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Abstract: Often, engineers with machining experience often judge machining state and tool life
according to chips’ features. Engineers' experience is digitized in this study. During the cutting
process, the cutting tool coming in contact with the workpiece produces a shear zone, which
causes plastic deformation and shear slip. The chips closest to the shear zone can directly show
the state of the tool and workpiece when the material is SKD61. This study used chip color,
vibration, and current signal integration for prediction of machining state and cutting tool life.
When the cutting tool wears increased, the chip surface color changed in the following way:
purple=> purple blue= blue =»cyan, or even green and yellow. When the cutting tool was in
the accelerating wear phase, the color change was particularly obvious. The Back-Propagation
Levenberg-Marquardt (BP-LM) predictive methodology was used to compare the predictive
ability of voltage, vibration signal, and chip color. The Mean Absolute Percentage Error
(MAPE) for the voltage signal was 12.28%, for the vibration signal it was 11.38%, and for the
chip color combined with multi-sensor characteristics it was 7.85%. The MAPE of the chip color
was the smallest. Using the General Regression Neural Network (GRNN) methodology, the
MAPE for the voltage signal was 10.74%, for the vibration signal 7.96%, and for the chip color
combined with multi-sensor characteristics was 6.59%. The MAPE of the chip color was the
smallest. Obviously, the chip color combined with multi-sensor signals provided better pre-
dictive results than the vibration signal or voltage signal alone. There is currently no research
on the usefulness of monitoring chip color for tool life prediction.
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1. Introduction

Cutting tools dislocate the workpieces rapidly during the machining process,
generating a large amount of heat, which is transferred to the chips, inducing a color
change on the chip surface. Therefore, the contributions and research objectives of
this study were: (1) to establish the features of chips’ chromatic conversion and a cal-
ibration methodology, (2) to evaluate the relationship between chip color and tool
wear, (3) to compare different prediction methodologies and measurement signals,
and (4) to investigate the influence of chip color on tool wear. The signals measured
were chip color, vibration, and voltage. Pearson's Correlation Coefficient (PCC) was
used for feature selection, and BP and GRNN were used for prediction and compar-
ison. Finally, our aim was to obtain a new tool life prediction methodology and im-
prove production efficiency. Previous researchers considered process parameters
such as the acoustic emission (AE) signal [1,2], vibration amplitude [3,41], motor cur-
rents [5-7], cutting torque [8], and thrust force [9,10] as indicators of tool wear and
failure [11,12]. Chip color can be evaluated close to the cutting area, and this measure
can integrate those of current and vibration for multi-sensor vehicle measurements
and prediction.

The spindle motor current and feed driver current are closely related to the forces
involved in machining, similar to the torque [13], since both show the amount of
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consumed power in the cutting process. Driver current monitoring is the best ap-
proach to acquire signals without sensors, because in this way the machine is not
modified, even when current sensors are used [14,15]. The discussed feature selec-
tion and classification methods used the current signals of the spindle motor to mon-
itor the drilling process. The non-invasive Hall effect sensor was used to measure
the motor current. The wavelet coefficients of the current signal were calculated first,
and the subset of these coefficients was selected as initial diagnostic characteristics
based on their ability to identify each pair of fault categories [16]. The method used
nonlinear RPNN for paired feature classification. The experimental data proved that
the average success rate of the proposed classification method was 93%. It's dis-
cussed a monitoring method based on neural network and spindle motor power
sensors to test the chip processing state during drilling [4]. Therefore, these two com-
ponents allowed monitoring the chip processing state in the drilling process. The
spindle motor power was tested by an alternating-current (AC) spindle motor driv-
ing system, and the drilling torque could be measured indirectly. The difference be-
tween square and average values, the mean absolute deviation, and the gradient
could be measured according to the spindle motor power as feature vectors. Motor
power and motor current are the main sources of information during metal cutting,
and their values are associated with changes at the cutting area, especially for TW.
In theory, it is expected that with the increase of cutting TW, the CFs are enhanced,
and this directly affects the cutting power and current [17,56]. Even current sensors
appeared promising for multiple optimizations, such as TCM, FW, and tool break-
age monitoring in past studies [18-23].

After defining factors including machine tools, workpieces, and machining
methods, the main factors influencing cutting forces and vibration are cutting factors,
tool wear, tool wear cutting force, and cutting temperature during the metal cutting
process [24-26]. As tool wear increases, the cutting force and power increase too
[27,28]. A study reported a mathematical model of the force of face milling, taking
into account machining parameters and tool wear [29,55]. In this work, the influence
of cutting conditions and wear on the cutting force on the back surface of a tooth
cutter was shown. Promising for monitoring cutting operations is the control of the
cutting power [30,31]. The techniques more frequently used are related to torque,
force, and feed rate, since cutting forces increase when tool wear increases [32,33]. A
mathematical model of the power of the main drive, which can be used to control the
milling conditions in the process of wear of the cutting tool was presented. At the end
of the tool’s lifetime, a rapid increase of radial and axial cutting forces was observed,
in particular for coated cutting tools, whereas this was not observed with uncoated
tools. The good agreement between the coated-tool life results obtained from normal-
ized cutting force data and nose wear measurements demonstrated that on-line ex-
amination of the wear behavior of multi-layer ceramic-coated tools can be carried out
by monitoring the radial and axial force signals [34,54].

A study used an image processing technique to analyze TW during turning of
AISI 4340 steel under cutting conditions leading to catastrophic failure of the tool and
stated that this approach was successful in identifying sharp, semi-dull and dull cut-
ting tools [35]. Another study used EN24T to determine the extent of FW via image
processing [36]. Image processing and neural networks were also used to predict tool
life during turning of C45 steel. This approach provided results with a large error
because of excessive TW; the accuracy of the prediction was satisfying and proper for
industrial applications [37]. Barreiro et al. used a digital image processing method to
determine the life of a cutting tool. Their findings allow reducing tool costs by using
a new wear criterion [38]. Another study proposed an online wear-monitoring sys-
tem with geometric descriptors from linear images. This approach classifies wear as
low, medium, and high [39].
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Research has identified that tool wear affects chip color. The parameters of sur-
face roughness, cutting tool wear, and chip morphology of cutting steel AISI 4340
steel can be evaluated to estimate processing costs. ANOVA showed that the domi-
nant parameters influencing surface roughness were the feed rate per revolution, fol-
lowed by the cutting speed. The surface roughness value increased with the feed rate
per revolution, whereas the cutting speed showed an inverse relationship [40]. Chip
color was analyzed to determine the cutting temperature in high-speed end milling
of die steel AISI H13. This study used a ball cutter for high-speed end milling [42].
The color of the chips and the temperature at different spindle speeds and depths of
cut were determined. The result showed that the cutting temperature rose as the spin-
dle speed and depth of the cut increased. This study used the chip color, vibration,
and current signal integration for predicting tool wear. Although much research has
been carried out on the effects of vibration and current signal on tool wear, no studies
have focused on the relationship between tool wear and chip [43-46].

This publication presents a simple and effective approach to determine tool wear
depending on chromaticity coordinate points for the chip color. Therefore, an exper-
imental milling setup was used integrating a synchronized sensor system include an
accelerometer, voltage sensor, and chromaticity coordinate points as Analysis and
prediction. Comparison of outputting tool wear using three types of input sig-
nals(voltage, vibration signal, and chip color) and two prediction methods(BP-LM
and GRNN). This setup not only enables the analysis of the tool wear but also the
monitoring of the accuracy of the workpiece. This study analyzed chip color to esti-
mate tool life and compared its prediction ability to that of vibration and current
measures. We used the prediction methods of BP and GRPP; the expected error was
within 10%.

2. Cutting principle and wear
2.1. Cutting tool wear

In general studies of cutting, the estimation of tool life is mostly done using the
Taylor tool life equation. In 1906, Taylor proposed a relationship between tool life
and cutting speed. This is a machining benchmark, mainly referred to ISO 8688-2
standards. The relationship between cutting speed (V) and tool life (T) can be ex-
pressed by the following equation:

VeT™ = C. (1)

where V:is cutting speed, T is the tool life, i.e., the tool’s actual cutting time, n is an
index referred to the cutting tool and workpiece material conditions, C is a constant
of the machining process; besides cutting speed, the machining parameters include
feed per tooth and cutting depth. If all the machining parameters are considered in
the tool life equation, using Taylor’s tool life formulas to establish the cutting test
experiment parameters [57,58], a complete tool life equation can be obtained and ex-
pressed as follows:

VeT " ap® = C.
2)

2.2. Die steel SKD61 Is difficult to cut

SKD61 is a hot-working tool steel with alloying elements such as Chromium
(Cr), Molybdenum (Mo), and Vanadium (Va); it has good ductility, wear resistance,
and resistance to high-temperature fatigue. The composition and physical character-
istics of SKD61 are shown in Table 1; it is suitable for long-term operation in a hot
environment. The increase of temperature will improve its mechanical properties; in
addition, the higher the hardness of the mold, the longer its service life, as the mold
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can bear sudden temperature changes and it is unlikely to deform. Therefore, die
steel is widely used in the mold industry. This material is applicable to Al, Mg, Zn,
and Cu alloy compression molds. Hand tools are generally used for grooving tools
and hot forging, hot-working reamers, guillotine, hot-working forging dies, plastic-
pattern dies, hot-bolt molds, and hot-working tools. Therefore, this study used
SKD61 as the material for machining experiments. The increase of hardness of heat-
treated materials makes machining more difficult, and leads to rapid tool wear.

Table 1. Physical characteristics of die steel SKD61 [47].

Physical property Temperature range
Thermal expansion coefficient 20-100°C 20-250°C 20-500°C
() 105 113 121
Thermal conductivity 20°C 250°C 500°C
(W/mK) 23 25 27
E-modulus 21°C 250°C 500°C
) 210 195 172

2.3. Chip color and conformation

In cutting processes, cutting heat is distributed over three main regions: the
chips are discharged from the tool face due to workpiece material exfoliation, shear-
ing, and deformation, and the frictional contact surface between tool flank and work-
piece material leads to high temperatures in the workpiece, chips, and cutting tool. If
the cutting conditions are appropriate, when the chip thickness decreases, the chips
are heated up rapidly under the effect of the cutting heat; this can be determined from
the color change or the pyrophoric behavior of the chips. However, the chips are
cooled rapidly in air after they are cut off the parent material, and this phenomenon
changes the surface color of the chips as a result of the formation of an oxidation film,
as shown in Figure 1. The color of this oxidation film is influenced by the oxidation
film thickness (d), the refractive index (1), and the absorption coefficients (k) of oxi-
dation film and parent material, as shown in Figure 2. The color of the chips during
machining changed in the following order: from light olive gray (2.5Y) =»pale brown
(2.5Y) >weak brown (5YR)= dusky purple (10P) =»dusky bluish purple (10PB) =
moderate blue (2.5PB) »weak blue (10B) ¥medium bluish-gray (5G) =»light olive-
gray (7.5GY) 2 weak red (5R) [48].
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Figure 2 shows the relationship between chip oxidation film thickness and chro-
maticity coordinate points. The graph displays annular solid lines, which spread ra-
dially from the center. Y indicates yellow, R red, P purple, B blue, and G green hues.

3. Measurement equipment development and modeling

The cutting tool-wear monitoring system developed in this study was integrated
into direct and indirect measurement methods for multi-sensor signal analysis to ex-
tract characteristic values and for chip surface chromaticity variation analysis to ex-
tract characteristic values, so as to predict the relationship between cutting tool wear
values. The proposed system was integrated into a visual man—-machine interface in-
cluding an accelerometer for vibration measurement, a Hall element for voltage
measurement, and chip chromaticity coordinate information. The chip chromaticity
coordinate values were recorded by a CCD industrial camera, and the extent of dam-
age of the cutting tool was judged according to the chip chromaticity coordinate val-
ues. Highly correlated dimensions were selected according to their features. How-
ever, direct and indirect methods measure different types of characteristics and use
different units of measurement; therefore, a normalization process is required. Fi-
nally, the cutting tool wear value was tested and predicted by using BP-LM and
GRNN neural network model methods. The experimental process is shown in Figure
3, including machining parameter setup, sensor signal analysis pre-processing and
capture, color reading information and application, and test method of the cutting
tool wear model. The stages of the experimental plan and the data collection and
analysis process are shown in Figure 4.
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| Experimental plan of toolwear monitoring |

| Material(SKD61) and Tools (TiAIN) Select | | CCD Calibration
L . Color Space
Cutting Condition

Voltage signal and Vibration Chip color input
signal information

Tool Wear to
0.3mm

| Characteristic Analysis |

| Tool Wear Modeling(BP,GRNN)

| Tool Wear Prediction results | NO

Figure 3. Experimental flow chart.
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Time Domain:
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Figure 4. Data collection and analysis process.
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3.1. Machining experiments

According to the recommended values of the cutting parameters in the technical
information of Mitsubishi tool catalog, for TiAIN-coated carbide blade material, the
recommended cutting speed (m/min) is 50 to 120 (m/min), and the feed per tooth
(mm/tooth) is <0.2 (mm/tooth). In addition, the recommended depth of cut (mm) is
<0.5 (mm). Experimental calculations were performed according to Taylor's formula,
and the machining parameter configuration was adjusted, so as to monitor the pro-
cess from the initial wear to the acute wear of the cutting tool. This study used a
machining center for milling. The experimental equipment is shown in Figure 5.
Please check if the original meaning is retained on the travel by 450 mm, 300 mm, and
360 mm, respectively. The feed velocity was from 36,000 to 48,000 mm/min, and the
maximum revolution of the main spindle was 10,000 rpm. The experimental equip-
ment and specifications are described in Table 2 [49].

Table 2. Experimental equipment and specifications

Items Experimental design parameters
Experiment Material SKD61 (HRC50)

Cutting tool Milling cutter RSmm

Cutting stroke (mm) 150

Cutting speed(m/min) 298.3

Cutting feed rate (mm/min) 950

Feed per tooth (mm/tooth) 0.1

Depth of cut (mm) 0.5

Cutting width (mm) 6

Cutting time each time (sec.) 10

Machining Center Accelerometer

Charge
Coupled
Device lens

Magnification
Adjustment
Lens Group

7 Axes
Adjustment

Testing
Platform LED Light
Da—— Source

Chip

Software

Figure 5. Experimental equipment.

3.2. Color space transformation process

The chromatic values, such as R.G.B. values, X.Y.Z. tristimulus values, and xy
chromatic values, of chip color and equipment data were transformed. In terms of
the display, the proposed system receives electronic signals, mixes the colors accord-
ing to their signal intensity, determines the corresponding colors, and displays them
on the screen. Therefore, the color on the display is transformed in a different way
compared to the mathematical computation model of colorimetry. The process of
color space transformation is detailed below. The process of color space transfor-
mation operated by the display system is shown in Figure 6 [50-52].
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Figure 6. Color space transformation process.

The main process for the creation of chip color and measurement equipment
data is described below.

Step-1. Normalization

The initial input of color signals in the display are (Rs+it Gssit Bs-vit) 8-bit R.G.B.
signal values, and the numerical range of the three primary colors is 0-255, trans-
formed to [Ro Go Bo] normalized R.G.B. signal values:

1
"~ 255

where Io = Ro, Go, Bo is the normalized R.G.B. signal value, and I = Rs-it, Gs-sit, Bs-vit is
the 8-bit R.G.B. signal value

Iy ©)

Step-2. TRC Transformation

TRC is the abbreviation for Tone Reproduction Curve, representing the relation-
ship between display input signal value and brightness. The normalized RGB values
(Ro Go Bo) are transformed by TRC into linear RGB values (R G B). In a general way,
the display uses a y value to represent the tone relationship between the normalized
RGB values and the linear R.G.B. values. The v value varies with the display specifi-
cations, generally between 1.8 and 2.4:

R = (R,)"".
G = (G,)e.
B = (Bo)"™. @

where R, G, and B are linear RGB signal values, and vy, ¥;, v are the y values corre-
sponding to R, G, and B.

Step-3. Linear Transformation

Linear transformation transforms linear RGB values [R G B] to XYZ tristimulus
values [X'Y Z]; a 3x3 matrix is calculated in the process. The 3x3 transformation ma-
trix varies with the display of different standards; the standards for different kinds
of displays will be detailed in Section 3.2:

X 2.7689 1.7517 1.13021[R
Y| =11.0000 4.5907 0.0601 [G]
Z 0.0000 0.0565 5.594311B
X R
Y|=M|G|. 5)
Z B
where X, Y, and Z are tristimulus values, and M is the 3x3 linear transformation ma-

trix
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Step-4. Chromaticity transformation

The tristimulus values [X'Y Z] can be transformed to [x y Y] and [L* a* b*], ac-
cording to the International Commission on Illumination (CIE) x y chromaticity dia-
gram, known as CIE 1976 L* a* b*, which provides a three-dimensional representa-
tion for the perception of color stimuli by a standard observer under strictly stand-
ardized light sources, as shown in Figure 4.

The formulas to transform tristimulus values to chromaticity values are the fol-

lowing;:
1 = 116(2) - 16 ©
a’ = 500(f (%) - f(y—};)) (7)
b = 500(f<%) - f(%)) ®)
f(li) =7.787 (Ii) + 22 if (Ii) < 0.008856. ©

where I /In=X/Xo=Y/Yn=2Z/Zn; X, Y, and Z are tristimulus values of an object,
and Xn, Yn, and Zn are tristimulus values of the reference white. Zhe tristimulus values
vary with different kinds of light sources, as shown in Figure 7 [53].

Figure 7. Three-dimensional CIELAB color space where the L* axis represents the color's
lightness.

Step-5. Color Perception Transformation

This step transforms [L*a*b*] of the CIE LAB color space into a color perception
attribute value of [L C h]. L, Cy,+,and hg, represent lightness, chroma, and hue, re-
spectively:

Cap = [(@)% + (b7)?]. &)

hey = tan™* (). (10)

where the h,, computing a* and b* will have different combinations of positive val-
b

a*

angle is worked out according to its coordinates in the quadrant, to finally obtain the

x and y chromaticity values.

ues or negative values, the absolute value of ( ) is taken, and then the appropriate
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3.3. Color information reading and calibration

Eq.11, 12, 13 transform R'G’B’ obtaining the regression equation of color space
CIE LAB and then the matrix of eq. 16; the R’'G’B’ values and the CIE LAB standard
values attached to the Color Checker Passport color chart are substituted in Eq. 4 to
calculate the values of the color correction matrix M; therefore, the color correction
model is obtained. If the color correction capability is insufficient, the shooting envi-
ronment is improved till the chromatic aberration grade reaches the target level. Fi-
nally, the material chips are shot to obtain the parameters for judging the cutting tool
wear. The color correction process of the image capture equipment is shown in Figure

8 [51].
Actual Photo
Photo Standard Image
Color Information
RGB XYZ
v
Color v
Correction M Matrix Color space
Model
Standard Chroma o8 Convert
Reference Value Corrected
Images

u ay

Figure 8. Color correction process of the image capture equipment.

L' =ag+a;R' +a,G" +a;B" +a,R'G' + asR'B’ + a4G'B’
+ a7R’23+ agGIZ '3‘1‘ agB,2 + aloR,G’B, + allR,3 (11)
+a;,G"” +a3B’

a* =bgy+ bR +b,G" +b3B" +b,R'G' + bsR'B’ + by G'B’
+b,R"? + bgG'* + byB’® + b;yR'G'B’ + by, R (12)
+b,,G"” +by3B".

b* = ¢y 4+ ;R + ¢,G' + 3B’ + ¢,R'G’ 4 csR'B’ + c4G'B’ + ¢,R"®

+¢gG'? + coB"? + ¢;oR'G'B’ + ¢11R"® 4 ¢;,G" (13)
+¢3B"%.
[L* a* b*].
— [1 Rr Gr Br RIG/ RIB/ G,B, R,Z G,Z B/Z R/GrB/
a, by ¢ (14)

a b c
x|t 1 1

a;3 bz g3

4. Results and Discussion
4.1. Wear analysis result sof TiAIN-coated tips

This study used three machining experiments to repeat the test. Each group of
TiAIN-coated tips was cut 10 times, as shown in Figures 9 and 10. The correlation of
the number of cuttings to the chip morphology and the degree of cutting tool wear is
discussed. At the 11th cutting, the degree of wear was acute, and the left front end of
the chips appeared curled. However, when observing the gloss of the chip surface
color from the 2n to the 7t cutting, the cutting tool wear was stable, and the chip

10
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surface color was purple-blue. After the 7t cutting, the degree of the cutting tool wear
increased and then at the 8th cutting, the chip surface color turned from purple-blue
to dark purple-blue and dark blue. Finally, at the 11th cutting, the degree of wear
became acute, and the chip surface color turned from dark blue to cyan.

Groupl SKD61 ap=0.5mm,F=950mm/min,V¢=298m/min,(TiAI)N coating

Break-in
035 period

Steady-state wear region Failure region

e

03 Cutter is broken

0.25
0.2

Critical point

Cutter Flank Wear(mm)
EEEEgQEESEEEEEEEEEEEEEEEEEEEE

Chip “ 0 0’“ :
morphology “ 6 0“

Dark purple blue Dark purple blue Dark blue Light blue
Tool wear L
progress
.'R -
0.0336mm 0.0661mm 0.1155mm 0.3655mm

Figure 9. Degree of cutting tool wear and chip morphology of TiAIN-coated tips (Group
1 of experiments on dry cutting).

Group3 SKD61 ap=0.5mm,F=950mm/min,Vc=298m/min,(TiAl)N coating

Failure region
—
Cutter is broken

Steady-state wear region

035 o
Break-in
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e
8
]
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Cutter Flank Wear(mm)
°
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— Accelerating wear rate

3 4 B 6 /s\ 9
Time of cutting(number)

.
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Tool wear
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0.0381mm 0.0661mm 0.1200mm 0.3027mm

Figure 10. Degree of cutting tool wear and chip morphology of TiAIN-coated tips
(Group 3 of experiments on dry cutting).

11


https://doi.org/10.20944/preprints202107.0401.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2021 d0i:10.20944/preprints202107.0401.v1

12 of 20

4.2. Test and validation of the cutting tool wear prediction model

The correlation between carbide blade wear and chip surface chromaticity ei-
genvalue for three groups of TiAlN-coated tips was determined. Three phenomena
can be observed in Figures 11 and 12. First, cuttings No. 2, 7, 8, and 11 were selected
to observe the change in chip surface chromaticity. We observed that, as the cutting
tool wear increased, the X and Y characteristic values of chip surface chromaticity
shifted clockwise. Secondly, when the cutting tool turned from the initial unworn
state to the acute wear state, the chip surface chromaticity eigenvalue varied in the
following way: purple=»purple blue®»blue=»cyan. Thirdly, at the 7th and 8th cut-
tings, aliasing of chip chromaticity X characteristic value and Y characteristic value
occurred, and the cutting tool wear accelerated, reaching the unstable state region, as
shown in Figure 13.

Groupl SKD61 ap=0.5mm,F=950mm/min, Ve=298m/min,(TiAI)N coating

Break-in

. M
Steady-state wear region H Failure region
035 period .

Cutter is broken

015 . Critical point
.

Culter Flank Wear(mm)

- Accelerating wear rate

.
w .
. .

1 O 3 Ll 5 ® o (s) 9 10 @

Time of culting(number;

v

SRGB monitors in the CIExy color space
=¥~ NO.2 of rmumber -

SRGB monitors in the CIExy color space

0.9 NO.7 of muber %
~@— NOB of muber g

o8 NO.1lofruber .

- s

086

Q5|

03
02

01 [

0 0% 02 03 04 05 06 07 08 O J
X X

Figure 11. Degree of cutting tool wear and chromaticity coordinate points of TIAIN-coated
tips (Group 1 of experiments on dry cutting).
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Figure 12. Degree of cutting tool wear and chromaticity coordinate points of TiAIN-coated
tips (Group 3 of experiments on dry cutting).
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Figure 13. Degree of cutting tool wear and chromaticity coordinate characteristic values of
TiAIN-coated tips in three groups of experiments on dry cutting.
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4.3. Test error analysis results of the TiAIN cutting tool wear prediction model

We performed three sets of repeated cutting tests. Each group consisted of 10
cuttings. Each characteristic value had 80 data points; 50 values were used for train-
ing, and 30 values were used for the test, to confirm the accuracy of the cutting tool
wear prediction model built in this study. The analysis results of the BP-LM and
GRNN neural network models were divided into three phases to determine the
MAPE of the model prediction with respect to the actual cutting tool wear loss. In
phase 1, the measured voltage signal characteristic was used as the input layer of the
neural network. In phase 2, the measured vibration signal characteristic was used as
the input layer of the neural network. In phase 3, the characteristic values of voltage
and vibration signals were combined with the chip surface chromaticity eigenvalue
as the input layer of the neural network. The errors for the predicted values of six
groups of machining experiments with respect to the actual cutting tool wear values
are discussed below and shown in Figures 14 and 15. This study used the BP-LM
neural network model to predict the cutting tool wear value. Phase 1 used the voltage
signal characteristic value as the input layer; the predicted cutting tool wear value is
shown in Tables 3 and 4, and the percentage errors of MAPE were 10.87%, 6.6%, and
19.37%. Therefore, we observed that when the voltage signal characteristic value is
used as an input feature, the tool wear trend can be estimated, but there are still ob-
vious errors. Phase 2 used the vibration signal characteristic value as the input layer;
the predicted cutting tool wear value showed that the MAPE were 9.44%, 14.82%,
and 9.89%. This shows that the vibration signal characteristic value for predicting
cutting tool wear provided a better result than the voltage signal characteristic value.
Phase 3 used the vibration signal, voltage signal, and chip surface chromaticity com-
bined for a multi-sensor prediction of the cutting tool wear. The predicted cutting
tool wear shows that MAPE were 8.69%, 7.52%, and 7.34%. Therefore, when the char-
acteristic value of chip surface chromaticity was included, the cutting tool wear could
be predicted more accurately than when using a single sensor signal characteristic
value.

Groupl BP-LM Method Prediction Error
ap=0.5mm, F=950mm/min, V¢=298m/min, TiAIN coating

=—&—Original-Toel wear

~i—~Voltage PCC select

—#—Vibration-PCC select

=>=Vibration+Voltaget+Color_chip_coordinate value-PCC
select

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of times

Figure 14. Group 1 cutting tool wear prediction result for TIAIN-coated tips using the BP-LM prediction model.
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Table 3. Group 1 cutting tool wear prediction error percentage of TiAIN-coated tips using the BP-LM prediction
model.

Group-1 BP-LM Method Prediction Tool Wear

Sensor Selection PCC select MAPE (%)
Voltage Open 10.87
Vibration Open 9.44
Voltage+ Vibration+ Chip color value Open 8.69

Group3 BP-LLM Method Prediction Error
ap=0.5mm,F=950mm/min,Vc¢=298m/minTiAIN coating

=&~ Original-Tool wear
035 -~ Voltage-PCC select

Vibration-PCC select

03
—— Vibration+Voltage+Color_chip_coordinate value-PCC select

Cutter Flank Wear(mm)

01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of times

Figure 15. Group 3 cutting tool wear prediction result for TiAIN-coated tips using the BP-LM
prediction model.

Table 4. Group 3 cutting tool wear prediction error percentage of TiAIN-coated tips using the
in BP-LM prediction model.

Group-3 BP-LM Method Prediction Tool Wear

Sensor Selection PCC select MAPE (%)
Voltage Open 19.37
Vibration Open 9.89
Voltage+ Vibration+ Chip color value Open 7.34

Afterward, this study used the GRNN neural network model to predict the cut-
ting tool wear value, as shown in Figures 16 and 17. The first phase used the voltage
signal characteristic value as the input layer; the predicted cutting tool wear value is
shown in Tables 5 and 6, and the MAPE were 10.35%, 8.95%, and 12.93%. Therefore,
we observed that, when the voltage signal characteristic value was used as an input
feature, the tool wear trend could be estimated, but obvious errors remained. Phase
2 used the vibration signal characteristic value as the input layer; the predicted cut-
ting tool wear showed that MAPE were 8.59%, 8.04%, and 7.27%. According to the
prediction result, the vibration signal characteristic value provided a better predic-
tion of the cutting tool wear than the voltage signal characteristic value. Phase 3 com-
bined the vibration signal, voltage signal, and chip surface chromaticity for a multi-
sensor prediction of the cutting tool wear. The predicted cutting tool wear value
showed that the MAPE were 7.38%, 7.3%, and 5.09%. Therefore, adding the charac-
teristic value of chip surface chromaticity allowed a more accurate prediction of the
cutting tool wear than when using a single sensor signal characteristic value.
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Figure 16. Group 1 cutting tool wear prediction result for TiAIN-coated tips using the GRNN
prediction model.

Table 5. Group 1 cutting tool wear prediction error percentage for TiAIN-coated tips using the GRNN prediction
model.

Group-1 GRNN Method Prediction Tool Wear

Sensor Selection PCC select MAPE (%)
Voltage Open 10.35
Vibration Open 8.59
Voltage+ Vibration+ Chip color value Open 7.38

Group3 GRNN Method Prediction Error
ap=0.5mm,F=950mm/min,V¢=298m/minTiAIN coating

~4—Original-Tool wear
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Figure 17. Group 3 cutting tool wear prediction result for TIAIN-coated tips using the GRNN prediction model.
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Table 6. Group 3 cutting tool wear prediction error percentage for TiAIN-coated tips using the GRNN prediction
model.

Group-3 GRNN Method Prediction Tool Wear

Sensor Selection PCC select MAPE (%)
Voltage Open 12.93
Vibration Open 7.27
Voltage+ Vibration+ Chip color value Open 5.09

The results for three cutting samples were analyzed by using the BP-LM and
GRNN neural network models. The results obtained by using the combined vibration
signal, voltage signal, and chip surface chromaticity and the related MAPE values
were evaluated, and the between model predicted values and actual cutting tool wear
loss were compared, as shown in Table 7. The average value of the prediction error
for the BP-LM method was 7.85%, and the average value of the prediction error for
the GRNN method was 6.59%. Therefore, the error range of MAPE is <10% for the
BP-LM and GRNN prediction methods, indicating a high predicting ability.

Table 7. Cutting tool wear prediction percentage errors of BP-LM and GRNN methods for
three cutting groups of TiAIN-coated tips.

TiAIN-Tool Wear Prediction Error
Number of Cutting Groups BP-LM method MAPE (%) GRNN method MAPE (%)

Group-1 8.69 7.38
Group-2 7.52 7.3
Group-3 7.34 5.09
Average 7.85 6.59

5. Conclusion

This system allows a simple and rapid measurement of cutting tool wear, based
on chips imaging and cutting time recording, which can be useful in industrial appli-
cations. This proposed process includes CCD calibration, tool wear repeatability, chip
color determination, and tool wear prediction. The following conclusions are derived
from the described experiments.

1. Interms of equipment calibration, without color correction, as this system is free
of standards, it cannot be shared with other imaging systems or evaluate color
reproducibility. The color correction model of this study can reduce the color
difference from AE}, = 18.6 to 2.94, and the rate of improvement is 84.19%.

2. The analysis of the relationship between tool wear and chip color established a
correlation between TiAIN-coated carbide blade wear and chip surface chroma-
ticity eigenvalue; as the cutting tool wear increases, chip surface color varies in
the following way: purple=»purple blue=»blue=»cyan, including also green and
yellow; when the cutting tool is in the accelerating wear phase, the trend of color
change is especially obvious.

3. When using the BP methodology for wear prediction, using voltage, vibration
signal, and chip color, the Mean Absolute Percentage Error (MAPE) for the volt-
age signal was 12.28%, for the vibration signal it was 11.38%, and for the chip
color combined with multi-sensor signal characteristics it was 7.85%. The MAPE
value for the chip color was the smallest. When using the GRNN methodology
the MAPE for the voltage signal was 10.74%, for the vibration signal it was
7.96%, and for the chip color combined with multi-sensor characteristics it was
6.59%. Therefore, the superiority of the chip color combined with multi-sensor
characteristics is obvious.

17


https://doi.org/10.20944/preprints202107.0401.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2021 d0i:10.20944/preprints202107.0401.v1

18 of 20

4. The data analysis showed that the average MAPE of the predicted value of
TiAIN-coated cutting tool wear was 10% when single vibration and voltage ei-
genvalues were used as input features. When the voltage signal characteristic
value, vibration signal characteristic value, and chip surface chromaticity char-
acteristic value were combined, the average prediction error of the BP-LM
method was 7.85%, and the average prediction error of the GRNN method was
6.59%. Therefore, when the characteristic value of chip surface chromaticity was
included for wear prediction, the prediction accuracy was enhanced compared
to predictions obtained by using single values.

5. Future research lines will be using different cutting conditions and applications.
Three topics will be followed: first to observe the relationship between chip ge-
ometry and weight on-chip color, the Convolutional Neural Networks (CNN)
method will be used for analysis and prediction.; second, develop and design
tool holders for real-time measurement of cutting temperature.; Three, in wet
cutting, the Minimum Quantity Lubrication (MQL) method will be used for ex-
perimentation and analysis of chip color, at this time, as the topics also form part
of an ongoing study.

Nomenclature:

Io=Ro. Go. Bonormalized RGB signal values.
I'=Rsbitn Gsbitn Bsbvit new 8-bit RGB signal values.
Yr~ V¢~ Yp= correspond to the y value of RGB.
X, Y, Z = tristimulus values.

X4, Yn, Zn = benchmark-white tristimulus value.

L= brightness.

Cap* = chroma and hue.

hqp = respectively.

Ve = cutting velocity (m/min).
T = Tool Life (min).

fz = feed per tooth (mm/tooth).
tc = means chip thickness (mm).
1, = nose radius (mm).

ap = cutting depth (mm).
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