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Abstract: 

To realize precise control of single quantum dots (Qdots) device, the high-performance bias source play 

the key role. In this paper, the 16-channel high precision voltage bias source prototype for Qdots device with 

18-bit resolution was designed. The prototype was made and its performance was tested. The short time 

fluctuations can reach 50μV.  The up-step and the down-step response time can achieve less than 3μs. The 

stability, linearity and setting time of the bias source exhibits good performance. What's more, the voltage bias 

source can be controlled by local and online. The results show that it is one effective and feasible topology for 

the high precision voltage bias source in Qdots device application. 
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Introduction:  
Recently, as many fundamental properties are size dependent in the nanometer range, a great deal of 

attention has been focused on the optoelectronic properties of quantum dots (Qdots)[1-4]. Qdots is one of most 

significant basic structures of nano-electronics which is regarded as development direction of the next 

generation semiconductor devices to replace traditional semiconductor technology[5, 6]. The Qdots device 

was widely investigated for quantum computing[7, 8], quantum detection[9, 10], quantum communication[11, 

12] and quantum measurement[13-16]. 

In general, it is necessary to apply bias voltage on the gate of quantum dots to empty the two-dimensional 

electron gas below them and form quantum dots or quantum dot contact channels[17]. The Qdots device is 

mostly general driven by electric including current and voltage bias[18, 19]. The stability, linearity and setting 

time of bias source are key factors to affect the Qdots device performance[20-23]. In order to realize precise 

control of single quantum dots and quantum channels, it is meaningful to investigate on the high precision and 

quality bias source for Qdots device.  

To our knowledge, the existing instruments are large volume with few channels or with limited 

accuracy[24, 25], meanwhile multi-channel and high precision bias voltage source is rarely reported in the 

literature. ADI recommends to use high resolution DAC chip to design the bias voltage source[26, 27]. 

Although precision DAC components are already on the market, building a multi-channel high-resolution 

system is not easy and cannot be treated hastily. The sources of error must be fully considered, which occur 
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at this level of accuracy. In high-resolution circuits, the main error sources are noise, temperature drift, 

thermoelectric voltage, and physical stress. The construction technology of precision circuits should be 

followed to minimize the coupling and propagation effects of such errors in the entire circuit and avoid 

external interference. To further complicate the issue, mixed-signal ICs have both analog and digital ports, 

and because of this, much confusion has resulted with respect to proper grounding techniques. In addition, 

some mixed-signal ICs have relatively low digital currents, while others have high digital currents. In many 

cases, these two types must be treated differently with respect to optimum grounding[28]. 

 

design and analysis:  

1)system design 
As shown in Fig.1, this system was consisted of digital circuit, analog circuit, LCD & keys, AC-DC 

power and PC communication system. With the main controller (MCU, STM32F405) as the core, the precision 

digital-to-analog converter (AD5781 ,18-bit DAC) is used to complete the design of the precision voltage 

source. The voltage value is transmitted to the MCU by the user through ethernet or keys input to read and 

write voltage commands to the corresponding channel for decoding and matching, and the decoded data and 

synchronization signal are simultaneously input to the precision digital-to-analog conversion circuit, and 

finally measure the final voltage with a high-precision multi-meter (Agilent 3458A), and use the correction 

model to achieve the calibration of the offset voltage. 

The key point of the circuit design is to completely separate the digital circuit and the analog circuit, and 

use independent power and ground processing, and the signal transmission between the two is isolated from 

each other through the optocoupler, so as to ensure that the digital circuit noise does not enter the analog 

circuit. 
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Fig.1. system block  
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The output voltage expression[29] of 18bit DAC is: 

Vout =
�Vrefp−Vrefn�∗D

218−1
+ Vrefn  （1） 

where: 

Vrefn provides a negative reference voltage for the DAC; 

Vrefp provides a positive reference voltage for the DAC; 

D is an 18-bit binary programming value. 

2) Output voltage accuracy and temperature drift analysis 
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Vr
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Fig.2. (a) Positive polarity reference voltage generating circuit ;(b) Negative polarity reference voltage 

generating circuit 

As shown in Fig 2(a), Vr is the reference voltage, we choose the ultralow noise, LDO XFET voltage 

references with current sink and source(adr445B, ADI), temperature coefficient is 2ppm,the output voltage is 

5V±2mV. 

Regardless of the influence of the op amp bias current, assuming that the op amp offset voltage is Vos1, 

let Vr’=Vr+Vos1, according to the “virtual disconnection” principle, the following formula： 
𝑉𝑉𝑟𝑟‘
𝑅𝑅3

= 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑉𝑉𝑟𝑟‘
𝑅𝑅4

                              (2) 

So that, 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �1 + 𝑅𝑅4
𝑅𝑅3
�𝑉𝑉𝑟𝑟′                   (3) 

As shown in Fig 3(b), assuming that the op amp offset voltage is Vos2, let Vr’’=Vr+Vos2, and the same 

can be obtained: 
Vr′′
R1

= −Vrefn
R2

                                (4) 

Vrefn = −Vr′′ ∗
R2
R1

                       (5) 

Where : 

Vrefn provides a negative reference voltage for the DAC; 

Vrefp provides a positive reference voltage for the DAC. 
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Substituting formula (2), (3), (4), (5) into formula (1), we can get: 

 

Vout = ��1 + R4
R3
� ∗ (Vr + Vos1) + R2

R1
∗ (Vr + Vos2)� ∗ 1

218−1
∗ D − R2

R1
∗ (Vr + Vos2)                           (6) 

Assuming that R2/R1, R4/R3, Vr, Vos1, Vos2 do not change with temperature and time,  Vout can be 

simplified to: 

Vout = a ∗ D + b                             （7） 

Here, R1, R2, R3, R4 use Vishay bulk metal thin film voltage divider resistor series 300144Z and 300145, 

its resistance tracking temperature coefficient is 0.1 ppm/°C. 

It can be seen from the above formula that the bias output voltage will be affected by the drift of the DAC, 

resistance, reference voltage, and operational amplifier. 

The reference voltage source adopts ADR445BRZ to output 5V, and the temperature drift is about 

2ppm/℃, which is 10 uV/℃. 

The temperature drift of the voltage divider resistance is about 2ppm, and the temperature drift of the 

voltage divider resistance is required to be consistent, and the tracking temperature coefficient is less than 5 

uV/℃. 

The offset drift of AD8676 is about 0.6 μV/°C. AD5781 has a very low temperature coefficient of about 

0.05ppm/°C, which is much lower than the drift of the reference voltage source. 

Ignoring the temperature drift of the op amp and DAC, it is mainly affected by the reference voltage source, 

and the drift is about 20 uV/°C. 

Generally speaking, for a 20V voltage range, 18-bit system, the temperature drift is required to be 

controlled within 80uV, and the temperature cannot change more than 4 degrees. 

 

3) Capacitive load analysis 
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Fig.3. (a) DAC BUF design (b) AD8676  Bode Plots 

The ideal operation state of the operational amplifier is that the output voltage and the input voltage are in 

phase, that is, when the Inca voltage at the negative input causes the output to increase, the operational 

amplifier can correspondingly reduce the increased voltage. However, the input and output phases of 

operational amplifiers are always different. When the phase difference between the output and the output is 
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180 ° The negative input is exactly the same as the positive input, but the output that should be reduced is 

enhanced（ It becomes a state of positive and negative collapse.) If it falls into this state in a certain frequency 

band and remains the original amplitude, the output frequency and oscillation state will continue. 

ACl=
Uo
Ui

=Zo
Ro

= −j ∗  1
2∗pi∗CL∗f∗Ro

                      (6) 

While Acl= 1 ，fp= 1
2∗pi∗CL∗Ro

 > 10 MHz ； 

While fp > 10 MHz, Ro >40 Ω, CL <400 pF，there will be no shock. 
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Fig.4 (a) Insert resistance R  (b). Miller effect compensation (c) Stretch bandwidth 

Fig.4(a) R is inserted in the figure to eliminate the phase lag of feedback loop due to CL 

 In high frequency region, R is shown as the load of operational amplifier replaces CL. Although R is added 

to the outside of the feedback loop, the series resistance R can act on the transfer function of the feedback 

network by the additional zero frequency FZ generated by the load capacitance, thus reducing the phase shift 

of the high frequency loop. In order to ensure the stability of the circuit, the value of R should make the 

additional zero frequency at least 10 times lower than the closed-loop bandwidth of the op amp circuit. 

Fig.4(b) Miller effect compensation 

The phase lag caused by CL is eliminated by pre-correction and C1 insertion. 

Fig.4(c) Two stage OPA extended bandwidth 

The phase delay caused by CL is compensated by the advanced correction, which is equivalent to adding a 

buffer at DAC output stage, and responding in time to the first stage operational amplifier response. 

 

Results and discussion:  
The multi-channel precision voltage source (MPVS-X) prototype was shown in Fig.5.The LCD screen 

and controller were distributed in the front panel layout. The Input-Power, power controller, muti-output, 

RS232 output interface and network interface were distributed in the rear panel layout.  The size of prototype 

is 437mm*420mm*133mm (3U chassis size). 
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Fig. 5. (a), the front panel layout of prototype; (b) the rear panel layout of prototype; (c) bias source test in 

Qdots device application 

1) Linearity 

Set the output of the voltage source in the program, from the minimum value that can be set to the 

maximum value that can be set, in steps of 10 mV. Wait for 0.5s after setting the voltage value each time, and 

then use the 8.5-digit digital multi-meter (Agilent 3458A) to read the actual output voltage value. The whole 

process is repeated 5 times. Save the data of the original set voltage value—the actual voltage value, and 

perform curve fitting as shown in Fig 6. 

  
Fig 6 Linear fitting of output voltage 

2）Short time fluctuations 

Set different voltage output in the program, wait for 0.5s after setting the voltage value each time, and then 

read the actual output voltage value with an 8.5-digit digital multi-meter (Agilent 3458A), continuously 

measure 100 s, and count the peak-to-peak voltage jitter. The whole process is repeated 5 times. 

Table 1. Output voltage fluctuations under different voltage 
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Vout/V -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 

Fluctuations /μV 45.8 36.8 26.6 13.3 1.4 11.3 32.7 28.1 39.2 

 

The voltage output range of this system is -10V~10V.  For 18-bit system, 1 LSB is 76μV, and the 

maximum voltage jitter does not exceed 50μV in the full voltage range. 

 

3) Uniformity between two channels 

As shown in Fig.7, the two channels have the same set voltage of - 5.5V and - 1V respectively, and 

read the actual output voltage value with an 8.5-digit digital multi-meter (Agilent 3458A)，continuously 

measure for a long time. 

 
 

Fig.7 the uniformity between different channels 

 

4) Step response 

As shown in Fig.8，The step is set from -5V to +5V. According to the test results of the oscilloscope, 

the 10V step has a settling time of about 2.4~2.7us.  

 

Fig 8  (a)-5V~+5V step response    (b)+5V~-5V step response 

5）Long-term stability 
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 Turn on the output of 16 test channels at the same time and set their voltage output to 10 V at the same 

time, test the voltage value of random channels among them, read it every 10s, and the test duration is 24 

hours. The output voltage change curve with time is as follows:  

 
Fig. 9 the output voltage stability test 

The output stability of the system was show in the Fig.9. After starting up and running for about 2 hours, 

the internal temperature of the instrument gradually rises, and the output voltage will drift by 160μV, and then 

the internal environment of the instrument gradually stabilizes. When multiple channels work at the same time, 

the system has excellent long-term stability of voltage output and maximum fluctuation. The range is less than 

20 μV. 

 

Conclusion:  
Multi-channel bias voltage source technology is a typical technology of low noise circuit design, 

involving resolution, noise, accuracy, linearity, temperature, channel consistency, bias, long-term stability, 

low complexity and other aspects. The project research focuses on these problems closely, and achieves 4ppm 

conversion accuracy by designing high-resolution digital to analog conversion circuit; Through scientific 

exploration, a series of low noise circuit design problems such as power supply, grounding processing and 

signal isolation are solved; Through closed-loop measurement and digital correction, accurate voltage output 

is obtained; The problem of capacitive load and linearity is solved by two-stage op amp output; Through 

careful heat dissipation, the whole machine controls the temperature change on the one hand; On the other 

hand, the temperature drift of components is very low, which minimizes the temperature drift coefficient of 

the system and improves the working temperature range through temperature compensation; Through careful 

structure design of the whole machine, the complexity of the system is reduced, and the humanized man-

machine interface is realized. The results show that it is one effective and feasible topology for the high 

precision voltage bias source in Qdots device application. 
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