝑝1, 𝑝2)
𝑏

0

 (17) 

 

At an operation point the rubber can be simplified to a frequency and temperature de-

pendent spring and damper system with very low mass. With ∆ℎ(𝑡) = ℎ1(𝑡) − ℎ𝑟𝑢𝑏 −

ℎ2(𝑡) − ℎ0 the equation of motion can be written as followed:   

⁡𝑚 ∙ ∆ℎ̈(𝑡) + 𝑑(𝑇, 𝜔) ∙ ∆ℎ̇(𝑡) + 𝑐(𝑇, 𝜔) ∙ ∆ℎ(𝑡) = 𝐹𝑓𝑙𝑢𝑖𝑑(ℎ2(𝑡), ℎ2̇(𝑡), 𝑝1, 𝑝2), (18) 

Damping effects of the rubber cause an internal heating and a lag of deformation, which 

in this case means, that zero damping would lead to a worst-case scenario for the devel-

oping fluid gap.  

The mass of the elastomer also has low influence on the results, with m=d=0. The 

equation (18) can be reduced as followed:  

𝑐(𝑇, 𝜔) ∙ (ℎ1(𝑡) − ℎ𝑟𝑢𝑏 − ℎ2(𝑡) − ℎ0) = 𝐹𝑓𝑙𝑢𝑖𝑑(ℎ2(𝑡), ℎ2̇(𝑡), 𝑝1, 𝑝2), (19) 

By setting the boundary conditions p1 and p2 to zero to represent the idle mode the fluid 

the equation further simplifies to  
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𝑐(𝑇, 𝜔) ∙ (ℎ1(𝑡) − ℎ𝑟𝑢𝑏 − ℎ2(𝑡) − ℎ0) ⁡=
𝐿3𝑏𝜂

(ℎ2(𝑡) + ℎ0)3
∙
𝑑

𝑑𝑡
ℎ2(𝑡), (20) 

To obtain the desired result h2(t), this nonlinear differential equation needs to be solved 

numerically. 

 

In Figure 9 (a) and (b) the emerging fluid gap due to different excitation frequencies 

is shown. The typical rubber behaviour leads to a higher stiffness with rising frequency 

and falling temperature. Presuming the stiffness rises to infinite values, the fluid gap 

would only be defined by two rigid plates which lead to zero contact, but infinite high 

contact forces. On the other side, if the rubber stiffness is very low, the fluid gap will be 

dominated by the velocity term namely the motor speed respective frequency. In conclu-

sion, depending on the chosen rubber material rising frequency will lead to higher gaps, 

due to higher fluid forces, but also to an increasing stiffness of the rubber which will partly 

compensate the emerging gap. The graphs in Figure 10 give an idea of how the displace-

ment changes due to frequency effects. The nominal flow rate Q is dependend on motor 

speed n and displacement V which is further a function of n. 

𝑄 = 𝑉(𝑛) ∙ 𝑛, (21) 

The nominal displacement (quasis-static → f=0 Hz) is calculated to: 

𝑉0 = 𝑟𝑚 ∮ 𝐴(𝜑)𝑑𝜑
2𝜋

0
≈ 𝑑𝑚 ∙ 𝜋 ∙

2

3
∙ 𝑏 ∙

ℎ2𝑚𝑎𝑥

2
, (22) 

Where dm is the cavity’s mean diameter, A(φ) the φ-depending (radial) cross-section 

which is a about the product of the φ-depending height h2(φ) multiplied by two thirds of 

the cavity width b (area of circle segment). The integral of the cross-section A(φ) results 

in the mean of maximum and minimum cross-section. The frequency dependent term re-

duces the nominal displacement to: 

𝑉(𝑓) ≈ 𝑉0 − 𝑑𝑚 ∙ 𝜋 ∙
2

3
∙ 𝑏 ∙

ℎ2min⁡(𝑓)

2
, (23) 

The actual system is much more complex, due to the hyper-elastic as well as viscoe-

lastic material behaviour and the interaction of the more complex pump geometry. Most 

likely it is not possible to find an analytical model to describe the thermal, dynamic rubber 

fluid interaction of the 3D design. 

 

 

 

  

(a) (b) 

Figure 9. First simulation results of the dynamic fluid gap: (a) emerging fluid gap h2(t) due to vertical rubber velocity h1(t) in 

idle mode (p0=p1=0 MPa); (b) gap variation due to load pressure p1=0.5MPa. 
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Figure 10. Calculated displacement curve based on V0=40µl for idle mode and nominal load pres-

sure over desired motor speed.   

 

 

 

Figure 11. Inflated pressure distribution p(x) along the dynamic fluid gap at certain time 

min(h1(t)): (a) boundary conditions p0 = p1 = 0 MPa; (b) boundary conditions p0 = 0 MPa; p1 = 0.5 

MPa (nominal operating point); (c) boundary conditions p0 = 0 MPa; p1 = 1.5 MPa (pressure limit 

exceeded → backflow from right to left side). 

 

Figure 11 shows the pressure distribution from the left to the right boundary in the 

dynamic fluid gap. The pressure inflation in the dynamic gap at the exact time when the 

gap has its minimum (sealing point) has to be higher than the boundary pressures in order 

to prevent backflow, since the flow rate follows the negative pressure gradient. Therefore, 

Figure 11 (a, b) shows that internal leakage is prevented if the boundary pressure is below 

the maximum pressure at low frequencies. This is valid, if the rubber prestress is high 
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enough, which is guaranteed by the required static sealing contact pressure. From Figure 

11 (c) it is obvious that the boundary pressure of 1.5 MPa exceeds its target sealing limit 

causing internal leakage. 
 

2.1.4 Wobble plate design 

The design of the rubber-based wobble plate has surrounding static sealing lips in a 

kidney shaped arrangement, which are tight at maximum pressure. Depending on the 

pivot angle of the wobble plate, the rubber is pressed at the inner side against the pump’s 

housing cavity. The geometry has to be designed in order to maintain the contact pressure 

line just above the desired feed pressure. Otherwise, leak tightness is not preserved. Since 

the pump-element also undergoes tensile stresses, the connection between the rigid and 

the soft layer is crucial and must resist these severe loadings. However, soft materials, like 

rubbers, exhibit inherent viscoelastic behaviour leading to stress/strain relieving (relaxa-

tion/retardation) mechanisms due to the molecular motion under external loading. This 

effect has to be considered in the mechanical design with the aim to reduce it; if not, the 

displacement of the peristaltic pump will drop and reduce the flow rate permanently. 
To overcome the drop in displacement, the boundaries of the rubber have to be con-

fined in a way that over time evolving creep along the maximum stress path is inhibited 

[21]. Therefore, three joining concepts for the soft and the rigid layers were considered in 

this study and included Figure 12 (a) adhesive bonding with cyanoacrylate Figure 12 (b) 

vulcanization (cross-linking) of the rubber on the metallic surface by applying a primer 

for enhanced adhesion between the dissimilar materials, and Figure 12 (c) form fit and 

vulcanization for superior interface properties. 

 

 
  

(a) (b) (c) 

Figure 12. Different ways of bonding rubber to a “rigid” body like metal or plastic: (a) cyanoacrylate as film; (b) vulcanizing 

makes a tight connection; (c) form closure and vulcanizing is the best way to connect rubber with rigid structures (including 

special surface treatments). 

There is a specific dynamic behaviour of the pump due to the nonlinearity of the 

rubber. Besides the desired pressure, the minimal required torque is mainly influenced by 

this certain elastomeric behaviour. Therefore, at low frequencies and high temperatures, 

the torque is mainly given by the hydraulic power (output power of the pump) and the 

main prestress. Very low temperatures and high frequencies lead to a stiffening effect of 

the rubber. These operating conditions influence the maximum pressure and the con-

sistency of the flow rate.  

 

2.2. Material selection for the soft layer of the wobbling plate 

In the peristaltic pump design, the wobbling plate squeezes the fluid through the 

cavity to the outlet port. The soft layer enables the squeezing (i.e., the contraction of the 

soft layer leading to a pressure in flow direction) and has to be flexible, resilient and ex-

hibit low hysteresis under dynamic loading. These design requirements are crucial for a 

reliable operation of the pump and have to be translated to material properties. The state-

of-the-art candidate materials for peristaltic pumps are elastomeric materials (rubbers), 
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crosslinked incompressible polymers, for the general purpose of the functionality to ena-

ble squeezing of the fluid. However, this class of materials exhibits non-linear (hyperelas-

tic) material behaviour and has an inherent viscoelasticity (loading rate and temperature 

dependency). Above the glass-transition temperature the predominant deformation 

mechanism of rubbers is governed by changes of entropy. Under deformation the macro-

molecules are oriented, decreasing the entropy and, thus, leading to adiabatic heating. 

This mechanism is directly linked to the efficiency of the pump, as the external electrical 

drive of the pump has to supply higher torques to maintain constant flow rate and pres-

sure. To provide the functionality of the wobbling plate within the above-mentioned con-

straints and requirements, the objective is to select a material with following properties 

within the loading frequency and temperature ranges: 
 
• constant storage modulus E’ for low and balanced sealing pressures, 

• low loss modulus E” for low drive torques, 

• low Poisson’s ratio 𝜈 (rubber is incompressible, hence, 𝜈 = 0.5), 

• low viscoelasticity and elastic deformability up to 25% strain  

 

Figure 13 illustrates the application-relevant frequency and temperature ranges for 

the storage and the loss moduli. Including the reversible deformability of up to 25%, these 

are the most important selection criteria for the material. Focusing on these requirements, 

the goal is to select (tailor) a material which is sufficiently within the ideal behaviour range 

of Figure 13. 

 

Figure 13. Illustration of the realistic material behaviour and the idealistic material behaviour for 

the soft layer of the wobbling plate. 

Based on these considerations, an experimental testing procedure for the material 

selection is described in the following. As the candidate materials are limited to elastomers 

(rubber-like materials) along with thermoplastic elastomers, the shear modulus is de-

scribed by the kinetic theory of rubber elasticity and gives a proportionality of the macro-

scopic modulus to the molecular mass as well as temperature. The foundation for the ma-

terial selection procedure is the characterization of the hyper- and viscoelasticity 
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including material parameter determination for numerical simulations to calculate the 

stress-strain state under application relevant loadings. 
A number of hyper-elastic material models are established with their specific limita-

tions of deformation, accuracy and applicability to some reinforced elastomers. The well-

known Mooney-Rivlin model is a hyper-elastic model with two material parameters (C01 

and C10). This constitutive model is implemented in most commercially available finite 

element (FE) solvers and describes the material behaviour up to moderate deformations 

(<30%) and, hence, is applied in our study.  
Additionally, the material aging is of particular importance and its effects on the dy-

namic thermomechanical behaviour of the elastomers have to be examined. For the as-

sessment of the long-term stability of the wobbling plate, the environmental (temperature 

and humidity) impact on the bonding of the soft layer to the rigid body (cf. Figure 12) as 

well as the temperature induced aging conditions are crucial. These conditions are ad-

dressed experimentally by the cataplasm aging test of the bonding and by thermal aging 

of the rubbers. 
 

2.2.1 Candidate materials (rubbers) 

From Figure 13 and from previously performed and published works (e.g., [22]) the 

candidate materials can be narrowed down to rubbers with Shore A hardness of 60 to 80. 

Specifically, formulations of rubber families of acrylonitrile (NBR, HNBR), fluoro-rubber 

(FKM), ethylene-propylene-diene (EPDM), thermoplastic polyurethane and silicone rub-

bers are perfectly suitable as soft layer for wobbling plates in peristaltic pumps. They can 

accommodate strains of several 100% with low resilience under dynamic loading. The dy-

namic (thermo-) mechanical properties E’ and E’’ are adjustable and the viscoelasticity 

(frequency and temperature dependency) can be tailored for the application. 
In the subsequent chapters we present the experimental data of a liquid silicon rub-

ber (LSR, R401/70), a NBR formulation (Shore A 70) and a TPU formulation (Shore A 90). 

The LSR and NBR materials were formulated and processed by Erwin Mach Gum-

mitechnik (Hirm, Austria). All three materials can be injection moulded in arbitrary ge-

ometries and, therefore, have an economical advantage when high volume mass-produc-

tion is required. 

 

2.2.2    Experimental 

    The three candidate materials (TPU, LSR and NBR) were molded to 300 mm x 200 

mm sheets with 2 mm thickness. From these sheets the specimens for the hyper- and vis-

coelastic characterizations were stamped. Figure 14 shows the specimen geometries in-

cluding the dimensions. On the surface speckle patterns were coated and during the ex-

periments pictures of the specimens were recorded to derive strain optically by 2D-digital 

image correlation (2D-DIC; Aramis 4M). 

 

  

(a) (b) 
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Figure 14. Specimens for hyper- and viscoelastic characterizations (a) ISO-5A tensile specimen; (b) cruciform specimen for in-

plane biaxial tension tests. Both specimens were coated with speckle patterns for full field strain analyses. 

 The uni- and biaxial tension tests (see Figure 15)were performed with an electrome-

chanical testing system (TA Instruments, ElectoForce Systems Group) under isothermal 

conditions at room temperature and at three loading rates (uniaxial: 0.1 mm/s, 1 mm/s, 

and 10 mm/s; biaxial: 0.1 mm/s, 0.5 mm/s, and 1 mm/s). Strains were derived by 2D-DIC 

and forces were measured with a 440 N load cell (WMC-100lbf; Interface Inc.). Prior to 

testing, the specimens were fixed and a dwell time of 5 min was waited to reach the ther-

mal equilibrium force (relaxed state of the material). 

 

  

(a) (b) 

Figure 15. Experimental test-setups for: (a) uniaxial testing and (b) biaxial testing. 

 

The material parameter determination was performed by assuming incompressibil-

ity and measuring the uni- and biaxial characteristics (compare in Figure 16 (a) range of 

measured versus application-relevant loading in terms of first and second strain invari-

ant). All experimental data were fitted iteratively to identify the parameters C01 and C10 

for the Mooney-Rivlin model (see Figure 16 (b)). The temperature dependency is not cap-

tured by this model explicitly. Therefore, dynamic (thermo-) mechanical analyses 

(DTMA) were performed to gain insights of the temperature and frequency dependencies, 

on the one hand, and, on the other hand, the storage and loss moduli (loss factor tanδ).  

 

  

(a) (b) 

Figure 16. Results of the exemplary tests: (a) measured strain states (b) Mooney-plot and estimated material parameters for 

the Mooney-Rivlin constitutive model. 
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The dynamic thermomechanical behaviour of the candidate elastomers was ana-

lysed under uniaxial loading at temperature from -50°C to +80°C and loading frequencies 

from 0.5Hz to 50Hz. A sine wave excitation was applied with a mean strain level of 20% 

and a dynamic (p-p) amplitude of 2%. DTMA was performed with an Eplexor 500N (Ne-

tzsch-Gerätebau GmbH) and started at the lowest temperatures with an incremental in-

crease of 5K. The frequency sweep was performed in a logarithmic scale with five fre-

quencies per decade. The obtained material data (E’ and E’’) were further analysed re-

garding the thermorheological behaviour and, finally, the master-curves were constructed 

by shifting and applying time-temperature superposition principle. Figure 17 (a) shows 

the temperature dependent experimental data of E’ and E’’ at three excitation frequencies 

(0.5 Hz, 5 Hz, and 50 Hz). The frequency dependent E’ master-curve constructed for the 

reference temperature Tref of 25°C is illustrated in Figure 17 (b). For the construction of the 

master-curve only a horizontal shift was applied. It is important to select an appropriate 

temperature increment in order to assure an overlap between the isothermal E’ curves. 

Figure 17 (b) shows also the experimental window with the isothermal curves (low to high 

temperature data are illustrated from top to bottom). Low temperature data are equiva-

lent to high frequency data (shift to right) and vice versa. As the thermorheological mate-

rial behaviour was simple, the shift-factors were modelled by the well-known and estab-

lished Williams-Landel-Ferry-equation (WLF). 

 

  

(a) (b) 

Figure 17. DTMA analyses for LSR Shore A 70 (tempered at 150°C for 2h); (a) loading frequency and temperature dependent 

storage and loss modulus (E’ and E’’); (b) calculated master curve for a certain nom. temperature. 

 

Material aging alters the properties of the rubbers and, thus, the evolution of the 

dynamic thermomechanical properties (E’ and E’’) has to be characterized. With these in-

sights, the long-term behaviour of the peristaltic pump can be assessed and maintenance 

intervals defined. To achieve this, the specimens were exposed to 120°C for seven days 

and DTMAs were performed. A precondition was that no surface failures, such as cracks, 

colour alterations and tackiness [11, 23] (sticky touch due to migration of oligomers from 

the bulk to the surface), were observable. 
Another critical aspect to ensure the long-term stability of the pump is the bonding 

of the wobbling plate’s two layers. It is reported [13] that cyanoacrylate is suitable for 

bonding rubber to other (dissimilar) materials. The chosen super adhesive (Zwaluw 

Sekundenkleber universal) is a liquid cyanoacrylate-based glue which cures through 

moisture respective humidity within seconds. The processing temperature should be be-

tween 15 °C and 40°C to reach its final adhesion after half a minute. According to the 
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datasheet the cured bond withstands a temperature range of -60 °C to 80°C and maximum 

mechanical stresses up to 10 MPa (rubber to rubber). Preliminary experiments at room 

temperature confirmed this, however the realistic loading conditions of the soft layer are 

multiaxial at high temperatures and humidity. So, the cataplasm-test [24] was conducted 

to simulate these severe environmental conditions. Specimens were prepared by cleaning, 

roughening, and bonding of two rectangular sheets (see Figure 18 (a)) of metal and the 

candidate materials. After 24h curing, the specimens were wrapped with water-soaked 

cotton wool as shown in Figure 18 (b). In addition, this package was wrapped with alu-

minium foil, then packed airtight and vacuumed in a PE-bag (hermetic sealed). After 14 

days thermal exposure at 70°C (see Figure 18 (a)), the bonding quality was examined. 

Bondings passing the cataplasm test without delamination are eligible for the application. 

 

  

   

(a) (b) (c) 

Figure 18. Preparation of specimen: (a) specimen bond of cyanoacrylate between rubber and sheet metal; (b) specimen in wet 

cotton and aluminium foil; (c) vacuum packed specimen in climatic chamber). 

2.3. Evaluation procedure of the pump prototype   

In the following sections the procedures for displacement determination, design of 

the test rig including the control parameters for the performance tests and the evaluation 

procedure are outlined.  

The main emphasis is to validate the derived algebraic model of the torque estima-

tion (design hypothesis) stated a the previous sub-chapter. With rising frequencies and 

lower temperatures, the affordable drive torque is higher than at slow speeds and warmer 

conditions. The relation between necessary torque and stiffness (storage modulus), re-

spectively losses (loss modulus), is depending on the selected rubber and should be re-

producible for reliable operation of the pump. When the model is sufficient, new genera-

tions of such pumps can be designed in one step (simultaneous procedures like material 

choice, geometry calculations, motor design) without building further prototypes which 

saves time and money. Additionally, the hydrodynamic fluid gap model (chapter 2.1.3) 

allows to estimate the displacement and flow rate which can also be validated.  

The experimental set-up comprised a hydraulic circle with the pump as the main 

component and included high-, low-pressure lines, a pressure relief valve, a flow meter, 

pressure as well as temperature sensors, and an on/off valve in the high-pressure line to 

control the pressure difference. The test rig fits perfectly into a common climatic chamber 

(450 mm x 450 mm x 450 mm), while the measurement system and the electrical control 

unit (ECU) controlling the motor were kept outside. 

 

2.3.1. Electrical drive and performance determination 

The electric commutated brushless direct current motor (EC-BLDC-motor) is con-

trolled by LCMs semi open-source software X2C [25] and powered by the microcontroller 

unit LCM-ECU-10HB-10A [26] including ten half bridges and some IOs (ie., analog and 

digital in- and outputs). The Hall-sensor signals allow a determination of the rotor posi-

tion, so a state-of-the-art speed controlled, field-oriented control [14] of the BLDC is 
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implemented (see Figure 19). The q-vector-current iq is proportional to the torque. The 

motor was embedded into an existing test bench with load and torque measurement. 

Starting from zero, the operating points were measured and continuously increased 

up to 2000 rpm and 35 Watt and the value iq was evaluated in the motor control unit. The 

top graph of Figure 20 (a) shows the linear proportionality between torque and iq. The 

middle graph Figure 20 (b) shows the relation between power, iq and measured speed, 

while the efficiency over speed and iq is illustrated in the bottom diagram Figure 20 (c). 

Those values were implemented as look-up tables into the automatic post-processed eval-

uation script and allow a power and torque determination by measuring iq and the motor 

speed. So, for further motor measurements to test the functionality of the pump, neither 

the applied test bench nor other additional sensors to estimate operation points of electric 

power, speed, and torque is required.   

 

Figure 19. scheme of the speed and field-oriented BLDC motor control. 
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Figure 20. BLDC motor performance determination: (a) effects of motor speed and q-current varia-

tion on motor torque; (b) power consumption of the BLDC-motor at certain speeds and loads; (c) 

calculated efficiency graph of the BLDC-motor 

2.3.2 Test rig 

The electro-hydraulic scheme is illustrated in Figure 21. The ECU controls the pump 

speed and the 2-2-way seat type valve allows digital pressure control (DPC will be ex-

plained in the following lines). The climatic chamber heats or cools the test rig to gain 

insights of required torques for certain speeds, temperatures, and loading pressures.  

 

 

(a)  

 

 

(b) 

 

(c) 
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Figure 21. Scheme of the test rig (hydraulic and electrical circuit) 

To control a loading pressure on the high-pressure line of the pump, the digital pres-

sure control [27, 28, 29] has some benefits in comparison to an ordinary control with a 

proportional valve. The applied normally closed 2-2-way seat type valve can close the 

pump outlet without fluid flow (leakage) in order to test the pump in the worst-case op-

eration situation. To keep the pressure at a certain value, the valve will be excited with a 

duty cycle signal according to pulse width modulation (see Figure 22). A higher duty cycle 

reduces the mean resistance of the orifice at a certain flow rate, hence, the loading pressure 

sinks, and vice versa. In combination with an ordinary PI-controller with flow rate de-

pending feed forward, this leads to a smooth pressure loading setting [30]. 

 

  

(a) (b) 

Figure 22. The DPC can be used whenever there is a sort of capacity on the pressure side. (a) power signal of a boosted 2-2-

way seat valve; (b) graph of a pressure control including target and actual pressure 
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2.3.3 Definition of the test cycle  

For the performance tests, an automation script [31] was written to carry out the 

measuring procedure [32]. The objective was to estimate the pump behaviour within am-

bient test conditions. The climate chamber temperature range was chosen between 0°C 

and up to 40°C. The loading pressure was set between 0 MPa and 0.5 MPa, and the motor 

speed ramped up to 1500 rpm. Figure 23 shows a test cycle at 20°C. The results are post-

processed to estimate the displacement and its long-term behaviour as well as the re-

quired torque to maintain the pump’s displacement at various conditions. 

 

 

Figure 23. Test cycle: motor speed and pressure over time; One v-shaped ramp down and up for 

each load pressure 

 

3. Results and Discussion 

3.1. Material selection of wobble plate’s soft layer 

The first criterial to be characterized was the loss modulus E’’ and its temperature as 

well as frequency dependencies. In Figure 24 the E”(T, f) characteristics of the three can-

didate materials (TPU, NBR and LSR) are presented. LSR fits the best to the requirements 

of low E” within the temperature range of 0°C and 60°C. Also the sensitivity to tempera-

ture and loading frequency changes is lower compared to the other materials. Another 

material property requirement for the soft layer of the wobble plate is to be flexible and 

reveal low, resilient modulus. Figure 25 (a) shows the Mooney-Plot of the candidate ma-

terials. The lowest values are measured for LSR and NBR. Taking into account the E’’ (T, 

f) characteristics, the material of choice is LSR with Shore A hardness of 70. Furthermore, 

the rate dependency of the LSR’s hyperelastic material behavior is low confirming the 

DMA data of Figure 24. The loading rate dependent equi-biaxial characteristics of LSR are 

analyzed in the Mooney-Plot of Figure 25 (b). Only a small parallel shifting is observable 

and, therefore, this formulation is perfectly suitable for the designated application. From 

these Mooney-Plots the hyperelastic material parameter for the well-known Mooney-Ri-

vlin constitutive model can be easily derived by linear fitting of the reduced stresses and 

inverted stretches (of higher order for equi-biaxial data). These material parameters are 

needed for the FE analyses of the soft layer by calculating the contact pressure as well as 

the resulting stresses (strains) under loading. With these results the design of the soft 

layer’s geometry can be optimized iteratively. 
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Figure 24. Temperature and frequency dependent loss modulus E” of the candidate materials 

TPU, NBR and LSR. 

 

  

(a) (b) 

Figure 25. Hyperelastic characteristics evaluated in Mooney Plots under (a) uniaxial loading for all candidate materials (TPU, 

NBR and LSR); (b) equi-biaxial loading of the selected material liquid silicone rubber (LSR) with a hardness of Shore A 70. 

 

3.2. Bonding between the wobble plate’s soft and rigid layers 

 

As Figure 26 (a) and (b) reveal, the cataplasm test has shown that the bonding with 

cyanoacrylate could not resist those extreme conditions. All 3 specimens fall apart during 

unpacking even without additional mechanical forces. It can be said that cyanoacrylate 
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respective adhesive bonding is no opportunity for this application. Therefore, an injection 

molded and vulcanized connection between soft layer with the wobble plate (even with 

form closure) as mentioned in chapter 2.1.4 and shown in figure 17 should be considered 

for the prototype. 

 

  

(a) (b) 

Figure 26. Evaluation of the cataplasm-test: (a) opening the vacuum-packed specimen; (b) comparison of the 3 specimens. 

3.3. Determination of the static displacement 

 

After assembling the first measurement was the displacement of the pump at room 

temperature and atmospheric conditions. Tubes (inner diameter ‘d’ = 4mm) were con-

nected to the in- and outlet ports of the pump. The system was filled with distilled water 

and the pump was slowly turned manually n times, which is easily performed since the 

primary BLDC-drive consists of an external rotor. To produce an accurately measurable 

amount of pumped water, the pump was turned n times, cumulating n times the pump 

displacement of several µl.  
The position difference ∆l between start and end of motion was measured to calculate 

quasi-static displacement as followed: 

𝑉0 =
∆𝑙∙𝑑2∙𝜋

4∙𝑛
, (24) 

For better correlation of the calculated and the measured fluid displacement, the ge-

ometric deviation from the ideal CAD shape is crucial. Figure 27 shows the sealing lip 

deviation of the CAD contour in comparison to the manufactured component measured 

with a 3D surface scanner (Keyence 3D Profilometer VR-5000). A deviation in displace-

ment within ±25% is predictable and acceptable. The designed volume was calculated to 

be about 40µl. The actual displacement for a quasistatic turn of the pump was measured 

to 34µl. In this case, the actual maximum deviation is about 20%. In order to reach the 

same flow rate as desired, the motor speed has to be increased properly. 
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Figure 27. Investigation of the manufactured sealing lip; contour comparison of CAD (edge of the 

pink area) and manufactured rubber (bold black line) measured via white light scanning. 

 

3.4 Pump testing 

Beside the controlled parameters and filtered measured values (motor speed, feed 

pressure and flow rate), the results also consist of the post-processed, calculated values, 

such as drive torque and power generated from the filtered measurements. Figure 28 

shows the whole test cycle results for a certain climatic chamber temperature (20°C). Fig-

ure 28 (a) contains the target as well as measured speed and load pressures. In Figure 28  

(b) the most important results were illustrated, namely torque and flow rate. The third 

graph (Figure 28 (c)) shows the evaluated powers. As expected, higher pressures lead to 

higher necessary drive torques and the flow rate is nearly proportional to the motor speed 

Figure 29 shows the same procedure as Figure 28 but for two different climatic chamber 

conditions 0°C (a-c) and 40°C (d-f). 
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(a) 

 

(b) 

(c) 

Figure 28. Results of the test cycle at room temperature (20°C); (a) target test cycle motor speed n and load pressure p; (b) 

measured torque and flow rate; (c) electrical, mechanical, and hydraulic power. 
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(a) 

 

(d) 

 

(b) (e) 

(c) (f) 

Figure 29. Results are structured as in Figure 28 but for different temperatures; (a-c) results of the test cycle at 0°; (d-f) results 

of the test cycle at 40°C  

Figure 30 (a) shows the measured drive torque characteristic and its temperature as 

well as motor speed dependency. Here, we can observe that the highest torque is neces-

sary at the coldest temperature, the highest pressure, and the highest motor speed. Losses 

due to the rubber’s entropy elasticity lead to an inner (adiabatic) heating reducing the 

storage modulus and, thus, the overall loss factor. These losses are not implemented in 

the theoretical consideration. At elevated temperatures, in this case 40°C, the required 

torques reveal low frequency, respectively motor speed, dependency. Figure 30 (b) illus-

trates the theoretically estimated drive torques for the pump, which can be directly com-

pared to the measured results in Figure 30 (a). At low motor speeds, the torque estimation 

is sufficiently accurate, however the absolute value of the torque at low temperatures and 

high frequencies is rising but significantly lower as estimated. The maximum measured 

torque of 50mNm in Figure 29 (b) (at 0°C and 1500rpm) exceeds the calculated result of 

approximately 40mNm by 25%. The post-processed results exhibit the maximum at 45 

mNm, which were evaluated by averaging the results for both speed ramps (up and 

down) at same conditions, hence, the inner (adiabatic) heating reduces the mean torque. 

The edge operation point (maximum motor speed and lowest temperature) is the critical 

state to dimension for the primary drive. So, the predicted (calculated) values at elevated 

temperatures are not crucial for the operation in terms of torque requirement. The ob-

served difference of 25% between the prediction and the measurement is within the devi-

ations of the experimental determination of the material data (storage as well as loss mod-

uli). Deviations in the pump’s testing and evaluations are superimposed to those of the 

material characterizations. 
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(a) (b) 

Figure 30. Torque validation: (a) Illustration of the approached torque curve depending on speed at all measured conditions 

regarding temperature and load pressure; (b) results of torque estimation as stated at equation (13) for material and geometry 

data of prototype. 

The pump testing and evaluation procedure revealed that the algebraic equations 

based on empirical material data and geometric parameters are sufficiently reliable to pre-

dict the drive torque in the crucial operation points of the pump. The standard deviation 

of 25% of the pump’s displacement is observed in the worst-case operation point and is 

within the scatter of the conducted experiments and includes the error propagation (noise, 

environmental as well as signal fluctuations, among others). Therefore, a conservative 

safety factor of 50% is suggested for the prediction of the target torque and, hence, the 

selection of the peristaltic pump’s primary drive. 
The displacement evaluations depending on operation temperature, motor speed 

(frequency), and loading pressure was calculated as: 

𝑉(𝑓, 𝑇, 𝑝) =
𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒
, (25) 

 

Figure 31. Displacement characteristics at 20°C; idle and nom. load (5bar) and varying frequency; 

measurement vs. simple algebraic model (the graph was corrected with a constant factor to reach 

the measured initial displacement at 0rpm to equalize the causes due to manufacturing tolerances 

and assembling).  
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The comparison of the model-based prediction of the pump’s displacement to the 

measured displacement shows (see Figure 31) that a similar decline of the displacement 

with increasing motor speed is observed at both loading pressures (0 MPa and 0.5 MPa). 

However, the measured displacement characteristics have a steeper decline. At 1500rpm 

the pump’s displacement decreases about 10%; the calculated drop by the proposed 

model is only 2%. The reason for such a deviation in displacement from estimation to 

measurement is due to the insufficiency of the abstracted model. A parallel plate move-

ment was considered in the model as a simplification, however the (wobbling) plate is 

rather tilted than parallel. Further dynamic effects such as damping of the rubber, inertia 

of the wobble plate and inflation of the enclosed fluid volume were not considered and 

may have more influence on the pump’s displacement than assumed. Furthermore, the 

stiffness of the wobbling plate was set to be linear in contrast to the more complex hyper-

elastic rubber behavior, which was used for the 2D-axissymmetric FE-simulation. Finding 

the exact displacement was not the aim of this investigation, but rather gaining insights 

of its characteristics and, more importantly, ensuring steady-state displacement at a spe-

cific operation point. So, leakage is prevented meaning that there is no backflow from the 

high to low pressure side. 
  

4. Conclusions and Outlook 

The peristaltic pump’s primary drive torque has a functional relation to boundary 

conditions, geometry as well as material parameters. This simple model can sufficiently 

predict the needed torque for new proportional scaled designs by using geometry param-

eters, safety factor and rubber material data. Therefore, the whole pump including the 

drive can be designed, manufactured, and verified at once. Our proposed model and de-

sign methodology are an alternative to complex and long-lasting costly dynamic 3D FE-

simulations. Figure 32 shows a graph to illustrate the designing process. 

With the determined specific values of temperature, frequency and loading depend-

ent drive torque, the applicability of the proposed methodology to design a sufficiently 

algebraic (quasistatic) physical model for the torque which depends on the rubber mate-

rial’s behaviour (empirical data) as well as boundary and operating conditions can be ver-

ified. Determination of the empirical data has to be performed with precaution as the rub-

ber behaviour is inherently hyper- and viscoelastic. A high sensitivity to environmental 

(temperature and humidity) changes can lead to significant alterations of the dynamic 

thermomechanical properties. Additionally, stress/strain softening effects and hysteretic 

(adiabatic) heating have to be characterized for reliable operation of the peristaltic micro-

dosing pump. Therefore, it is of particular importance to formulate (tailor) the rubber’s 

material behaviour to exhibit low loss properties (E’’ and tanδ) along with high durability 

(mechanical as well as thermal induced aging). 
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Figure 32. Graph of the design methodology  

 

The peristaltic pump’s displacement has pronounced nonlinear motor speed (fre-

quency) and temperature dependencies mainly caused the interaction of the well-known 

rubber and the dynamic fluid gap (respective fluid cushioning). To get valuable predicted 

flow rate results, further investigations of the fluid gap model and the interaction with the 

rubber are necessary. Also, slight changes in the concept design can reduce those devia-

tions. Scheidl et al. [33] addressed this cushioning groove problem and presents a solution 

by reducing the section of contact to a minimum.  

After finding an appropriate pump design and estimating the required torque, the 

primary drive can be optimized.  
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