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Abstract: The centralized fusion estimation problem for discrete-time vectorial tessarine signals in1

multiple sensor stochastic systems with random one-step delays and correlated noises is analyzed2

under different T-properness conditions. Based on Tk, k = 1, 2, linear processing, new centralized3

fusion filtering, prediction, and fixed-point smoothing algorithms are devised. These algorithms4

have the advantage of providing optimal estimators with a significant reduction in computational5

cost compared to that obtained through a real or a widely linear processing approach. Simulation6

examples illustrate the effectiveness and applicability of the algorithms proposed, in which the7

superiority of the Tk linear estimators over their counterparts in the quaternion domain is apparent.8

Keywords: Centralized fusion estimation, Random delay systems, Tessarine processing, Tk proper-9

ness.10

1. Introduction11

Multi-sensor systems and related information fusion estimation theory have at-12

tracted much attention over the last few decades due to their wide range of applications13

in many fields, including target tracking, robotics, navigation, big data and signal14

processing [1–7].15

In practice, failures during data transmission are unavoidable and lead to uncertain16

systems. In this regards, a significant problem is the estimation of the state from sys-17

tems with random sensor delays (see, for example, [8–13]). Such delays may be mainly18

caused by computational load, heavy network traffic, and the limited bandwidth of the19

communication channel, as well as other limitations which mean that the measurements20

are not always up to date [8]. It is commonly assumed that measurement delays can21

be described by Bernoulli distributed random variables with known conditional proba-22

bilities, where the values 1 and 0 of these variables indicate the presence or absence of23

measurement delays in the corresponding sensor [10].24

Traditionally, there have been two basic approaches to process the information25

from multiple sensors, centralized and distributed fusion. In the former approach, all26

the measurement data from each sensor are collected in a fusion center where they are27

fused and processed, whereas in the distributed fusion method, the measurements of28

each sensor are transmitted to a local processor where they are independently processed29

before being transmitted to the fusion center. It is well known that centralized fusion30

methods lead to the best (optimal) solution when all sensors work healthily [14,15].31

The strength of this approach lies in the fact that it is easy to implement, and it makes32

possible the best use of the available information. Accordingly, with the purpose of33

optimal estimation, centralized fusion methodology has received increased attention in34

recent literature related to multi-sensor fusion estimation (see for example, [9,16–18]).35

Notwithstanding the foregoing, the main disadvantage of this approach is the high36
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computational load that may be required, especially when the number of sensors is too37

large. Alternatively, distributed fusion methodologies are developed with the purpose38

of designing solutions that are robust to failures and have a reduced computational39

load. The main handicap of these solutions is that they are suboptimal and, hence, it40

is desirable to explore other alternatives that can alleviate the computational burden.41

In this respect, the use of hypercomplex algebras may well offer an ideal framework42

in which to analyze the properness characteristics of the signals which lead to lower43

computational costs without losing optimality.44

In general, the use of hypercomplex algebras has proliferated considerably in signal45

processing problems because of their natural ability to model multi-dimensional data46

giving rise to better geometrical interpretations. In this vein, quaternions and tessarines47

appear as 4D hypercomplex algebras composed of a real part and three imaginary parts48

which endows them with the ideal structure to describe three and four-dimensional49

signals. Nowadays, they play a fundamental role in a variety of applications such50

as robotics, avionics, 3D graphics, and virtual reality [19]. In principle, the use of51

quaternions or tessarines means renouncing some of he usual properties of the real or52

complex fields. Thus, while quaternion algebra is non-commutative, tessarines become53

a non-division algebra. These properties make each algebra more appropriate for every54

specific problem. With this in mind, in [20–23] the use of these two isodimensional55

algebras are compared with the objective of showing how the choice of a particular56

algebra may determine the proposed method performance.57

In the related literature, quaternion algebra has been widely exploited as a signal58

processing tool and it is still a trending topic in different areas. In particular, in the59

area of multi-sensor fusion estimation, [24] and [25] proposed sensor fusion estimation60

algorithms based on a quaternion extended Kalman filter, [26] and [27] have provided61

robust distributed quaternion Kalman filtering algorithm for data fusion over sensor62

networks dealing with three-dimensional data, and [28] designed a linear quaternion63

fusion filter from multi-sensor observations. A common characteristic of all the esti-64

mation algorithms above is that their methodologies are based on a strictly linear (SL)65

processing. However, in the quaternion domain, optimal linear processing is widely66

linear (WL) which requires the consideration of the quaternion signal and its three67

involutions. In this framework, [29] devised WL filtering, prediction and smoothing68

algorithms for multi-sensor systems with mixed uncertainties of sensor delays, packet69

dropout and missing observations. Interestingly, when the signal presents properness70

properties (cancellation of one or more of the three complementary covariance matrices),71

the optimal processing is SL (if the signal is Q-proper) or semi-widely linear (if the signal72

is C-proper) which amounts to operate on a vector with reduced dimension, which73

means a significative reduction in the computational burden of the associated algorithms74

(please review [30–33] for further details).75

On the other hand, the use of tessarines is less common in the signal processing76

literature and, to the best of the author’s knowledge, they have never been considered in77

multi-sensor fusion estimation problems. In general, the use of tessarines in estimation78

problems has been limited by the fact that it is not being a normed division algebra. This79

drawback was successfully overcome in [22] by introducing a metric which guarantees80

the existence and unicity of the optimal estimator. Moreover, although the optimal81

processing in the tessarine field is the WL processing, under properness conditions it is82

possible to get the optimal solution from estimation algorithms with lower computational83

costs. In this sense, [22] and [23] introduced the concept of T1 and T2-properness and84

provided a statistical test to determine whether a signal presents one of these properness85

properties. According to the type of properness, the most suitable form of processing86

is T1 linear processing, which supposes to operate on the signal itself, or T2 linear87

processing, based on the augmented vector given by the signal and its conjugate. The88

application of both T1 and T2 linear processing to the estimation problem has provided89

optimal estimation algorithms of reduced dimension.90
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Motivated by the above discussions, in this paper we consider a tessarine multiple91

sensor system where each sensor may be delayed at any time independently from the92

others. The probability of the occurrence of each delay is dealt by a Bernoulli distribution.93

Moreover, unlike most sensor fusion estimation algorithms, the observation noises of94

different sensors can be correlated. In this context, new centralized fusion filtering,95

prediction and fixed-point smoothing algorithms are designed under both T1 and T2-96

properness conditions. The algorithms proposed provide the optimal estimations of97

the state; meanwhile, the computational burden has been reduced with respect to the98

counterpart tessarine WL (TWL) estimation algorithms. It is important to note that such99

savings in computational burden cannot be achieved in the real field. The superiority of100

these algorithms obtained from a Tk linear approach over those derived in the quaternion101

domain is numerically demonstrated under different conditions of properness.102

The remainder of the paper is organized as follows. Section 2 introduces the103

notation used throughout the paper and briefly reviews the main concepts related to104

the processing of tessarine signals and their implications under Tk properness. Then, in105

Section 3, the problem of estimating a tessarine signal in linear discrete stochastic systems106

with random state delays and multiple sensors is formulated. Concretely, under Tk -107

properness conditions, a compact state-space model of reduced dimension is proposed.108

From this model, and based on Tk-properness proterties, Tk centralized fusion filtering,109

step ahead prediction, and fixed-point smoothing algorithms are devised in Section 4.110

Furthermore, the goodness of these algorithms in performance is numerically analyzed111

in Section 5 by means of a simulation example, where the superiority of the Tk estimation112

algorithms above over their counterparts in the quaternion domain is evidenced. The113

paper ends with a section of conclusions. In order to maintain continuity, all technical114

proofs have been deferred to the appendix section.115

2. Preliminaries116

Throughout this paper, and unless otherwise stated, all the random variables are117

assumed to have zero-mean. Moreover, the notation and terminology is fairly standard.118

They are summarized in the following two subsections.119

2.1. Notation120

Boldfaced upper case letters are used to denote matrices, boldfaced lower case121

letters for column vectors, and lightfaced lower case letters for scalar quantities. In122

denotes identity matrix of dimension m, 0n×m denotes the n×m zero matrix, and 1n and123

0n represents the vectors of length n whose elements are all ones and zeros, respectively.124

Superscripts ∗, T and H represent the tessarine conjugate, transpose, and Hermitian125

transpose, respectively. Subscripts r and ν, for ν = η, η′, η′′, represent the real and126

imaginary parts of a tessarine. Moreover, Z, R, and T are used to denote the set of127

integer, real, and tessarine field, respectively. According to this notation, A ∈ Rn×m
128

(respectively, A ∈ Tn×m) means that A is a real (respectively, tessarine) n×m matrix, and129

similarly r ∈ Rn (respectively, r ∈ Tn) means that r is a m-dimensional real (respectively,130

tessarine) vector.131

Furthermore, E[·] and Cov(·) are the expectation and covariance operators and132

diag(·) is a diagonal (or block diagonal) matrix with elements specified on the main133

diagonal. 0n×m denotes the n × m zero matrix, In represents the identity matrix of134

dimension n and 1n is the n-vector whose elements are all ones. δn,l is the Kronecker135

delta function, which is equal to one if l = n, and zero otherwise. Finally, the Hadamard136

and Kronecker products are denoted by ◦ and ⊗, respectively.137

2.2. Basic concepts and properties138

The following property of the Hadamard product will be useful.139
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Property 1. If A ∈ Rn×n and b ∈ Rn, then

diag(b)A diag(b) =
(
bbT) ◦A. (1)

Definition 1. A tessarine random signal x(t) ∈ Tn is a stochastic process of the form [22]

x(t) = xr(t) + ηxη(t) + η′xη′(t) + η′′xη′′(t), t ∈ Z

where xν(t) ∈ Rn, for ν = r, η, η′, η′′, are real random signals and {1, η, η′, η′′} obeys the
following rules:

ηη′ = η′′, η′η′′ = η, η′′η = −η′, η2 = η′′
2
= −1, η′

2
= 1.

The conjugate of a given tessarine random signal x(t) ∈ Tn, is:

x∗(t) = xr(t)− ηxη(t) + η′xη′(t)− η′′xη′′(t).

Moreover, the following two auxiliary tessarine vectors are defined as:

xη(t) = xr(t) + ηxη(t)− η′xη′(t)− η′′xη′′(t),

xη′′(t) = xr(t)− ηxη(t)− η′xη′(t) + η′′xη′′(t).

For a complete description of the second-order statistical properties of x(t), we need
to consider the augmented tessarine signal vector x̄(t) = [x

T
(t), xH(t), xηT(t), xη′′T(t)]T.

The following relationship between the augmented vector and the real vector xr(t) =
[xTr (t), xTη(t), xTη′(t), xTη′′(t)]

T can be established:

x̄(t) = 2T nxr(t),

where T n = 1
2A⊗ In

A =


1 η η′ η′′

1 −η η′ −η′′

1 η −η′ −η′′

1 −η −η′ η′′

,

with T H
nT n = I4n.140

Definition 2. Given two tessarine random signals x(t), y(s) ∈ Tn, the product ? between them
is defined as

x(t) ? y(s) = xr(t) ◦ yr(s) + ηxη(t) ◦ yη(s) + η′xη′(t) ◦ yη′(s) + η′′xη′′(t) ◦ yη′′(s). (2)

The following property of the product ? is easy to check.141

Property 2. The augmented vector of x(t) ? y(s) is x(t) ? y(s) = D̄x
(t)ȳ(s), where D̄x

(t) =142

T n diag(xr(t))T H
n.143

Definition 3. The pseudo autocorrelation function of x(t) ∈ Tn is defined as Rx(t, s) =144

E[x(t)xH(s)], ∀t, s ∈ Z, and the pseudo cross-correlation function of x(t), y(t) ∈ Tn is defined145

as Rxy(t, s) = E[x(t)yH(s)], ∀t, s ∈ Z.146

Note that, depending on the vanishing of the different pseudo correlation functions147

Rxxν(t, s), ν = ∗, η, η′′, various kinds of tessarine properness can be defined. In particular,148

the following properness conditions in the tessarine domain has been recently introduced149

in [22] and [23].150
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Definition 4. A random signal x(t) ∈ Tn is said to be T1-proper (respectively, T2-proper)151

if, and only if, the functions Rxxν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′), vanish152

∀t, s ∈ Z.153

In a like manner, two random signals x(t) ∈ Tn1 and y(t) ∈ Tn2 are cross T1-proper,154

(respectively, cross T2-proper) if, and only if, the functions Rxyν(t, s), with ν = ∗, η, η′′ (respec-155

tively, ν = η, η′′), vanish ∀t, s ∈ Z.156

Moreover, x(t) and y(t) are jointly T1-proper (respectively, jointly T2-proper) if, and157

only if, they are T1-proper (respectively, T2-proper) and cross T1-proper (respectively, cross158

T2-proper).159

Remark that, T1 properness is more restrictive than T2 properness. Statistical tests160

to experimentally check whether a signal is Tk-proper, k = 1, 2, or improper have been161

proposed in [22] and [23].162

It should be highlighted that the different properness properties have direct im-163

plications on the optimal linear processing. In general, the optimal linear processing164

is the widely linear processing which requires to operate on the augmented tessarine165

vector x̄(t). Nevertheless, in the case of joint Tk-properness, k = 1, 2, the optimal linear166

processing is reduced to a Tk linear processing, with the corresponding decrease in the167

dimension of the problem. In particular, T1 linear processing is based on the tessarine168

random signal itself, and T2 linear processing considers the augmented vector given by169

the signal and its conjugate [23].170

3. Problem formulation171

Consider the following class of linear discrete stochastic systems with state delays
and multiple sensors:

x(t + 1) =F1(t)x(t) + F2(t)x∗(t) + F3(t)xη(t) + F4(t)xη′′(t) + u(t), t ≥ 0

z(i)(t) =x(t) + v(i)(t), t ≥ 0, i = 1, . . . , R

y(i)(t) =γ(i)(t) ? z(i)(t) + (1n − γ(i)(t)) ? z(i)(t− 1), t ≥ 1, i = 1, . . . , R

(3)

where R is the number of sensors, ? is the product defined in (2), Fj(t) ∈ Tn×n,172

j = 1, 2, 3, 4, are deterministic matrices, x(t) ∈ Tn is the system state to be esti-173

mated, u(t) ∈ Tn is a tessarine noise, z(i)(t) ∈ Tn is the ith sensor outputs with174

tessarine sensor noise v(i)(t) ∈ Tn, y(i)(t) ∈ Tn is the observation of the ith sensor,175

γ(i)(t) = [γ
(i)
1 (t), . . . , γ

(i)
n (t)]T ∈ Tn is a tessarine random vector whose components176

γ
(i)
j (t) = γ

(i)
j,r (t) + ηγ

(i)
j,η(t) + η′γ

(i)
j,η′(t) + η′′γ

(i)
j,η′′(t), for j = 1, . . . , n, are composed of in-177

dependent Bernoulli random variables γ
(i)
j,ν (t), j = 1, . . . , n, ν = r, η, η′, η′′, with known178

probabilities p(i)j,ν(t), and whose possible outcomes {0, 1} indicate if the ν part of the jth179

observation component of the ith sensor is up-to-date (case γ
(i)
j,ν (t)) = 1) or there exits180

one-step delay (case γ
(i)
j,ν (t)) = 0).181

The following assumptions for the above system (3) are made:182

Assumption 1. For a given sensor i, the Bernoulli variable vector γ(i)(t) is independent183

of γ(i)(s), for t 6= s, and also γ(i)(t) is independent of γ(j)(t), for any two sensors184

i 6= j.185

Assumption 2. For a given sensor i, γ(i)(t) is independent of x(t), u(t) and v(j)(t), for186

any i, j = 1, . . . , R.187

Assumption 3. u(t) and v(i)(t) are correlated white noises with respective pseudo vari-188

ances Q(t) and R(i)(t). Moreover, E[u(t)v(i)H(s)] = S(i)(t)δt,s.189

Assumption 4. v(i)(t) is independent of v(j)(t), for any two sensors i 6= j.190
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Assumption 5. The initial state x(0) is independent of the additive noises u(t) and191

v(i)(t), for t ≥ 0 and i = 1, . . . , R.192

Remark 1. From the hypotheses established on the Bernoulli random variables it follows that,
for any j1, j2 = 1, . . . , n, ν1, ν2 = r, η, η′, η′′ and i1, i2 = 1, . . . , R,

E
[
γ
(i1)
j1,ν1

(t)γ(i2)
j2,ν2

(t)
]
=

 p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2

p(i1)j1,ν1
(t)p(i2)j2,ν2

(t), otherwise,

E
[(

1− γ
(i1)
j1,η1

(t)
)(

1− γ
(i2)
j2,η2

(t)
)]

=

 1− p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2(

1− p(i1)j1,ν1
(t)
)(

1− p(i2)j2,ν2
(t)
)

, otherwise.

(4)

3.1. One-state delay system under Tk-properness193

In this section, a TWL one-state delay system, which exploits the full amount second-194

order statistics information available, is introduced and analyzed in Tk-properness195

scenarios, k = 1, 2.196

For this purpose, consider the augmented vectors x̄(t), z̄(i)(t), and ȳ(i)(t) of x(t),
z(i)(t), and y(i)(t), respectively. Then, by applying Property 2 on the system (3), the
following TWL one-state delay model can be defined:

x̄(t + 1) =Φ̄(t)x̄(t) + ū(t), t ≥ 0

z̄(i)(t) =x̄(t) + v̄(i)(t), t ≥ 0, i = 1, . . . , R

ȳ(i)(t) =D̄γ(i)
(t)z̄(i)(t) + D̄(1−γ(i))

(t)z̄(i)(t− 1), t ≥ 1, i = 1, . . . , R

(5)

where

Φ̄(t) =


F1(t) F2(t) F3(t) F4(t)
F∗2(t) F∗1(t) F∗4(t) F∗3(t)
Fη

3(t) Fη
4(t) Fη

1(t) Fη
2(t)

Fη′′

4 (t) Fη′′

3 (t) Fη′′

2 (t) Fη′′

1 (t)

.

Moreover, from Assumption 3, the pseudo correlation matrices associated to the197

augmented noise vectors ū(t) and v̄(i)(t) are given by198

E[ū(t)ūH(s)] = Q̄(t)δt,s;199

E[v̄(i)(t)v̄(i)H(s)] = R̄(i)(t)δt,s;200

E[ū(t)v̄(i)H(s)] = S̄(i)(t)δt,s.201

The following result establishes conditions on system (5) which lead toTk-properness202

properties of the processes involved.203

Proposition 1. Consider the TWL one-state delay model (5).204

1. If x(0) and u(t) are T1-proper, and Φ̄(t) is a block diagonal matrix of the form

Φ̄(t) = diag
(

F1(t), F∗1(t), Fη
1(t), Fη′′

1 (t)
)

,

then x(t) is T1-proper.205

If additionally p(i)j,r (t) = p(i)j,η(t) = p(i)j,η′(t) = p(i)j,η′′(t) , p(i)j (t), ∀t, j, i, v(i)(t) is206

T1-proper, and u(t) and v(i)(t) are cross T1-proper, then x(t) and y(i)(t) are jointly207

T1-proper.208

2. If x(0) and u(t) are T2-proper, and Φ̄(t) is a block diagonal matrix of the form

Φ̄(t) = diag
(

Φ2(t), Φ
η
2(t)

)
, with Φ2(t) =

[
F1(t) F2(t)
F∗2(t) F∗1(t)

]
, (6)
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then x(t) is T2-proper.209

If additionally, p(i)j,r (t) = p(i)j,η(t), p(i)j,η′(t) = p(i)j,η′′(t), ∀t, j, i, v(i)(t) is T2-proper and u(t),210

and v(i)(t) are cross T2-proper, then x(t) and y(i)(t) are jointly T2-proper.211

Proof. The proof follows straight away from the application of the corresponding condi-212

tions on system (5) and the computation of the augmented pseudo correlation matrices213

Rx̄(t, s) and Rx̄ȳ(i)(t, s).214

Remark 2. Note that under T1-properness conditions, Π̄
γ(i)

(t) = E[D̄γ(i)
(t)], i = 1, . . . , R, is215

a diagonal matrix of the form Π̄
γ(i)

(t) = I4⊗Π
(i)
1 (t), with Π

(i)
1 (t) = diag(p(i)1,r(t), . . . , p(i)n,r(t)).216

Likewise, under T2-properness conditions, Π̄
γ(i)

(t) = E[D̄γ(i)
(t)], i = 1, . . . , R, takes the

form of a block diagonal matrix as follows:

Π̄
γ(i)

(t) = diag
(

Π
(i)
2 (t), Π

(i)
2 (t)

)
, with Π

(i)
2 (t) =

1
2

[
Π

(i)
a (t) Π

(i)
b (t)

Π
(i)
b (t) Π

(i)
a (t)

]
,

where Π
(i)
a (t) = diag(p(i)1,r(t)+ p(i)1,η′(t), . . . , p(i)n,r(t)+ p(i)n,η′(t)) and Π

(i)
b (t) = diag(p(i)1,r(t)−217

p(i)1,η′(t), . . . , p(i)n,r(t)− p(i)n,η′(t)).218

3.2. Compact state-space model219

By stacking the observations at each sensor in a global observation vector~z(t) =[
z̄(1)

T
(t), . . . , z̄(R)T(t)

]T
, the TWL one-state delay system (5) can be rewriting in the

following compact form:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0

~z(t) = C̄x̄(t) +~v(t), t ≥ 0

~y(t) = D̄~γ
(t)~z(t) + D̄(1−~γ)

(t)~z(t− 1), t ≥ 1

(7)

where~v(t) and~y(t) denote the stacking vector of v̄(i)T(t) and ȳ(i)T(t), for i = 1, . . . , R,220

respectively. Moreover, C̄ = 1R ⊗ I4n, D̄~γ
(t) = L̄diag(~γr(t))L̄H and D̄(1−~γ)

(t) =221

L̄diag(14Rn −~γr(t))L̄H, with L̄ = IR ⊗ T n.222

In addition, E[~v(t)~vH(s)] = R̄(t)δt,s, with R̄(t) = diag
(

R̄(1)(t), . . . , R̄(R)(t)
)

, and223

E[ū(t)~vH(s)] = S̄(t)δt,s, with S̄(t) =
[
S̄(1)(t), . . . , S̄(R)(t)

]
.224

In this paper, our aim is to investigate the centralized fusion estimation problem
under conditions of Tk-properness, with k = 1, 2. In this sense, the use of Tk-properness
properties allows us to consider the following observation equation with reduced di-
mension:

yk(t) = D̃~γ
k (t)C̄x̄(t) + D̃(1−~γ)

k (t)C̄x̄(t− 1) + D̃~γ
k (t)~v(t) + D̃(1−~γ)

k (t)~v(t− 1), t ≥ 1
(8)

where x̄(t) satisfies the state equation in (7), D̃~γ
k (t) = Lk diag(~γr(t))L̄H and D̃(1−~γ)

k (t) =225

Lk diag(14Rn −~γr(t))L̄H, with Lk = IR ⊗ T k and T k =
1
2Bk ⊗ In, where226

• T1-proper scenario:227

B1 =
[

1 η η′ η′′
]
;228

y1(t) ,
[
y(1)T(t), . . . , y(R)T(t)

]T.229

• T2-proper scenario:230
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B2 =

[
1 η η′ η′′

1 −η η′ −η′′

]
;231

y2(t) ,
[
y(1)T(t), y(1)H(t), . . . , y(R)T(t), y(R)H(t)

]T
.232

Remark 3. Note that under Tk-properness conditions, Π̃
~γ
k (t) = E

[
D̃~γ

k (t)
]

is given by233

Π̃
~γ
k (t) = diag

(
Π̃

γ(1)

k (t), . . . , Π̃
γ(R)

k (t)
)

, where Π̃
γ(i)

k (t) =
[
Π

(i)
k (t), 0kn×(4−k)n

]
with Π

(i)
k (t),234

i = 1, . . . , R, given in Remark 2.235

Similarly, Π̃
(1−~γ)
k (t) = E

[
D̃(1−~γ)

k (t)
]

is given by the block diagonal matrix Π̃
(1−~γ)
k (t) =236

diag
(

Π̃
(1−γ(1))
k (t), . . . , Π̃

(1−γ(R))
k (t)

)
with Π̃

(1−γ(i))
k (t) =

[
Ikn −Π

(i)
k (t), 0kn×(4−k)n

]
.237

Accordingly, whereas the optimal linear processing for the estimation of a tessarine238

signal x(t) is the TWL processing based on the set of measurements {~y(1), . . .~y(t)},239

under Tk-properness conditions the optimal estimator of x(t) ∈ Tn, x̂Tk (t|s), can be240

computed by projecting on the set of measurements {yk(1), . . . , yk(s)}, for k = 1, 2.241

Thereby, Tk estimators are obtained that have the same performance as TWL estimators242

but with a lower computational complexity. More importantly, this computational load243

saving cannot be achieved with the real approach.244

Note that tessarine algebra is not a Hilbert space and, as a consequence, neither245

the existence nor the uniqueness of the projection on a set of tessarines is guaranteed.246

Nevertheless, this drawback has been overcome in [22] by defining a suitable metric247

which assures the existence the existence and uniqueness of these projections.248

The following property sets the correlations between the noises, ū(t) and~v(t), and249

both the augmented state x̄(t) and the observations yk(t).250

Property 3. Under Assumptions 1-4, the following correlations hold:251

1. Correlations between noises and the augmented state:252

(a) E[x̄(t + 1)ūH(t)] = Q̄(t);253

(b) E[x̄(t)ūH(s)] = 04n×4n, for t ≤ s;254

(c) E[x̄(t + 1)~vH(t)] = S̄(t);255

(d) E[x̄(t)~vH(s)] = 04n×4Rn, for t ≤ s.256

2. Correlations between noises and Tk observations:257

(a) E[yk(t)ūH(t)] = Π̃
~γ
k (t)S̄

H(t);258

(b) E[yk(t + 1)ūH(t)] = Π̃
~γ
k (t + 1)C̄Q̄(t) + Π̃

(1−γ)
k (t + 1)S̄H(t);259

(c) E[yk(t)ūH(s)] = 0kRn×4n, for t < s;260

(d) E[yk(t)~vH(t)] = Π̃
~γ
k (t)R̄(t);261

(e) E[yk(t + 1)~vH(t)] = Π̃
~γ
k (t + 1)C̄S̄(t) + Π̃

(1−γ)
k (t + 1)R̄(t);262

(f) E[yk(t)~vH(s)] = 0kRn×4Rn, for t < s.263

Remark 4. Observe that, under a Tk-properness setting, the state equation in (7) is equivalent
to the Tk state equation:

xk(t + 1) = Φk(t)xk(t) + uk(t), t ≥ 0 (9)

where,264

• in a T1-proper scenario, x1(t) , x(t), u1(t) , u(t), and Φ1(t) , F1(t);265

• in a T2-proper scenario, x2(t) , [xT(t), xH(t)]T, u2(t) , [uT(t), uH(t)]T and Φ2(t) is as266

in (6).267
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In such cases, Qk(t) = E[uk(t)uH
k (t)] and Sk(t) = E[uk(t)vHk (t)], for k = 1, 2, where v1(t) ,268

~v(t) and v2(t) , [~vT(t),~vH(t)]T, with~v(t) =
[
v(1)T(t), . . . , v(R)T(t)

]T
.269

Nevertheless, equation (9) cannot be used together with the observation equation (8), since270

the latter involves the augmented state vector x̄(t).271

4. Tk-proper centralized fusion estimation algorithms272

In this section, the Tk centralized fusion filter, prediction, and fixed-point smoothing273

algorithms are designed on the basis of the set of observations {yk(1), . . . , yk(s)}, k = 1, 2,274

defined in (8).275

With this purpose in mind, the observation equation (8) is used to devise filtering,276

prediction, and smoothing algorithms for the augmented state vector x̄(t). Then, by277

applying Tk-properness properties, the recursive formulas for the filtering, prediction,278

and smoothing estimators of xk(t) are easily determined. Finally, the desired Tk central-279

ized fusion filtering, prediction and fixed-point smoothing estimators are obtained as a280

subvector of them.281

Theorems 1-3 summarize the recursive formulas for the computation of these Tk282

estimators as well as their associated error variances.283

4.1. Tk centralized fusion filter284

Theorem 1. The optimal Tk centralized fusion filter x̂Tk (t|t) and one-step predictor x̂Tk (t+ 1|t)285

for the state x(t) are obtained by extracting the first n fcomponents of the optimal estimator286

x̂k(t|t) and x̂k(t + 1|t), respectively, which are recursively computed from the expressions287

x̂k(t|t) = x̂k(t|t− 1) + Lk(t)εk(t), t ≥ 1 (10)

x̂k(t + 1|t) = Φk(t)x̂k(t|t) + Hk(t)εk(t), t ≥ 1 (11)

with x̂k(0|0) = 0kn and x̂k(1|0) = 0kn, and where Hk(t) = Sk(t)Πk(t)Ω−1
k (t), with Πk(t) =288

diag
(

Π
(1)
k (t), . . . , Π

(R)
k (t)

)
and Π

(i)
k (t), i = 1, . . . , R, defined in Remark 2 for k = 1, 2.289

Moreover, εk(t) are the innovations calculated as follows

εk(t) = yk(t)−Πk(t)Ck x̂k(t|t− 1)− (Im −Πk(t))Ck x̂k(t− 1|t− 1)

− (Im −Πk(t))Gk(t− 1)εk(t− 1), t ≥ 1 (12)

with m = kRn, εk(0) = 0m, and where Ck = 1R ⊗ Ikn, Gk(t) = Rk(t)Πk(t)Ω−1
k (t), with290

Rk(t) = E[vk(t)vHk (t)].291

In addition, Lk(t) = Θk(t)Ω−1
k (t), where Θ(t) is computed through the equation

Θk(t) = Pk(t|t− 1)CT
k Πk(t) + Φk(t− 1)Pk(t− 1|t− 1)CT

k (Im −Πk(t))

+ Sk(t− 1)(Im −Πk(t))−Hk(t− 1)ΘH
k (t− 1)CT

k (Im −Πk(t))

−Φk(t− 1)Θk(t− 1)GH
k (t− 1)(Im −Πk(t))

−Hk(t− 1)Ωk(t− 1)GH
k (t− 1)(Im −Πk(t)), t > 1 (13)

with Θk(1) = Pk(1|0)CT
k Πk(1)+Φk(0)Pk(0|0)CT

k (Im −Πk(1))+Sk(0)(Im −Πk(1)), and
the innovations covariance matrix Ωk(t) is obtained as

Ωk(t) = M1
k(t)−M2

k(t)−M3
k(t) +M4

k(t) + Πk(t)CkPk(t|t− 1)CT
k Πk(t)

+ Πk(t)Jk(t− 1)(Im −Πk(t)) + (Im −Πk(t))JHk (t− 1)Πk(t)

+ (Im −Πk(t))
[
CkPk(t− 1|t− 1)CT

k − CkΘk(t− 1)GH
k (t− 1)−Gk(t− 1)ΘH

k (t− 1)CT
k

−Gk(t− 1)Ωk(t− 1) GH
k (t− 1)

]
(Im −Πk(t)), t > 1 (14)
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with

Ωk(1) = M1
k(1)−M2

k(1)−M3
k(1) +M4

k(1) + Πk(1)CkPk(1|0)CT
k Πk(1)

+ Πk(1)Jk(0)(Im −Πk(1)) + (Im −Πk(1))J
H
k (0)C

T
k Πk(1)

+ (Im −Πk(1))CkPk(0|0)CT
k (Im −Πk(1)), (15)

where

Jk(t) = Ck
[
Φk(t)Pk(t|t)CT

k −Hk(t)ΘH
k (t)C

T
k + Sk(t)−Φk(t)Θk(t)GH

k (t)

−Hk(t)Ωk(t)GH
k (t)

]
,

with Jk(0) = Ck
[
Φk(0)Pk(0|0)CT

k + Sk(0)
]
, and292

M1
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HC̄Σ̄(t− 1)C̄TL̄

)}
LH

k ,293

M2
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HC̄S̄(t)L̄

)}
LH

k ,294

M3
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HS̄H(t)C̄TL̄

)}
LH

k ,295

M4
k(t) = Lk

{
∆pr

(t) ◦
(
L̄HR̄(t)L̄

)
+ ∆1−pr

(t) ◦
(
L̄HR̄(t− 1)L̄

)}
LH

k ,296

with ∆pr
(t) = E[~γr(t)~γrT(t)], ∆1−pr

(t) = E[(14Rn −~γr(t))(14Rn −~γr(t))T], whose entries
are given in (4), and

Σ̄(t) =
[
Φ̄(t)D̄(t)Φ̄H(t) + Q̄(t)− Φ̄(t)D̄(t)− D̄(t)Φ̄H(t) + D̄(t)

]
,

where D̄(t) = Rx̄(t, t) is recursively computed from

D̄(t) = Φ̄(t− 1)D̄(t− 1)Φ̄H(t− 1) + Q̄(t− 1). (16)

Finally, the Tk filtering and prediction error pseudo covariance matrices PTk (t|t) and
PTk (t + 1|t), respectively, are obtained from the filtering and prediction error pseudo covariance
matrices Pk(t|t) and Pk(t + 1|t), calculated from the recursive expressions

Pk(t|t) = Pk(t|t− 1)−Θk(t)Ω−1
k (t)ΘH

k (t), (17)

with Pk(0|0) = E[xk(0)xHk (0)], and

Pk(t + 1|t) = Φk(t)Pk(t|t)ΦH
k (t)−Hk(t)ΘH

k (t)Φ
H
k (t)

−Φk(t)Θk(t)HH
k (t)−Hk(t)Ωk(t)HH

k (t) + Qk(t), (18)

with Pk(1|0) = Φk(0)Pk(0|0)ΦH
k (0) + Qk(0).297

Remark 5. In the implementation of the above algorithm, the particular structure of Σ̄(t) under298

Tk-properness conditions should be taken into consideration. In this regard, it is not difficult to299

check that Σ̄(t) is a block diagonal matrix of the form300

• T1-properness: Σ̄(t) = diag
(

Σ1(t), Σ∗1(t), Σ
η
1(t), Σ

η′′

1 (t)
)

;301

• T2-properness: Σ̄(t) = diag
(

Σ2(t), Σ
η
2(t)

)
.302

with Σk(t) = Φk(t)Dk(t)ΦH
k (t) + Qk(t) − Φk(t)Dk(t) − Dk(t)ΦH

k (t) + Dk(t), k = 1, 2,
where Dk(t) = Rxk (t, t) is recursively computed from

Dk(t) = Φk(t− 1)Dk(t− 1)ΦH
k (t− 1) + Qk(t− 1).
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4.2. Tk centralized fusion predictor303

Theorem 2. The optimal Tk centralized fusion predictor x̂Tk (t + τ|t) for the state x(t) is
obtained by extracting the first n components of the optimal estimator x̂k(t + τ|t) which is
recursively computed from the expression

x̂k(t + τ|t) = Φk(t + τ − 1)x̂k(t + τ − 1|t), τ ≥ 2 (19)

with the initialization the one-step predictor x̂k(t + 1|t) given by (11).304

Moreover, the Tk-proper prediction error pseudo covariance matrix PTk (t + τ|t) is obtained
from the prediction error pseudo covariance matrix Pk(t + τ|t), computed from the recursive
expression

Pk(t + τ|t) = Φk(t + τ − 1)Pk(t + τ − 1|t)ΦH
k (t + τ − 1) + Qk(t + τ − 1), τ ≥ 2

(20)

with the initialization the one-step prediction error pseudo covariance matrix given by (18).305

4.3. Tk centralized fusion smoother306

Theorem 3. The optimal Tk centralized fusion fixed-point smoother x̂Tk (t|s), for a fixed instant307

t < s, for the state x(t) is obtained by extracting the n first components of the optimal estimator308

x̂k(t|s) which is recursively computed from the expressions309

x̂k(t|s) = x̂k(t|s− 1) + Lk(t, s)εk(s), t ≥ 1 (21)

with initial condition x̂k(t|t) given by (10), and where the innovations εk(s) are recursively
computed from (12) and Lk(t, s) = Θk(t, s)Ω−1

k (s) with Ω−1
k (s) obtained from the recursive

expression (14) and

Θk(t, s) =
[
Ek(t, s− 1)ΦH

k (s− 1)−Θk(t, s− 1)HH
k (s− 1)

]
CT

k Πk(s)

+
[
Ek(t, s− 1)CT

k −Θk(t, s− 1)GH
k (s− 1)

]
(Im −Πk(s)), (22)

Ek(t, s) =
[
Ek(t, s− 1)ΦH

k (s− 1)−Θk(t, s− 1)HH
k (s− 1)

](
I − CT

k Πk(s)LH
k (s)

)
−
[
Ek(t, s− 1)CT

k −Θk(t, s− 1)GH
k (s− 1)

]
(Im −Πk(s))LH

k (s), (23)

with initialization Θk(t, t) = Θk(t) given by (13) and Ek(t, t) = Pk(t|t).310

Furthermore, the Tk fixed-point smoothing error pseudo covariance matrix is recursively
computed through the expression

Pk(t|s) = Pk(t|s− 1)−Θk(t, s)Ω−1
k (s)ΘH

k (t, s), (24)

with Pk(t|t) the filtering error pseudo covariance matrix (17).311

As mentioned above, the main advantage of the proposed Tk centralized fusion312

algorithms is that the resulting Tk centralized fusion estimators coincide with the optimal313

TWL counterparts; meanwhile, they lead to computational savings with respect to the314

one derived from a TWL approach.315

5. Simulation examples316

In this section, the effectiveness of the above Tk-proper centralized fusion estimation317

algorithms is experimentally analyzed. With this aim, the following simulation examples318

have be chosen to reveal the superiority of the proposed Tk-proper estimators over their319

counterparts in the quaternion domain, when Tk-properness conditions are present.320
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Let us consider the following tessarine system with three sensors:

x(t + 1) = f1x(t) + u(t)

z(i)(t) =x(t) + v(i)(t), i = 1, 2, 3

y(i)(t) =γ(i)(t) ? z(i)(t) + (1− γ(i)(t)) ? z(i)(t− 1), i = 1, 2, 3

with f1 = 0.9− 0.3η + 0.02η′ + 0.1η′′ ∈ T. The following assumptions are made on the321

initial state and additive noises:322

1. The initial state x0 is a tessarine Gaussian variable determined by the following
real covariance matrix:

E[xr(0)xrT(0)] =


a 0 −2.5 0
0 4 0 −2.5
−2.5 0 a 0

0 −2.5 0 4

. (25)

2. u(t) is a tessarine white Gaussian noise with a real covariance matrix

E[ur(t)urT(s)] =


0.9 0 c 0
0 b 0 c
c 0 0.9 0
0 c 0 b

δt,s. (26)

3. The measurement noises v(i)(t) of the three sensors are tessarine white Gaussian
noises defined as follows:

v(i)(t) = αiu(t) + w(i)(t),

where the coefficients αi are the constant scalars1 α1 = 0.5, α2 = 0.8, and α3 = 0.4
and w(i)(t), i = 1, 2, 3, are T1-proper tessarine white Gaussian noises with mean
zeros and real covariance matrices

E[w(i)r
(t)w(i)rT

(s)] =


βi 0 0 0
0 βi 0 0
0 0 βi 0
0 0 0 βi

δt,s,

with β1 = 4, β2 = 8, and β3 = 25, and independent of u(t).323

Moreover, at every sensor i, the Bernoulli random variables γ
(i)
ν (t), ν = r, η, η′, η′′,324

have the constant probabilities P[γ(i)
ν (t) = 1] = p(i)ν , for all t ∈ T.325

In this framework, a comparative study between tessarine and quaternion ap-326

proaches is carry out to evaluate the performance of the proposed filtering, prediction327

and smoothing algorithms under T1 and T2 properness conditions.328

5.1. T1-Proper case329

Consider the values a = 4 in (25) and b = 0.9 and c = 0.3 in (26), and the Bernoulli330

probabilities331

• p(1)r = p(1)η = p(1)η′ = p(1)η′′ = p1;332

• p(2)r = p(2)η = p(2)η′ = p(2)η′′ = p2;333

• p(3)r = p(3)η = p(3)η′ = p(3)η′′ = p3.334

1 If αi = 0, then the noises u(t) and v(i)(t) are uncorrelated. In the opposite case, when αi becomes more different from 0, the correlation between u(t)
and v(i)(t) is stronger.
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Note that, under these conditions, both x(t) and y(i)(t), i = 1, 2, 3, are jointly T1-proper.335

For the purpose of comparison, the errors variances of both T1 and QSL estimators336

have been computed for different Bernoulli probabilities pi, i = 1, 2, 3. We denote the337

QSL error variances by PQSL(t|s).338

By way of illustration, we consider the same delay probabilities in the three sensors339

(p(1) = p(2) = p(3) = p) and, as a performance measure, we compute the difference340

between the T1 and QSL error variances associated to the filter, DE1(t|t) = PQSL(t|t)−341

P1(t|t), the 3-step predictor, DE1(t + 3|t) = PQSL(t + 3|t)− P1(t + 3|t), and the fixed-342

point smoother at t = 20, DE1(20|t) = PQSL(20|t)− P1(20|t), for t > 20.343

In Fig. 1, these differences are displayed for the Bernoulli probabilities p = 0, 0.2, 0.4,344

0.6, 0.8, 1. In these figures, the superiority in performance of T1 estimators over QSL345

estimators is confirmed since DE1 > 0 in every case. Additionally, in the filtering and346

prediction problem, it is observed that this superiority is higher when the Bernoulli347

probabilities are smaller, i.e., when the delay probabilities are greater. On the other hand,348

in the case of the fixed-point smoothing problem, the difference between the associated349

T1 and QSL error variances for any Bernoulli probability p is similar to the one obtained350

for Bernoulli probability 1− p, and the benefit of the T1 algorithm over the QSL one is351

higher when Bernoulli probabilities approach to 0.5.352

Next, we analyze in detail the benefits of our T1 estimation algorithms in terms353

of the Bernoulli probabilities of the three sensors p and for different values of c in (26).354

With this aim, the means of the difference between the T1 and QSL filtering, prediction355

and fixed-point smoothing error variances have been computed as356

• Filtering problem: MDEp
1 (t|t) =

1
100

100
∑

t=1
DEp

1 (t|t);357

• 3-step prediction problem: MDEp
1 (t + 3|t) = 1

97

97
∑

t=1
DEp

1 (t + 3|t);358

• Fixed-point smoothing problem: MDEp
1 (20|t) = 1

80

80
∑

t=1
DEp

1 (20|t).359

for p varying from 0 to 1 and the values of c = 0, 0.1 and 0.2, where DEp
1 (t|t), DEp

1 (t+ 3|t)360

and DEp
1 (20|t) denote the difference between the T1 and QSL filtering, 3-step prediction,361

and fixed-point smoothing error variances, respectively, for a value of the Bernoulli362

probability p. Note that in the case c = 0, the noise u(t) is, besides being T1-proper,363

Q-proper, and a higher value of c means that the noise u(t) moves further away from364

the Q-properness condition. The results of this analysis are depicted in Fig. 2 where,365

on the one hand, we can clearly observe how the best performance of T1 filtering and366

prediction estimators is achieved when the Bernoulli probability takes the value 0, i.e.,367

when only one-step delay exists in the measurements. However, in the fixed-point368

smoothing problem T1 is more advantageous when the Bernoulli probability p tends to369

0.5. On the other hand, in every case, the superiority of our T1 estimation algorithms is370

more evident as the parameter c in (26) grows, i.e., the noise u(t) is further away from371

the Q-properness condition.372

373

374

5.2. T2-Proper case375

Consider the values a = 6 in (25), b = 0.3 in (26), and the Bernoulli probabilities376

for the three sensors as in Section 5.1. Note that, under these conditions, both x(t) and377

y(i)(t), i = 1, 2, 3, are jointly T2-proper.378

Thus, we are interested in comparing the behavior of T2 centralized fusion estima-379

tors with their counterparts in the quaternion domain, i.e., the quaternion semi-widely380

linear (QSWL) estimators. For this purpose, the T2 and QSWL error variances, P2(t|s)381

and PQSWL(t|s), respectively, have been computed by considering different Bernoulli382

probabilities for the three sensors.383
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Figure 1. Difference between QSL and T1 error variances for the problem of (a) filtering, (b) 3-step
prediction and (c) fixed-point smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M
D

E
1p
(t

|t)

(a) Filtering

c=0
c=0.3
c=0.6
c=0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
D

E
1p
(2

0
|t)

(c)Fixed-point smoothing

c=0
c=0.3
c=0.6
c=0.8
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filtering, (b) 3-step prediction and (c) fixed-point smoothing.
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Specifically, we consider the filtering, the 3-step prediction, and the fixed-point384

smoothing problems at t = 20, and, as a measure of comparison, we use the differ-385

ence between both QSWL and T2 error variances, which are defined as DE2(t|t) =386

PQSWL(t|t)− P2(t|t) (filtering), DE2(t + 3|t) = PQSWL(t + 3|t)− P2(t + 3|t) (3-step pre-387

diction), and DE2(20|t) = PQSWL(20|t)− P2(20|t) (fixed-point smoothing).388

Figures 3-4 compare the difference between QSWL and T2 centralized estimation389

error variances for different Bernoulli probabilities p1, p2 and p3. Specifically, Fig.390

3 analyzes the filtering and 3-step prediction error variance differences DE2(t|t) and391

DE2(t + 3|t) for the following cases:392

1. Case 1: for values of p1 = 0.1, 0.5, 0.9 in three situations: p2 = 0.9 and p3 = 0.1,393

p2 = 0.1 and p3 = 0.9, and p2 = p3 = 0.5;394

2. Case 2: for values of p2 = 0.1, 0.5, 0.9 in three situations: p1 = 0.9 and p3 = 0.1,395

p1 = 0.1 and p3 = 0.9, and p1 = p3 = 0.5;396

3. Case 3: for values of p3 = 0.1, 0.5, 0.9 in three situations: p1 = 0.9 and p2 = 0.1,397

p1 = 0.1 and p2 = 0.9, and p1 = p2 = 0.5.398

It should be highlighted that similar results are obtained with any other combination399

of Bernoulli probabilities pi, i = 1, 2, 3.400

From these figures, we can reaffirm that T2 processing is a better approach than401

the QSWL processing in terms of performance (DE2 > 0), and also this fact is more402

evident when the probabilities of the Bernoulli variables decreases (that is, the delays403

probabilities increase).404

The differences between both QSWL and T2 error variances for the fixed-point405

smoothing problem are illustrated in Fig. 4. Note that, since the behavior of the dif-406

ferences between QSWL and T2 fixed-point smoothing errors is similar for Bernoulli407

probabilities values pi and 1− pi, these differences are analyzed in the following cases:408

1. Case 4: for values of p1 = 0.1, 0.3, 0.5 in three situations: p2 = 0.1 and p3 = 0.3,409

p2 = 0.3 and p3 = 0.1, and p2 = p3 = 0.3.410

2. Case 5: for values of p2 = 0.1, 0.3, 0.5 in three situations: p1 = 0.1 and p3 = 0.3,411

p1 = 0.3 and p3 = 0.1, and p1 = p3 = 0.3.412

3. Case 6: for values of p3 = 0.1, 0.3, 0.5 in three situations: p1 = 0.1 and p2 = 0.3,413

p1 = 0.3 and p2 = 0.1, and p1 = p2 = 0.3.414

In every situation the better behavior of T2 processing over the QSWL processing is415

verified and also this superiority increases when the Bernoulli probabilities tends to 0.5,416

i.e., when there is a similar chance of receiving updated and delayed information.417

418

419

6. Discussion420

From among the different sensor fusion methods, it is the centralized fusion tech-421

niques that provide the optimal estimators from measurements of all sensors. Nev-422

ertheless, to avoid the computational burden involved in these estimates, especially423

in systems with a large number of sensors, suboptimum estimation algorithms have424

been traditionally designed by using a decentralized fusion approach. This paper has425

overcome the above computational difficulties without renouncing to obtain the opti-426

mal solution, by considering hypercomplex algebras. Quaternions and, more recently,427

tessarines are the most common 4D hypercomplex algebra used in signal processing.428

Neither of these algebras always performs better than the other and the choice of the429

most suitable one is conditioned by the characteristics of the signal.430

Due to the commutativity and reduced computational complexity, the tessarine431

algebra makes it particularly interesting for our purposes. Thus, under conditions of432

Tk-properness, filtering, prediction, and fixed-point smoothing algorithms of reduced433

dimension have been devised for the estimation of a vectorial tessarine signal based434
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Figure 3. Difference between QSWL and T2 error variances for the problem of filtering (left
column) and 3-step prediction (right column) for Cases 1-3.
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Figure 4. Difference between QSWL and T2 error variances for the fixed-point smoothing problem
for Cases 4-6.
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on one-step randomly delayed observations coming from multiple sensors stochastic435

systems with different delay rates and correlated noises. The reduction of the dimension436

of the problem under Tk-properness scenarios makes it possible for these algorithms437

to facilitate the computation of the optimal estimates with a lower computational cost438

in comparison with the real processing approach. It should be highlighted that this439

computational saving cannot be attained in the real field.440

The good performance of the algorithms proposed has been experimentally illus-441

trated by means of two simulation examples, where the better behavior of the proposed442

Tk estimates over their counterparts in the quaternion domain under Tk-properness443

conditions has been evidenced.444

In future research, we will set out to explore the design of decentralized fusion445

estimation algorithms for hypercomplex signals and investigate the use of new hyper-446

complex algebras in this field.447
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Appendix A Proof of Theorem 1456

The proof is based on the innovation technique. Consider the one-state delay model:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0

yk(t) = D̃γ
k (t)C̄x̄(t) + D̃(1−γ)

k (t)C̄x̄(t− 1) + D̃γ
k (t)~v(t) + D̃(1−γ)

k (t)~v(t− 1), t ≥ 1
(A1)

and define the innovations as εk(t) = yk(t)− ŷk(t|t− 1).457

In order to simplify the proof of Theorem 1, the following results have been previ-458

ously established.459

Appendix A.1 Preliminary results460

The following property, stated without proof, about the correlations between the461

innovations εk(t) and the augmented state x̄(t) and the noises ū(t) and vk(t), will be462

useful in the proof of Theorem 1.463

Property A1. Given the system (A1), and under the Assumptions 1-4, the following correlations464

hold:465

1. E[ū(t)εHk (t)] = S̄(t)Π̃γH

k (t).466

2. E[ū(t)εHk (s)] = 04n×m, for t > s.467

3. E[v̄(t)εHk (t)] = R̄(t)Π̃γH

k (t).468

4. E[v̄(t)εHk (s)] = 04Rn×m, for t > s.469

Moreover, the following results will be of interest in the derivation of the formulas470

given in Theorem 1.471

Lemma A1. Denote ∆D̃γ
k (t) = D̃γ

k (t)− Π̃
~γ
k (t) and ∆D̃(1−γ)

k (t) = D̃(1−γ)
k (t)− Π̃

(1−γ)
k (t).472

For any tessarine random vectors α1(t), α2(t) ∈ T4Rn and β(t) ∈ Tq, for any dimension q, the473

following relations hold:474
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1. E
[
∆D̃γ

k (t)α1(t)αH2(s)∆D̃
γH

k (t)
]
= Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)ᾱ2

H(s)]L̄
)}

LH
k .475

2. E
[
∆D̃γ

k (t)α1(t)αH2(s)D̃
γH

k (t)
]
= Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .476

3. E
[
∆D̃γ

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
= −Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .477

4. E
[
∆D̃γ

k (t)α1(t)βH(s)
]
= 0m×q.478

5. E
[
D̃γ

k (t)α1(t)αH2(s)D̃
γH

k (t)
]
= Lk

{
E
[
~γr(t)~γrT(t)

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .479

6. E
[
D̃γ

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
=480

Lk

{
E
[
~γr(t)(14Rn −~γr(t))T

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .481

7. E
[
D̃(1−γ)

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
=482

Lk

{
E
[
(Im −~γr(t))(Im −~γr(t))T

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .483

Proof. The proof is immediate from (1) and taking into account that D̃γ
k (t) = Lk diag(~γr(t))L̄H

484

and D̃(1−γ)
k (t) = Lk diag(14Rn −~γr(t))L̄H.485

Appendix A.2 Expressions in Theorem 1486

Although tessarine algebra is not a Hilbert space, the existence and uniqueness of
the projection of an element on the set of measurements {yk(1), . . . , yk(s)}, for k = 1, 2,
is guaranteed ([22]). Now, from Theorem 3 of [22], we obtain

ˆ̄x(t|t) = ˆ̄x(t|t− 1) + L̃k(t)εk(t), (A2)

with L̃k(t) = Θ̃k(t)Ω−1
k (t), where Θ̃k(t) = E[x̄(t)εHk (t)] and Ωk(t) = E[εk(t)εHk (t)].487

Then, by applying Tk-properness conditions, (10) is directly devised.488

Taking projections on both sides of the state and observation equations in (A1) onto
the linear space spanned by {εk(1), . . . , εk(t− 1)}, and using Property A1, we have

ˆ̄x(t + 1|t) = Φ̄(t) ˆ̄x(t|t) + H̃k(t)εk(t) (A3)

ŷk(t|t− 1) = Π̃
~γ
k (t)C̄ ˆ̄x(t|t− 1) + Π̃

(1−γ)
k (t)

[
C̄ ˆ̄x(t− 1|t− 1) + ˆ̄v(t− 1|t− 1)

]
(A4)

where H̃k(t) = S̄(t)Π̃γH

k (t)Ω−1
k (t) and ˆ̄v(t|t) = G̃k(t)εk(t), with G̃k(t) = R̄(t)Π̃γH

k (t)Ω−1
k (t).489

Then, (11) follows from (A3) and the Tk-properness conditions on Φ̄(t) and Π̃
~γ
k (t)490

established in Proposition 1 and Remark 3. Likewise, (12) is easily obtained from (A4).491

Consider now the gain matrix L̃k(t) = Θ̃k(t)Ω−1
k (t) in (A2). Denote the prediction

error and its covariance matrix as ε̄(t|t− 1) = x̄(t)− ˆ̄x(t|t− 1) and P̄(t|t− 1) = E[ε̄(t|t−
1)ε̄H(t|t− 1)], respectively. Then, by applying (A1), (A4), ε̄(t|t− 1) ⊥ ˆ̄x(t|t− 1), Property
3 and Property A1, we have

Θ̃k(t) = P̄(t|t− 1)C̄T
Π̃

γH

k (t)+ Φ̄(t− 1)P̄(t− 1|t− 1)C̄T
Π̃

(1−γ)H

k (t)+ S̄(t− 1)Π̃(1−γ)H

k (t)

− H̃k(t− 1)Θ̃H
k (t− 1)C̄T

Π̃
(1−γ)H

k (t)− Φ̄(t− 1)Θ̃k(t− 1)G̃H
k (t− 1)Π̃(1−γ)H

k (t)

− H̃k(t− 1)Ωk(t− 1)G̃H
k (t− 1)Π̃(1−γ)H

k (t), t > 1 (A5)

and thus, the recursive expression (13) is directly obtained from (A5), by applying the492

Tk-properness conditions on Φ̄(t), and denoting by Pk(t|t− 1) the first m×m submatrix493

of P̄(t|t− 1).494
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Next, we devise the expression for the innovation covariance matrix (14). For this
purpose, the innovations are rewritten in the following form

εk(t) = ∆D̃γ
k (t)C̄x̄(t)+ Π̃

~γ
k (t)C̄ε̄(t|t− 1)−∆D̃γ

k (t)C̄x̄(t− 1)+ Π̃
(1−γ)
k (t)C̄ε̄(t− 1|t− 1)

+ D̃γ
k (t)~v(t) + D̃(1−γ)

k (t)~v(t− 1)− Π̃
(1−γ)
k (t)G̃k(t− 1)εk(t− 1). (A6)

From (A3), the prediction error ε̄(t + 1|t) can be expressed as

ε̄(t + 1|t) = Φ̄(t)ε̄(t|t) + ū(t)− H̃k(t)εk(t). (A7)

As a consequence, from (A7), using Property 3 and Property A1, and taking into account495

that ε̄(t|t) ⊥ εk(t), we have496

E[ū(t)ε̄H(t|t)] = −H̃k(t)Θ̃
H
k (t), (A8)

E[ε̄(t + 1|t)ε̄H(t|t)] = Φ̄(t)P̄(t|t)− H̃k(t)Θ̃
H
k (t), (A9)

E[ε̄(t|t)v̄H(t)] = −Θ̃k(t)G̃H
k (t), (A10)

E[ε̄(t|t)v̄H(t + 1)] = 04n×4Rn, (A11)

E[ε̄(t + 1|t)v̄H(t)] = S̄(t)− Φ̄(t)Θ̃k(t)G̃H
k (t)− H̃k(t)Ω̃k(t)G̃H

k (t), (A12)

E[ε̄(t + 1|t)v̄H(t + 1)] = 04n×4Rn. (A13)

Then, the expression (14) for the innovation covariance matrix is obtained from (A6),497

by using Lemma A1, Property 3, Property A1, (A9)-(A13), ε̄(t + 1|t) ⊥ εk(t), and by498

applying Tk properness conditions. Furthermore, the recursion of D̄(t) = E[x̄(t)x̄H(t)]499

given in (16) is a direct consequence of the augmented state equation in system (A1). In500

a similar way, Eq. (15) follows.501

In the following step, consider the filtering error covariance matrix P̄(t|t) =502

E[ε̄(t|t)ε̄H(t|t)] with ε̄(t|t) = x̄(t)− ˆ̄x(t|t). From (A2), we directly obtain that P̄(t|t) =503

P̄(t|t− 1)− Θ̃k(t)Ω−1
k (t)Θ̃H

k (t) and thus (17) holds by virtue of Tk properness condi-504

tions.505

Finally, from (A7) , and taking into consideration that ε̄(t|t) ⊥ εk(t), (A8), and
Property A1, we have

P̄(t + 1|t) = Φ̄(t)P̄(t|t)Φ̄H(t)− H̃k(t)Θ̃
H
k (t)Φ̄

H(t)

− Φ̄(t)Θ̃k(t)H̃H
k (t)− H̃k(t)Ωk(t)H̃H

k (t) + Q̄(t).

From Tk properness conditions (18) follows.506

Appendix B Proof of Theorem 2507

From the projection of x(t + τ) onto the linear space spanned by {εk(1), . . . , εk(t)},
we have

ˆ̄x(t + τ|t) = Φ(t + τ − 1) ˆ̄x(t + τ − 1|t), τ ≥ 2

Then, from Tk properness conditions, (19) holds.508

Finally, from (19), it is clear that the prediction error covariance matrix Pk(t + τ|t)509

satisfies the recursive expression (20).510

Appendix C Proof of Theorem 3511

By projecting the state x(t) onto the linear space spanned by {εk(1), . . . , εk(s)}, we
have

ˆ̄x(t|s) = ˆ̄x(t|s− 1) + L̃k(t, s)εk(s), t < s (A14)

with L̃k(t, s) = θ̃k(t, s)Ω−1
k (s), where θ̃k(t, s) = E[x̄(t)εHk (s)]. Then, (21) is directly512

derived from (A14), by applying Tk properness conditions.513
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Consider the matrix θ̃k(t, s). From (12) and (8), we have

θ̃k(t, s) = E[x̄(t)ε̄H(s|s− 1)]C̄T
Π̃
~γ
k (s) + E[x̄(t)ε̄H(s− 1|s− 1)]C̄T

(Im − Π̃
~γ
k (s))

− θ̃k(t, s− 1)G̃H
k (s− 1)(Im − Π̃

~γ
k (s))

Let us define the matrix Ē(t, s) = E
[
x̄(t)ε̄H(s|s)

]
. Thus, from (A1) and (A3), it follows

that

θ̃k(t, s) =
[
Ē(t, s− 1)Φ̄H(s− 1)− θ̃k(t, s− 1)H̃H

k (s− 1)
]
C̄T

Π̃
~γ
k (s)

+
[
Ē(t, s− 1)C̄T − θ̃k(t, s− 1)G̃H

k (s− 1)
]
(Im − Π̃

~γ
k (s)) (A15)

Then, (22) follows from T proper conditions.514

In a similar way, from (A1), (A2), (A3) and (A15), Ē(t, s) is of the form

Ē(t, s) =
[
Ē(t, s− 1)Φ̄H(s− 1)− θ̃k(t, s− 1)HH(s− 1)

](
Im − C̄T

Π̃
~γ
k (s)L

H(s)
)

−
[
Ē(t, s− 1)C̄T − θ̃k(t, s− 1)GH(s− 1)

]
(Im − Π̃

~γ
k (s))L

H(s) (A16)

where Ē(t, t) = P̄(t|t). Then, (23) follows from Tk proper conditions.515

Finally, (24) can be easily derived from (21).516
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