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Abstract: Bats have been identified as the natural hosts of several emerging zoonotic viruses, in-
cluding paramyxoviruses, such as Hendra and Nipah viruses, that can cause fatal disease in hu-
mans. Recently, African fruit bats with populations that roost in or near urban areas have been
shown to harbour a great diversity of paramyxoviruses, posing potential spillover risks to public
health. Understanding the circulation of these viruses in their reservoir populations is essential to
predict and prevent future emerging diseases. Here, we identify a high incidence of multiple para-
myxoviruses in urine samples collected from a closed, captive colony of circa. 115 straw-coloured
fruit bats (Eidolon helvum). The sequences detected have high nucleotide identities with those de-
rived from free ranging African fruit bats and form phylogenetic clusters with the Henipavirus ge-
nus, Pararubulavirus genus and other unclassified paramyxoviruses. As this colony had been closed
for 5 years prior to this study, these results indicate that within-host paramyxoviral persistence un-
derlies the role of bats as reservoirs of these viruses.
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1. Introduction

Most emerging infectious diseases presenting threats to public health are zoonoses
originating in wildlife [1]. Understanding the ecology of zoonotic, or potentially zoonotic,
viruses in their natural hosts is essential to predict and prevent disease emergence [2].
Natural hosts of an infectious agent are those that have co-evolved with the pathogen and
are infected in nature without human intervention [3]. Several studies have identified bats
as the most likely natural hosts for multiple emerging zoonotic viruses with high case
fatality rates, such as SARS-like coronaviruses, Ebola and Marburg filoviruses, lyssa-
viruses and a range of paramyxoviruses (PVs) [3-5]. It has been hypothesised that bats
share unique traits that enhance their potential as viral reservoirs such as long lifespans,
large population sizes, high spatial mobility and high sympatry, which provides oppor-
tunities for pathogen persistence and for intra- and interspecific transmission of infectious
agents [6,7].

Within the Paramyxoviridae, viruses in the Orthoparamyxovirinae and Rubulaviri-
nae subfamilies have been detected in bats, and some of these have been associated with
serious emerging zoonotic diseases [8]. Hendra and Nipah viruses (genus Henipavirus)
were first detected in the 1990s after severe outbreaks of disease in domestic animals and
humans. Hendra virus (HeV) was identified in Australia in 1994 causing fatal pneumonia
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and encephalitis in horses and humans [8]. Several variants of HeV were found to be
widespread in Australian fruit bats (Pteropus spp.) and outbreaks of disease have occurred
almost every year since its identification [9]. Nipah virus (NiV) emerged in Malaysia in
1998 causing fatal respiratory disease and encephalitis in pigs and humans [10]. Similarly,
NiV was later detected in fruit bats (Pteropus sp.) in Malaysia and, subsequently, from
pteropid bats elsewhere in South and Southeast Asia. Nipah virus continues to cause re-
current disease outbreaks in Bangladesh with proved bat-to-human and human-to human
transmission [11,12]. Therefore, fruit bats of the genus Pteropus are widely recognized as
the natural reservoirs for HeV and NiV and their distribution was assumed to limit the
range of henipaviruses [13].

Following HeV and NiV emergence, enhanced surveillance for potential pathogens
associated with bats led to the discovery of a greater diversity of PVs in these taxa [14-
19]. In 2008, henipavirus antibodies were found in the straw-coloured fruit bat (Eidolon
helvum), a species of pteropodid bat, in Ghana without sympatry with the suspected Ptero-
pus reservoirs [20]. Subsequent studies have detected several henipa-like virus sequences
in faeces, urine and tissues of E. helvum and other African fruit bats [14,15,18]. Although
the isolation and culture of African henipaviruses have not yet been achieved, a full ge-
nome sequence was obtained from E. helvum in Ghana, confirming its classification within
the genus Henipavirus [14,21,22]. Despite evidence of African henipavirus spillover into
humans [23], the potential to cause disease is unclear.

In addition, bat PVs in the subfamily Rubulavirinae have been recently discovered
with unknown consequences for human or animal health. Menang]le virus was isolated in
Australia after an outbreak of reproductive disease in pigs, being later detected in humans
with a febrile illness and in apparently-healthy Pteropus sp. fruit bats [24]. Tioman virus
was identified in Malaysian fruit bats with evidence of spillover to humans [25]. Further-
more, in 2008 three pararubulaviruses, or Tuhoko viruses, were isolated from fruit bat
faeces in China [26], while three pararubulaviruses, Achimota pararubulavirus 1, 2 and 3
(AchPV1, AchPV2 and AchPV3), have been recently described in an urban population of
E. helvum in Ghana [19,27]. There is widespread seropositivity to AchPV1 and to AchPV2
in E. helvum across sub-Saharan Africa, while antibodies to AchPV2 have been detected in
people in Ghana [19]. While the clinical implications of zoonotic infection are unknown,
experimental infections of ferrets with AchPV1 and AchPV2 were associated with respir-
atory disease [28].

Eidolon helvum is widely distributed throughout sub-Saharan Africa and it is the bat
species most hunted for bushmeat in West Africa [29]. This species frequently forms large
colonies in urban areas such as one that roosts in central Accra, Ghana containing up to
one million individuals. The circulation of multiple PVs, including henipaviruses and pa-
rarubulaviruses, has been confirmed in this large urban population [14,15,19,30]. In Janu-
ary 2010, bats caught from the Accra colony were used to establish a closed captive colony
of E. helvum in the vicinity of Accra zoo with mesh double-walls, ground-level cladding
and a solid roof to preclude direct or indirect contact with wild bats or other animals [31].
The captive colony was established with 77 bats of mixed age and sex and has been breed-
ing successfully ever since. By April 2015, the colony had reached approximately 115 in-
dividuals through births only. Serological studies using a multiplexed microsphere assay,
demonstrated the presence of antibodies against henipaviruses in the colony over 24
months since the colony was closed, with evidence of maternal antibodies and later sero-
conversion in juveniles [31]. Additionally, using a NiV antibody binding assay, antibodies
were detected from 2009 to 2017 with an average seroprevalence of 60.5% [32,33]. Longi-
tudinal seroepidemiology shows indirect evidence for PV transmission within the colony
[33], but virus detection had not been attempted to date. In this study we aim to detect
and characterise the PVs circulating in the E. helvum captive colony, using under-roost
urine samples. The molecular examination of urine samples has been shown to be an ef-
fective way of detecting a range of PVs, including henipaviruses, excreted by fruit bats,
including E. helvum [15,34].
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2. Materials and Methods

Urine pools (n = 128) were collected from the closed captive colony of E. helvum in
Accra zoo over 23 time points from April to July 2015. Plastic sheets were suspended be-
neath the roosting area inside the bat enclosure before feeding time, circa 4.00 pm. Urine
pools were collected the following morning circa 6.30 am. Urine pools visibly contami-
nated with faecal or plant material or diluted after heavy rain were not collected, but faecal
contamination of samples could not be ruled out. A urine sample comprised of 500 uL of
the urine pool preserved in 500 uL RN Alater (Invitrogen, California, USA). Urine samples
were stored at -80 °C within 3 hours of collection. At the end of the sampling period the
samples were imported to the UK under permit in a cryogenic dry shipper (-146 °C) and
the samples were stored at -80 °C until analysis.

Urine samples were vortexed for 30 sec and centrifuged at 4000x g for 10 min to ob-
tain a cell-free supernatant. RNA was extracted from 400 uL of supernatant using the
MagMAX Viral RNA isolation kit (Applied Biosystems, Massachusetts, USA) following
the manufacturer’s protocol with carrier RNA replaced with linear polyacrylamide (Invi-
trogen, California, USA). All samples were further treated using the TURBO DNA-free
Kit (Ambion, California, USA) following the manufacturer’s instructions.

All samples were screened using pan-paramyxovirus hemi-nested RT-PCR (PAR-
PCR) and Respirovirus-Morbillivirus-Henipavirus subgroup (RMH-PCR) using previ-
ously published primer sets [35] and modified PCR mixtures and thermocycling condi-
tions. For the first PCR in the hemi-nested assay, we used the SuperScript III One-Step
reverse transcription-PCR (RT-PCR) kit (Invitrogen, Carlsbad, CA). The PCR mixture con-
tained 1x reaction mix, 25 pmol of forward and reverse primers each, 10 nmol MgS0O4, 1
ul of Superscript III RT/Platinum Taq mix and 2 pl aliquot of the RNA extract. Water was
then added to achieve a final reaction volume of 25 ul. The thermocycler settings for the
first reaction were: 60°C for 1 min, 48°C for 30 min, 94°C for 2 min, 40x PCR cycles (94°C
for 2 min, 49°C for 15 s, 68°C for 1 min), 68°C for 5 min and 4°C until the end. For the
second PCR in the hemi-nested assay, we used the Roche Expand High Fidelity PCR sys-
tem (Roche, Basel Switzerland). The PCR mixture contained 1x reaction buffer 3, 25 pmol
of forward and reverse primers each, 50 nmol of MgCl2, 5 nmol of dNTP mix, 1.75U of
Expand High Fidelity Enzyme mix and 1 ul aliquot of the first reaction. Water was then
added to achieve a final volume of 25 ul. The thermocycler settings for the second reaction
were: 94°C for 2 min, 40x PCR cycles (94°C for 15 s, 49°C for 30 s, 72°C for 1 min), 72°C for
5 min, 4°C until the end.

The PAR-PCR primer sets amplify a 530 bp fragment of highly conserved polymerase
L genes. The RMH-PCR primer sets amplify a 439 bp fragment upstream of the polymer-
ase L gene designed to be more specific for these PV genera.

PCR products were mixed with 5x DNA Loading Buffer (Qiagen, Hilden, Germany)
and were electrophoresed in 2% (w/v) agarose gel followed by visualisation using
GelGreen (Biotium, California, USA) nucleic acid stain and blue light. Positive bands of
expected sizes were gel extracted using the MinElute kit (Qiagen, Hilden, Germany) and
Sanger sequenced by a commercial laboratory (Eurofins Genomics, Ebersberg, Germany).

Deduced viral sequences were aligned using Geneious software v11.1.5 [36]. Se-
quences were then run through the Basic Local Alignment Search Tool [37] to identify the
similarity with previously published sequences (Table S1).

For phylogenetic tree inference, publicly available sequences were downloaded from
NCBI GenBank (Table S2) and multiple alignments made using MUSCLE [38] in program
MEGA X [39]. Maximum likelihood trees were constructed using model selection
GTR+I+G [40] and 1000 bootstrap iterations in program MEGA X [39].

3. Results

PAR- and RMH-PCR assays produced seventeen and sixty-eight amplicons respectively
from the urine samples tested (Table 1, Figure 1). Upon alignment, nine distinct
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sequences were identified (Table S3), with close phylogenetic relationships between
most sequences and with known PV sequences previously reported from E. helvum bats
(Figures 2 and 3). Three distinct sequences Z15-U17P, Z15-U27P, Z15-U111P (Genbank
MZ393370-2) were obtained using the PAR-PCR assay and six distinct sequences Z15-
12R, Z15-U17R, Z15-U27R, Z15-U78R, Z15-U86R, Z15-U115R (Genbank MZ393364-9)
were obtained using the RMH-PCR assay.

Table 1. The number of urine samples tested at each sampling time point and corresponding num-
ber of positive amplicons detected for PAR- and RMH-PCR assays.

Date no. of samples No. of PCR positive amplicons
tested PAR-PCR RMH-PCR
29/04/2015 10 0 0
30/04/2015 15 1 7
18/05/2015 5 4 4
19/05/2015 5 1 3
20/05/2015 5 0 1
21/05/2015 5 0 1
22/05/2015 5 0 0
26/05/2015 3 0 0
27/05/2015 5 0 4
29/05/2015 5 0 1
01/06/2015 5 0 3
03/06/2015 5 0 0
05/06/2015 5 0 4
08/06/2015 5 0 5
09/06/2015 5 0 4
11/06/2015 5 1 2
12/06/2015 5 1 2
16/06/2015 5 4 4
17/06/2015 5 2 5
18/06/2015 5 1 5
19/06/2015 5 0 5
24/06/2015 5 1 4

02/07/2015 5 1 4
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Figure 1. Timeline of amplicon sequences detected using the PAR-PCR (lower panel)
and RMH-PCR assays (upper panel). The red dot denotes the positive amplicon sequence
and the grey dot denotes the negative amplicon sequence detected at each time point.

The three sequences obtained using the PAR-PCR assay were located within three
distinct clades throughout the Paramyxoviridae phylogeny (Figure 2). Sequences Z15-U17P
and Z15-U27P showed high nucleotide identities (>95%) with previously detected se-
quences derived from E. helvum bats in Zambia [2] and Ghana [15] respectively. Sequence
Z15-U17P grouped in the Henipavirus genus exhibiting 74.2% and 72.9% homology to NiV
and HeV (respectively), whilst sequence Z15-U27P grouped with other henipa-related vi-
ral sequences. Sequence Z15-U111P clustered within a phylogenetically diverse subgroup
of the Pararubulavirus genus, that included AchPV1 and had 98% nucleotide identity with
clones U69C/D [15] derived from Ghana.

Six distinct sequences were obtained with the RMH-PCR assay and these were scat-
tered throughout the phylogenetic tree (Figure 3). Sequence Z15-U17R was located within
the Henipavirus clade, while the other sequences were in diverse subgroups phylogenet-
ically related to the henipaviruses. All sequences showed high nucleotide identities
(>95%) with previously published sequences derived from E. helvum bats in Ghana, Gabon
or the Republic of Congo [14,15,41], except for Z15-U115R, which is novel, having only
76% similarity to the nearest known sequences; those of clones (U58B and U32A) derived
from E. helvum in Ghana [15].

Six of the nine sequences were detected during more than one sampling time point
(Figure 1), with sequence Z15-U12R being the most frequently detected, in 13 out of 23
time points. Multiple sequences were most frequently observed during the mid-June time
points.
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Figure 2. Phylogenetic analysis of partial L-gene sequences obtained after PAR-PCR
on E.helvum urine samples (red arrows). Maximum likelihood tree with bootstrapping
(1000 iterations) generated in MEGAX, using 530bp alignment against publicly available
paramyxovirus sequences (NCBI Genbank) and outgroup Newcastle disease virus.
Bootstrap values (%) ae shown at each node.
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Figure 3. Phylogenetic analysis of partial L-gene sequences obtained after RMH-PCR
on E. helvum urine samples (red arrows). Maximum likelihood tree with bootstrapping
(1000 iterations) generated in MEGAX, using 439bp alignment against publicly available
paramyxovirus sequences (NCBI Genbank) and outgroup Newcastle disease virus. Boot-
strap values (%) ae shown at each node.

4. Discussion

In this study, we detected the presence of multiple paramyxoviruses in our closed,
captive colony of E. helvum bats. The colony had been closed to new arrivals (other than
births) for five years prior to the current study and the enclosure had double mesh walls
and a solid roof to prevent contact with bats or other free-living wildlife. To the best of
our knowledge this is the first report of persistence of multiple members of the Paramyx-
oviridae family within a small (~115 individuals), isolated bat population.

We found a range of PVs in our captive population of E. helvum. Analysis of the L
gene fragments shows that the three and six distinct PV sequences detected by the PAR-
PCR and RMH-PCR assays, respectively, belong to phylogenetically distinct subgroups.
The six distinct and diverse sequences detected by the RMH-PCR and the pararubulavirus
sequence detected using the PAR-PCR suggests that at least one henipavirus, one pa-
rarubulavirus and five unclassified PVs were simultaneously circulating in the colony. Six
of nine sequences from the PAR- and RMH- PCR assays were almost identical (>95%
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homology) to sequences derived from the urban population of E. helvum in Accra, from
which the captive colony originated [14,15,18]. These results, along with the isolation of
the captive colony, suggest that the captive bats naturally acquired the infection in the
original free-ranging population and the viruses were subsequently maintained in captiv-
ity over the following 5-year period. The sequences Z15-U17P, Z15-U17R, Z15-U78R and
Z15-86R show great similarity to E. helvum derived sequences from Zambia, Gabon or the
Republic of Congo [2,14,41]. Again, the founder bats were likely infected with these vi-
ruses at the time of capture, reinforcing previous observations of infection homogeneity
across the panmictic E. helvum populations in Africa [30].

Six of the nine sequences were detected more than once during the course of the
study. Some sequences were more frequently detected than others and the highest diver-
sity of sequences was detected in the mid-June period. However, we are unable to com-
ment on specific viral shedding patterns due to limitations in the methodology. The study
was not conducted throughout the year and the sampling strategy to avoid collecting from
urine pools contaminated with faeces or diluted with rainwater, may have introduced a
sampling bias, potentially missing urine from bats excreting virus. In addition, we did not
test for the presence of PCR inhibition which may have affected virus detection. Never-
theless, the synchronous shedding of diverse PVs in pooled urine samples was detected
using the same PCR assay. This could represent co-infection among individuals or could
derive from multiple infected bats contributing to the same sample pool. Longitudinal
studies on virus shedding in the colony and of the shedding status of individual bats are
required to further determine the infection dynamics of PVs in this species.

Due to the differences in phylogenetic trees depending on the gene/fragment ampli-
fied, it is not possible to establish relationships between sequences derived from different
assays. Sequences Z15-U17P amplified using the PAR-PCR and Z15-U17R amplified by
the RMH-PCR may represent different fragments from the same or different viruses. The
two sequences detected in the same urine pool may be explained by one or more bats
excreting two viruses. However as both sequences phylogenetically cluster closely with
the Henipavirus clade it is also possible that they belong to a single virus. Whilst they were
both initially detected during the same time point in April 2015, Z15-U17R was detected
during two further time points in May 2015 using the RMH-PCR assay. If both sequences
do belong to the same virus, the absence of detection in the same urine pools using the
PAR-PCR assay could be attributed to PCR inhibition or differences in assay sensitivity
and specificity, as previously reported [15]. To confidently identify the viruses circulating
in the captive colony, successful viral isolation and full genome sequencing are required.

In this study, we detected henipavirus-like sequences in multiple samples collected
over a two-month period, showing repeated excretion over time. Conventional wisdom
indicates that viruses such as PVs have a short infectious period and require large popu-
lation sizes to enable persistence [42]. Patterns of PV infection in mammals other than bats
suggest that minimum group size, usually above 100,000 individuals, is needed for path-
ogen persistence in a population [42,43]. In contrast, evidence of PV persistence in our
closed captive colony of E. helvum, with approximately 115 individuals, suggests that at
least some PVs can persist in small, isolated populations. This is consistent with longi-
tudinal serological monitoring of this captive colony, whereby patterns of seroconversion
in captive-born bats had led us to hypothesize that PVs were persisting and circulating
within the colony over 10 years [33]. Similarly, antibodies against at least one henipavirus
have been detected in an isolated, free-ranging population of E. helvum comprising <2500
individuals on Annobdn island [44]. Taken together, these findings infer that at least some
bat PVs might persist within individuals with long-term continuous or intermittent excre-
tion. Persistent latent infection with recrudescence during periods of immune suppression
has been suggested for NiV in Pteropus sp. [45] and observations of apparent increased
henipavirus excretion, as inferred by increased antibody detection during periods of
breeding or nutritional stress in fruit bats, may be consistent with this hypothesis [31,46].
Recent models of PV transmission dynamics in bat populations using age-specific
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serological data indicate that population-level persistence could be reliant on within-host
persistence [47]. Longitudinal paired serology-virology data and studies on bat immune
responses to PV infection are required to further investigate mechanisms of PV persistence
in bat populations.

Phylogenetic analyses have placed bats as tentative ancestral hosts of major mamma-
lian PVs [14]. Additionally, sequencing of highly conserved motifs in the PV genome has
shown that African rather than Asian henipavirus clades are identical to the viral ances-
tors [14]. Therefore, it is suggested that all henipaviruses, including HeV and NiV, have
evolved from a common ancestor of African origin [14]. The diversity of L gene sequences,
including a likely novel sequence (Z15-U115R), detected within our small captive popu-
lation further support the hypothesis that bats are the natural reservoirs for PVs [14].

These findings suggest that additional diversity of PVs with zoonotic potential exists
in bat populations, particularly in Africa, and the study of these viruses might help to
inform the detection of future spillover events. However, increased efforts are needed to
fully characterize PV diversity in African bats in order to elucidate viral infection dynam-
ics and mechanisms of persistence in bat populations.

Our unique opportunity to study a small colony of captive E. helvum, has found that
multiple paramyxoviruses can persist over at least a 5-year period. To our knowledge, we
provide the first evidence of viral persistence in an isolated population of fewer than 150
individuals. Phylogenetic analyses of detected viral sequences show that a great diversity
of paramyxoviruses was present in the colony, including one potentially novel viral se-
quence. Though we are not able to confidently report on viral transmission or dynamics,
further studies to fully characterize these paramyxoviruses and longitudinal studies
would improve our understanding of these. Close relationships between some sequences
and known human pathogens in the Henipavirus and Pararubulavirus genera circulating in
free living E. helvum was observed. Eidolon helvum forms large roosts in both rural and
urban areas across much of Africa and is widely hunted [29,48], presenting multiple op-
portunities for human exposure to bat paramyxoviruses.
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