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Abstract: The centralized fusion estimation problem for discrete-time vectorial tessarine signals in
multiple sensor stochastic systems with random one-step delays and correlated noises is analyzed
under different T-properness conditions. Based on Ty, k = 1, 2, linear processing, new centralized
fusion filtering, prediction, and fixed-point smoothing algorithms are devised. These algorithms
have the advantage of providing optimal estimators with a significant reduction in computational
cost compared to that obtained through a real or a widely linear processing approach. Simulation
examples illustrate the effectiveness and applicability of the algorithms proposed, in which the
superiority of the Ty linear estimators over their counterparts in the quaternion domain is apparent.
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1. Introduction

Multi-sensor systems and related information fusion estimation theory have at-
tracted much attention over the last few decades due to their wide range of applications
in many fields, including target tracking, robotics, navigation, big data and signal
processing [1-7].

In practice, failures during data transmission are unavoidable and lead to uncertain
systems. In this regards, a significant problem is the estimation of the state from sys-
tems with random sensor delays (see, for example, [8-13]). Such delays may be mainly
caused by computational load, heavy network traffic, and the limited bandwidth of the
communication channel, as well as other limitations which mean that the measurements
are not always up to date [8]. It is commonly assumed that measurement delays can
be described by Bernoulli distributed random variables with known conditional proba-
bilities, where the values 1 and 0 of these variables indicate the presence or absence of
measurement delays in the corresponding sensor [10].

Traditionally, there have been two basic approaches to process the information
from multiple sensors, centralized and distributed fusion. In the former approach, all
the measurement data from each sensor are collected in a fusion center where they are
fused and processed, whereas in the distributed fusion method, the measurements of
each sensor are transmitted to a local processor where they are independently processed
before being transmitted to the fusion center. It is well known that centralized fusion
methods lead to the best (optimal) solution when all sensors work healthily [14,15].
The strength of this approach lies in the fact that it is easy to implement, and it makes
possible the best use of the available information. Accordingly, with the purpose of
optimal estimation, centralized fusion methodology has received increased attention in
recent literature related to multi-sensor fusion estimation (see for example, [9,16-18]).
Notwithstanding the foregoing, the main disadvantage of this approach is the high
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computational load that may be required, especially when the number of sensors is too
large. Alternatively, distributed fusion methodologies are developed with the purpose
of designing solutions that are robust to failures and have a reduced computational
load. The main handicap of these solutions is that they are suboptimal and, hence, it
is desirable to explore other alternatives that can alleviate the computational burden.
In this respect, the use of hypercomplex algebras may well offer an ideal framework
in which to analyze the properness characteristics of the signals which lead to lower
computational costs without losing optimality.

In general, the use of hypercomplex algebras has proliferated considerably in signal
processing problems because of their natural ability to model multi-dimensional data
giving rise to better geometrical interpretations. In this vein, quaternions and tessarines
appear as 4D hypercomplex algebras composed of a real part and three imaginary parts
which endows them with the ideal structure to describe three and four-dimensional
signals. Nowadays, they play a fundamental role in a variety of applications such
as robotics, avionics, 3D graphics, and virtual reality [19]. In principle, the use of
quaternions or tessarines means renouncing some of he usual properties of the real or
complex fields. Thus, while quaternion algebra is non-commutative, tessarines become
a non-division algebra. These properties make each algebra more appropriate for every
specific problem. With this in mind, in [20-23] the use of these two isodimensional
algebras are compared with the objective of showing how the choice of a particular
algebra may determine the proposed method performance.

In the related literature, quaternion algebra has been widely exploited as a signal
processing tool and it is still a trending topic in different areas. In particular, in the
area of multi-sensor fusion estimation, [24] and [25] proposed sensor fusion estimation
algorithms based on a quaternion extended Kalman filter, [26] and [27] have provided
robust distributed quaternion Kalman filtering algorithm for data fusion over sensor
networks dealing with three-dimensional data, and [28] designed a linear quaternion
fusion filter from multi-sensor observations. A common characteristic of all the esti-
mation algorithms above is that their methodologies are based on a strictly linear (SL)
processing. However, in the quaternion domain, optimal linear processing is widely
linear (WL) which requires the consideration of the quaternion signal and its three
involutions. In this framework, [29] devised WL filtering, prediction and smoothing
algorithms for multi-sensor systems with mixed uncertainties of sensor delays, packet
dropout and missing observations. Interestingly, when the signal presents properness
properties (cancellation of one or more of the three complementary covariance matrices),
the optimal processing is SL (if the signal is Q-proper) or semi-widely linear (if the signal
is C-proper) which amounts to operate on a vector with reduced dimension, which
means a significative reduction in the computational burden of the associated algorithms
(please review [30-33] for further details).

On the other hand, the use of tessarines is less common in the signal processing
literature and, to the best of the author’s knowledge, they have never been considered in
multi-sensor fusion estimation problems. In general, the use of tessarines in estimation
problems has been limited by the fact that it is not being a normed division algebra. This
drawback was successfully overcome in [22] by introducing a metric which guarantees
the existence and unicity of the optimal estimator. Moreover, although the optimal
processing in the tessarine field is the WL processing, under properness conditions it is
possible to get the optimal solution from estimation algorithms with lower computational
costs. In this sense, [22] and [23] introduced the concept of T; and T-properness and
provided a statistical test to determine whether a signal presents one of these properness
properties. According to the type of properness, the most suitable form of processing
is Ty linear processing, which supposes to operate on the signal itself, or T, linear
processing, based on the augmented vector given by the signal and its conjugate. The
application of both T; and T linear processing to the estimation problem has provided
optimal estimation algorithms of reduced dimension.
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Motivated by the above discussions, in this paper we consider a tessarine multiple
sensor system where each sensor may be delayed at any time independently from the
others. The probability of the occurrence of each delay is dealt by a Bernoulli distribution.
Moreover, unlike most sensor fusion estimation algorithms, the observation noises of
different sensors can be correlated. In this context, new centralized fusion filtering,
prediction and fixed-point smoothing algorithms are designed under both T; and T5-
properness conditions. The algorithms proposed provide the optimal estimations of
the state; meanwhile, the computational burden has been reduced with respect to the
counterpart tessarine WL (TWL) estimation algorithms. It is important to note that such
savings in computational burden cannot be achieved in the real field. The superiority of
these algorithms obtained from a T}, linear approach over those derived in the quaternion
domain is numerically demonstrated under different conditions of properness.

The remainder of the paper is organized as follows. Section 2 introduces the
notation used throughout the paper and briefly reviews the main concepts related to
the processing of tessarine signals and their implications under T} properness. Then, in
Section 3, the problem of estimating a tessarine signal in linear discrete stochastic systems
with random state delays and multiple sensors is formulated. Concretely, under T}, -
properness conditions, a compact state-space model of reduced dimension is proposed.
From this model, and based on T)-properness proterties, Ty centralized fusion filtering,
step ahead prediction, and fixed-point smoothing algorithms are devised in Section 4.
Furthermore, the goodness of these algorithms in performance is numerically analyzed
in Section 5 by means of a simulation example, where the superiority of the T} estimation
algorithms above over their counterparts in the quaternion domain is evidenced. The
paper ends with a section of conclusions. In order to maintain continuity, all technical
proofs have been deferred to the appendix section.

2. Preliminaries

Throughout this paper, and unless otherwise stated, all the random variables are
assumed to have zero-mean. Moreover, the notation and terminology is fairly standard.
They are summarized in the following two subsections.

2.1. Notation

Boldfaced upper case letters are used to denote matrices, boldfaced lower case
letters for column vectors, and lightfaced lower case letters for scalar quantities. I,
denotes identity matrix of dimension m, 0;,x,; denotes the n x m zero matrix, and 1,, and
0, represents the vectors of length n whose elements are all ones and zeros, respectively.

Superscripts *, T and H represent the tessarine conjugate, transpose, and Hermitian
transpose, respectively. Subscripts r and v, for v = 5,1’,", represent the real and
imaginary parts of a tessarine. Moreover, Z, R, and T are used to denote the set of
integer, real, and tessarine field, respectively. According to this notation, A € R"*"
(respectively, A € T"*™) means that A is a real (respectively, tessarine) n x m matrix, and
similarly r € R" (respectively, r € T") means that r is a m-dimensional real (respectively,
tessarine) vector.

Furthermore, E[-] and Cov(-) are the expectation and covariance operators and
diag(-) is a diagonal (or block diagonal) matrix with elements specified on the main
diagonal. 0, denotes the n x m zero matrix, I,, represents the identity matrix of
dimension 7 and 1, is the n-vector whose elements are all ones. 6, ; is the Kronecker
delta function, which is equal to one if I = 1, and zero otherwise. Finally, the Hadamard
and Kronecker products are denoted by o and ®, respectively.

2.2. Basic concepts and properties

The following property of the Hadamard product will be useful.
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Property 1. If A € R"*" and b € R", then
diag(b)A diag(b) = (bb”) o A. 1)
Definition 1. A tessarine random signal x(t) € T" is a stochastic process of the form [22]
x(t) = x; () + mxy (t) + 1'%, (£) +7"x,n (8), tEZL

where x,(t) € R", forv = r,n,4',4", are real random signals and {1,4,n',1"'} obeys the
following rules:

/ "

m' =", " =n n"n = =" =
The conjugate of a given tessarine random signal x(t) € T", is:
X () = % (£) — 1y (8) 4 1'%, (£) — 7" (1).

Moreover, the following two auxiliary tessarine vectors are defined as:
X () = xr(£) + 17y (8) = "% () = 11" (8),

XWI/(t) = Xr(t) — 17X;7(t) — 11’x,7/(t) + 11//X17//(t).

For a complete description of the second-order statistical properties of x(t), we need
to consider the augmented tessarine signal vector x(t) = [x (£),x%(t), x1" (£),x7" (£)]T.
The following relationship between the augmented vector and the real vector x" (t) =
X7 (1), x5 (), x;/ (1), x;,, (+)]T can be established:

x(t) =2T X' (1),

where T, = %A@ I,

! 17 Tli Tl//
A
A=l oy o |

1 _]7 _17/ 17//

with 7-1;7-71 = I4n'

Definition 2. Given two tessarine random signals x(t), y(s) € T", the product x between them
is defined as

x(8) xy(s) = () 0 yr(s) +17xy (£) 0 yy (5) +11"%y (8) 0y () + 17"y () 0 9y (). (2)
The following property of the product « is easy to check.

Property 2. The augmented vector of x(t) x y(s) is x(t) x y(s) = D*(t)y(s), where D*(t) =
T diag(x' (1)) T%.

Definition 3. The pseudo autocorrelation function of x(t) € T" is defined as Rx(t,s) =
E[x(t)x¥(s)], Vt,s € Z, and the pseudo cross-correlation function of x(t),y(t) € T" is defined
as Ruy(t,s) = E[x(t)y¥(s)], Vt,s € Z.

Note that, depending on the vanishing of the different pseudo correlation functions
Ryxv (t,8),v = *,1,1", various kinds of tessarine properness can be defined. In particular,
the following properness conditions in the tessarine domain has been recently introduced
in [22] and [23].
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Definition 4. A random signal x(t) € T" is said to be T1-proper (respectively, To-proper)
if, and only if, the functions Ry (t,s), with v = x,1,17" (respectively, v = n,4"), vanish
Vt,s € Z.

In a like manner, two random signals x(t) € T™ and y(t) € T"2 are cross T1-proper,
(respectively, cross To-proper) if, and only if, the functions Ryyv (t,s), with v = x,1,n" (respec-
tively, v =1,1"), vanish Vt,s € Z.

Moreover, x(t) and y(t) are jointly T1-proper (respectively, jointly To-proper) if, and
only if, they are T-proper (vespectively, To-proper) and cross T1-proper (respectively, cross
Ty-proper).

Remark that, T; properness is more restrictive than T, properness. Statistical tests
to experimentally check whether a signal is Ty-proper, k = 1,2, or improper have been
proposed in [22] and [23].

It should be highlighted that the different properness properties have direct im-
plications on the optimal linear processing. In general, the optimal linear processing
is the widely linear processing which requires to operate on the augmented tessarine
vector x(t). Nevertheless, in the case of joint Ty-properness, k = 1, 2, the optimal linear
processing is reduced to a Ty linear processing, with the corresponding decrease in the
dimension of the problem. In particular, T; linear processing is based on the tessarine
random signal itself, and Ty linear processing considers the augmented vector given by
the signal and its conjugate [23].

3. Problem formulation

Consider the following class of linear discrete stochastic systems with state delays
and multiple sensors:

(t+1) Fl(t)x(t)+F2(t)x*(t)+F3(t)x’7(t)+F4(t)x'7"(t)+u(t), t>0
O () =x(t) + v (t), t>0, i=1,...,R 3)
y@)(t) =D %zD () + (1, — D)) 2D (t=1), t>1, i=1,...,R

where R is the number of sensors, * is the product defined in (2), Fj(t) e Tnxn,
j = 1,2,3,4, are deterministic matrices, x(f) € T" is the system state to be esti-
mated, u(t) € T" is a tessarine noise, z()(t) € T" is the ith sensor outputs with
tessarine sensor noise v (t) € T, y()(t) € T" is the observation of the ith sensor,

Y D(t) = [fygi)( £),.. ,'y,(f)( t)]T € T" is a tessarine random vector whose components

'y]@(t) = ’y](zr)( ) + 177](/,3( ) + 77")/](2,(1}) + U”ygi),/(t), forj=1,...,n, are composed of in-

dependent Bernoulli random variables 'y(l)( t),j=1,. ,v=r,1,1,14", with known

v

probabilities p( )( t), and whose possible outcomes {0, 1} indicate if the v part of the jth
observation component of the ith sensor is up-to-date (case 'y( 0 (t)) = 1) or there exits

one-step delay (case '7j,v (t)) = 0).
The following assumptions for the above system (3) are made:

Assumption 1. For a given sensor i, the Bernoulli variable vector YO (t) is independent
of ¥ (s), for t # s, and also 7)) is independent of /) (), for any two sensors
i 4]

Assumption 2. For a given sensor i, 7/)(t) is independent of x(t), u(t) and v/) (t), for
anyi,j=1,...,R.

Assumption 3. u(t) and v())(t) are correlated white noises with respective pseudo vari-
ances Q(t) and R (). Moreover, E[u(t)v()"(s)] = S0 ()8,

Assumption 4. v(?) (¢) is independent of v{/) (¢), for any two sensors i # |.
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Assumption 5. The initial state x(0) is independent of the additive noises u(t) and
v(l)(t),fort >0andi=1,...,R.

Remark 1. From the hypotheses established on the Bernoulli random variables it follows that,
forany ji,jo=1,...,n,vy,vp =1,4,47 1" and iy,i, =1,...,R,

(i) ‘
[')’]1 V] ) (t)p](,zlfv)z(t), otherwise,

(i ) cpe e -
pil (), ifiy=iyj1=jo 1 =12
(D72, (1)] = { "

1

4)
(i1) cpe e .
(i) () ()] =) L P B i =121 = o, =12
E| (1= ) (1 =75, (D)) | = .
[( Jim )( 2112 )} ( p](l,gl(t))< p](123 (t )), otherwise.
3.1. One-state delay system under Ty-properness

In this section, a TWL one-state delay system, which exploits the full amount second-
order statistics information available, is introduced and analyzed in Ty-properness
scenarios, k = 1,2.

For this purpose, consider the augmented vectors x(t), z() (t), and y() () of x(t),
2\ (), and y) (), respectively. Then, by applying Property 2 on the system (3), the
following TWL one-state delay model can be defined:

x(t+1) =®(t)x(t) +a(t), t >0
z0(t) =x(t) + 99D (), >0, i=1,...,R (5)
( ,

where
Fi(t)  Fa(t) Fs(t)  Fa(t)
o | BO FHO EO EE
=| o dw do o
F{ (1) F{ () F(t) F (1)
Moreover, from Assumption 3, the pseudo correlation matrices associated to the
augmented noise vectors @(t) and ¥(?) (t) are given by

Ef@(t)a"(s)] = Q(t)ds;
E0(6)90%(s)] = RO (1)dy;
Ela(t)v"(s)] = 81)()3,s.

The following result establishes conditions on system (5) which lead to Ty-properness
properties of the processes involved.

~— —

Proposition 1. Consider the TWL one-state delay model (5).
1. Ifx(0) and u(t) are Ty-proper, and ®(t) is a block diagonal matrix of the form

(1) = diag (F1 (1), F; (1), F (1), F] (1)),

then x(t) is Tq-proper.

If additionally p'})(t) = pl) (1) = pll)(t) = pi.(5) 2 pl(6), v, ji, vO(t) is

Ty-proper, and u(t) and v()(t) are cross Ty-proper, then x(t) and y\) (t) are jointly
T1-proper.

2. Ifx(0) and u(t) are Ty-proper, and ®(t) is a block diagonal matrix of the form

B(t) = diag (@(1), ®(1)), with @ (1) = [ Egg Ei%ig } ©)
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then x(t) is Ty-proper.
If additionally, p](’r)(t) = p%(t), p](.,’;/(t) p]( ,3,,( ), Vt, j, i, v (t) is To-proper and u(t),

and v¥) (t) are cross Ty-proper, then x(t) and y\¥) (t) are jointly To-proper.
Proof. The proof follows straight away from the application of the corresponding condi-

tions on system (5) and the computation of the augmented pseudo correlation matrices
Ri(t,S) and R)_(y(i)(t,S). O

Remark 2. Note that under T1-properness conditions, 1=[7(i)( t) = E[’Dw) t)],i=1,...,Ris
a diagonal matrix of the form " =L ng) (t ) with l'[( )( ) diag(pgl;(t), cee, p,g’,)r(t)).

Likewise, under Ty-properness conditions, " ( ) = E[D” ( ),i=1,...,R, takes the
form of a block diagonal matrix as follows:

() = diag(ng")(t),n;")(t)), with T (1) = ;[

i)

"

where I'[fli) (t) = diag(pgl)(t) + pg,(t), ., p,(f),(t) + p%, (t)) and Hz(;i) (t) = diag(p@(t) _

P (8, P () = P ().

3.2. Compact state-space model

By stacking the observations at each sensor in a global observation vector Z(t) =
T
[2(1)T(t), .. .,Z(R)T(t)} , the TWL one-state delay system (5) can be rewriting in the
following compact form:

(t+1) = ®(Dx(t) +a(t), t >0

NI X
—~
~~
~—
|
A
bl
—~
~
~—
+
<!
—~
~~
—
~~
V
(@)
—~
N
~

where ¥(t) and ¥(t) denote the stacking vector of ()" (t) and §()"
respectively. Moreover, C = 1g ® Iy, DI(t) = Ldiag(7"(t))L" a
L diag(1sg, — 7" (1)) L%, with £ = Iz @ T .

In addition, E[v(t)V(s)] = R(t)dts, with R(t) = dlag( ROt ),...,R(R)(t)), and

E[a(t)¥¥(s)] = S(t)dys, with S(t) = [s<l>(t),...,s<1<>(t)].

In this paper, our aim is to investigate the centralized fusion estimation problem
under conditions of Tj-properness, with k = 1,2. In this sense, the use of Ty-properness
properties allows us to consider the following observation equation with reduced di-
mension:

ook

yi(t) = DY (t)ex(t) + D (Hex(t—1) + DY (1) (1) + DY (1)t —1), t > 1
8)

where x(t) satisfies the state equation in (7), ’13;’ (t) = Lidiag(7*(¢))L" and ’f),((l_:’) (t) =
L diag(1ar, — 7 (1)) L", with £ = Ig ® T and Ty = 2B, @ I,,, where
e  Ty-proper scenario:

Bl — [ 1 17 ’7/ 17// ]/

yi(t) & [y (@), y® @]

e  T,-proper scenario:


https://doi.org/10.20944/preprints202107.0389.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 d0i:10.20944/preprints202107.0389.v1

Remark 3. Note that under Ty-properness conditions, ﬂg( t) = {’f)z( )} is given by

1) (t) = diag <ng #),..., 1) )(t)), where T (1) = [n,(j) (t),Oan(4_k)n} with 11 (1),
i=1,...,R, given in Remark 2.
Similarly, f[,({l_y) (t)=E [’D,(clfv) (t)} is given by the block diagonal matrix ﬁ]((l—v) (t) =

diag (n,5”“>> 0),..., ") (t)) with 1) (1) = [T = T(8), 0410

Accordingly, whereas the optimal linear processing for the estimation of a tessarine
signal x(t) is the TWL processing based on the set of measurements {y(1),...¥(t)},
under Ty-properness conditions the optimal estimator of x(t) € T", x"(t|s), can be
computed by projecting on the set of measurements {yy(1),...,yx(s)}, for k = 1,2.
Thereby, T estimators are obtained that have the same performance as TWL estimators
but with a lower computational complexity. More importantly, this computational load
saving cannot be achieved with the real approach.

Note that tessarine algebra is not a Hilbert space and, as a consequence, neither
the existence nor the uniqueness of the projection on a set of tessarines is guaranteed.
Nevertheless, this drawback has been overcome in [22] by defining a suitable metric
which assures the existence the existence and uniqueness of these projections.

The following property sets the correlations between the noises, @(t) and v(t), and
both the augmented state x(¢) and the observations yy (t).

Property 3. Under Assumptions 1-4, the following correlations hold:

1. Correlations between noises and the augmented state:

(a) E[‘(t+1)' ()] =Q(t);

(b)  E[X(1)8"(s)] = Ogsan, for t <s;
(c) E[x (t+1)‘7”( )] =S(t);
(d)  E[x(t)¥¥(s)] = O4nxarn, fort <s.

2. Correlations between noises and T, observations:

(@ Elyx(tyaf(t)] = I} (t )SH(1);

(B Elye(t+1)af(t)] = I (£ + 1)CQ(t) + I (¢ +1)8H(1);
©  Elye(t)a(5)] = Ouan for £ < 5

@ Elye(t)9()] = I ()R ()

()  Elyp(t+1)¥H(t)] = I} (£ +1)CS () + T (¢ + 1R (8);
) E[yi(t)¥#(s)] = Orpxarn, for t

Remark 4. Observe that, under a Ty-properness setting, the state equation in (7) is equivalent
to the Ty state equation:

xp(t+1) = @ (t)x () + we(t), £>0 €)
where,
o ina Ty-proper scenario, x1(t) = x(t), uy(t) = u(t), and @1 (t) = F1(t);
o ina Ty-proper scenario, xp(t) = [xT(t), x#(t)]7, up(t) £ [u?(t), u?(t)]7 and ®,(t) is as

in (6).


https://doi.org/10.20944/preprints202107.0389.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 d0i:10.20944/preprints202107.0389.v1

In such cases, Qx(t) = Elug(t)ul(t)] and Si(t) = E[up(t)vE(t)], for k = 1,2, where vy (t) £

T
V(1) and vy (t) 2 [¥7(+), ¥H(1)] 7, with ¥(t) = [vﬂ)’(t),. N ,v<R>’(t)}
Nevertheless, equation (9) cannot be used together with the observation equation (8), since
the latter involves the augmented state vector x(t).

4. Ty-proper centralized fusion estimation algorithms

In this section, the T centralized fusion filter, prediction, and fixed-point smoothing
algorithms are designed on the basis of the set of observations {y,(1),...,yx(s)}, k= 1,2,
defined in (8).

With this purpose in mind, the observation equation (8) is used to devise filtering,
prediction, and smoothing algorithms for the augmented state vector x(¢). Then, by
applying Ty-properness properties, the recursive formulas for the filtering, prediction,
and smoothing estimators of x () are easily determined. Finally, the desired Ty central-
ized fusion filtering, prediction and fixed-point smoothing estimators are obtained as a
subvector of them.

Theorems 1-3 summarize the recursive formulas for the computation of these T}
estimators as well as their associated error variances.

4.1. Ty centralized fusion filter

Theorem 1. The optimal Ty centralized fusion filter X'k (t|t) and one-step predictor ™k (t + 1|t
for the state x(t) are obtained by extracting the first n fcomponents of the optimal estimator
Xi (t|t) and X (t 4 1|t), respectively, which are recursively computed from the expressions

R (t]t) = &e(H]E— 1) + Ly(B)er(t), t>1 (10)
Xe(t+1]t) = @ ()X (t]t) + He(t)er(t), t>1 (11)

with %, (0]0) = 0, and X;.(1|0) = O, and where Hy(t) = Sk(t)Hk(t)Qk_l(t), with I () =
diag (H](Cl) (t),.. .,H,((R)(t)) and H,(cl) (t),i=1,...,R, defined in Remark 2 fork = 1,2.
Moreover, & (t) are the innovations calculated as follows

ex(t) = yi(t) — () CiKp(t|t — 1) — (I — T () ) Cpe (t — 1|t — 1)
*(Im*Hk(f))Gk(tfl)Sk(tfl), t>1 (12)

with m = kRn, &.(0) = 0y, and where C; = 1g ® Iy, Gr(t) = Rk(t)Hk(t)le(t), with
Ry.(t) = E[vie(t)v{(1)].
In addition, Lk(t) O (t )Qk_l(t), where O(t) is computed through the equation

O (t) = Pr(t]t — 1)C{TI () + @y (t — 1)Pe(t — 1|t — 1)C (I — Ti(t))
+ S (t = 1) (I — TI(t)) — H(t = 1)OF (¢ — 1)C{ (I — Ti(t))
= @ (t = 1)O(t — )G{(t — 1) (Im — TIi(1))
—Hi(t =) (t — 1)GE(t = 1)(Iy — Tk (t)), t>1 (13)

with ©(1) = Py(1]0)C{TIk(1) + P (0)Pi(0[0)C (I — I(1)) + Sk (0) (I — Mi(1)), and
the innovations covariance matrix Oy (t) is obtained as

Q) = ME(E) = ME(E) — ME() + ME(E) + Te(£)CiP(EE — 1) CTTI(1)
+ 0 (D) (t = 1) (T — TI(£)) + (L — T (5)J2(t — 1T (1)
+ (I — T (1)) [ChPr(t — 1]t = 1)Cf — Cx@(t — )G (t — 1) — Gr(t — 1)Of (¢ — 1)C{
—Gr(t =) (t—1) GI(t — )] (I, —Tk(t)), t>1 (14)
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Qi (1) = ME(1) = ME(1) = ME(1) + ME(1) + T (1)CPe(1]0)ClTI, (1)
+ T (1)](0) (T — T (1)) + (T — Ti(1))J£(0) T (1)
+ (I — TI(1)) Ck Py (0[0)C (I — T (1)), (15)

where
Jk(t) = Cr[ @i (1) Pr(t|t)Cf — Hi (1) OF (H)Cf + Si(t) — @ () Ok (1) G (1)
— Hy (O (HG{(1)],
with Ji(0) = Cx[®x(0)P,(0[0)C{ + Sk(0)], and

Mi(t) = £ Cov(¥ (1) o (£7CE(t - 1)C"L) | £F,

T T

with AV () = E[* ()7 ()], A7 (1) = E[(Laga — 7°(8)) (Lara — 7 (1)) 7], whose entries
are given in (4), and

where D(t) = Rx(t, t) is recursively computed from
D(t) =®(t—-1)D(t—1)® (t—1)+Q(t—1). (16)

Finally, the Ty filtering and prediction error pseudo covariance matrices Pk (t|t) and
PTk(t + 1|t), respectively, are obtained from the filtering and prediction error pseudo covariance
matrices Py (t|t) and Py (t + 1|t), calculated from the recursive expressions

Pi(t]t) = Py(t]t — 1) — Ok (), (1) OF (1), (17)
with P(0]0) = E[x;(0)x#(0)], and
Pi(t+1[t) = @ (t)Pr(t]t) D () — H (1) OF (1) D (t)
— @ (N0 (HHE (1) — Hy () Qi (HHE (1) + Qi (), (18)
with Py(1]0) = @4 (0)P,(0]0)®F(0) + Q4(0).

Remark 5. In the implementation of the above algorithm, the particular structure of L(t) under
Ty-properness conditions should be taken into consideration. In this regard, it is not difficult to
check that L.(t) is a block diagonal matrix of the form

e Ty-properness: £(t) = diag ()21(t),):i‘(t),Zg(t),Z'f”(t));

o Ty-properness: L(t) = diag (Zz(t),):g(t))

with Ex(t) = B()D(HOL(E) + Qe(f) — B()DL(E) — De()E(t) + Dy(1), k = 1,2,
where Dy (t) = Ry, (t,t) is recursively computed from

Dy(t) = @kt — 1)Dy(t — 1)@y(t — 1) + Qe(t — 1).
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4.2. Ty centralized fusion predictor

Theorem 2. The optimal Ty centralized fusion predictor X'k(t + T|t) for the state x(t) is
obtained by extracting the first n components of the optimal estimator Xy (t + T|t) which is
recursively computed from the expression

Rt T|t) = Bp(t+T— Dx(E+T—1]t), T>2 (19)

with the initialization the one-step predictor X (t + 1|t) given by (11).

Moreover, the Ty-proper prediction error pseudo covariance matrix Pk (t + T|t) is obtained
from the prediction error pseudo covariance matrix Pi(t + T|t), computed from the recursive
expression

Pi(t+7|t) = @t + T - DP(t+T 1) @F(t+ 7 - 1)+ Qut+7-1), T>2
(20)

with the initialization the one-step prediction error pseudo covariance matrix given by (18).

4.3. Ty centralized fusion smoother

Theorem 3. The optimal Ty centralized fusion fixed-point smoother X'k (t|s), for a fixed instant
t <s, for the state x(t) is obtained by extracting the n first components of the optimal estimator
Xy (t|s) which is recursively computed from the expressions

Re(t|s) = Re(t]s — 1) + Li(t,s)er(s), t>1 (21)

with initial condition Xy (t|t) given by (10), and where the innovations &;(s) are recursively
computed from (12) and Li(t,s) = Ok(t, S)Qk_l (s) with Qk_l(s) obtained from the recursive
expression (14) and

Ok (t,s) = [Ex(t,s — 1)®f (s — 1) — Ok (t,5s — 1)H{ (s — 1)] C{TIi(s)
+ [Ex(t,s = 1)C{ — Ok(t,s = 1)G(s — 1)] (In — (s)),  (22)

E(t,s) = [Ex(t,s — 1)@ (s — 1) — Ok (t,s — 1)H{ (s — 1)] (I — C{TLi(s)L{(s))
— [Ek(t,s = 1)C{ — Ok (t,s — 1)Gg (s — 1)] (In — i (s))LE(s), (23)

with initialization O (t,t) = O(t) given by (13) and Ey(t,t) = Pr(t|t).
Furthermore, the Ty, fixed-point smoothing error pseudo covariance matrix is recursively
computed through the expression

Pi(t|s) = Pi(t|s — 1) — Ok(t,5)Q; ' (5)Of (t,5), (24)
with Py (t|t) the filtering error pseudo covariance matrix (17).

As mentioned above, the main advantage of the proposed Ty centralized fusion
algorithms is that the resulting T} centralized fusion estimators coincide with the optimal
TWL counterparts; meanwhile, they lead to computational savings with respect to the
one derived from a TWL approach.

5. Simulation examples

In this section, the effectiveness of the above Tj-proper centralized fusion estimation
algorithms is experimentally analyzed. With this aim, the following simulation examples
have be chosen to reveal the superiority of the proposed Ty-proper estimators over their
counterparts in the quaternion domain, when Tj-properness conditions are present.
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Let us consider the following tessarine system with three sensors:

x(t+1) =fix(t) + u(t)
20 =x(t) + 0 (1), i =1,2,3
Y1) =70(0) k20 (1) + (1 -1 (0) 520t~ 1), i =1,2,3
with f; = 0.9 — 0.3y +0.025' 4+ 0.15" € T. The following assumptions are made on the

initial state and additive noises:

1.  The initial state xg is a tessarine Gaussian variable determined by the following
real covariance matrix:

a 0 —-25 0
frmn T - 0 4 0 -25
0 -25 0 4
2. u(t) is a tessarine white Gaussian noise with a real covariance matrix
09 0 ¢ O
N I o b 0 ¢
0 ¢ 0 b

3. The measurement noises v()(t) of the three sensors are tessarine white Gaussian
noises defined as follows:

oD () = au(t) + wl(t),

where the coefficients a; are the constant scalars! #; = 0.5, a, = 0.8, and a3 = 0.4
and w'?) (t),i=1,2,3, are T1-proper tessarine white Gaussian noises with mean
zeros and real covariance matrices

B 0 0 0
O (w1 = | O P 00
E[W (t)w (S)] 0 0 ﬁi 0 5t,S/

0 0 0 B

with B =4, B = 8, and B3 = 25, and independent of u(t).
(i)

Moreover, at every sensor i, the Bernoulli random variables v, (t), v =r,4,1", 1",

have the constant probabilities P [’71(,1)(1?) =1] = p&l), forallt € T.

In this framework, a comparative study between tessarine and quaternion ap-
proaches is carry out to evaluate the performance of the proposed filtering, prediction
and smoothing algorithms under Ty and T, properness conditions.

5.1. T1-Proper case

Consider the values 2 = 4 in (25) and b = 0.9 and ¢ = 0.3 in (26), and the Bernoulli
probabilities

o p=p =l =) = p;
o =P =) =pl) = p
o W =p) =p) =pl) =pa

1 Ifa; = 0, then the noises u(t) and o) (t) are uncorrelated. In the opposite case, when «; becomes more different from 0, the correlation between u(t)
and o) (1) is stronger.
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Note that, under these conditions, both x(¢) and y(i) (t),i=1,2,3, arejointly Tq-proper.

For the purpose of comparison, the errors variances of both T; and QSL estimators
have been computed for different Bernoulli probabilities p;, i = 1,2, 3. We denote the
QSL error variances by Pggy (t]s).

By way of illustration, we consider the same delay probabilities in the three sensors
(pM) = p@ = p® = p)and, as a performance measure, we compute the difference
between the Ty and QSL error variances associated to the filter, DE; (t[t) = Pggy (t[t) —
Py (t|t), the 3-step predictor, DE; (t + 3|t) = Pogr(t + 3|t) — P1(t + 3|t), and the fixed-
point smoother at t = 20, DE;(20|t) = Pgs,(20[t) — P1(20]t), for t > 20.

In Fig. 1, these differences are displayed for the Bernoulli probabilities p = 0,0.2,0.4,
0.6,0.8,1. In these figures, the superiority in performance of T; estimators over QSL
estimators is confirmed since DE; > 0 in every case. Additionally, in the filtering and
prediction problem, it is observed that this superiority is higher when the Bernoulli
probabilities are smaller, i.e., when the delay probabilities are greater. On the other hand,
in the case of the fixed-point smoothing problem, the difference between the associated
T; and QSL error variances for any Bernoulli probability p is similar to the one obtained
for Bernoulli probability 1 — p, and the benefit of the T; algorithm over the QSL one is
higher when Bernoulli probabilities approach to 0.5.

Next, we analyze in detail the benefits of our T; estimation algorithms in terms
of the Bernoulli probabilities of the three sensors p and for different values of ¢ in (26).
With this aim, the means of the difference between the T and QSL filtering, prediction
and fixed-point smoothing error variances have been computed as

1 100
e Filtering problem: MDE! (t|t) = 00 L DEF(t|t);
t=1

97
e 3-step prediction problem: MDE! (t +3|t) = &, Y. DE}(t+3|t);
=1
1

80
¢ Fixed-point smoothing problem: MDE! (20[t) = &5 Y- DEY(20[t).
=1

for p varying from 0 to 1 and the values of ¢ = 0,0.1 and 0.2, where DEf(t|t), DEf(t +3|t)
and DEY (20|t) denote the difference between the Ty and QSL filtering, 3-step prediction,
and fixed-point smoothing error variances, respectively, for a value of the Bernoulli
probability p. Note that in the case ¢ = 0, the noise u(t) is, besides being T;-proper,
Q-proper, and a higher value of ¢ means that the noise u(t) moves further away from
the Q-properness condition. The results of this analysis are depicted in Fig. 2 where,
on the one hand, we can clearly observe how the best performance of T; filtering and
prediction estimators is achieved when the Bernoulli probability takes the value 0, i.e.,
when only one-step delay exists in the measurements. However, in the fixed-point
smoothing problem T is more advantageous when the Bernoulli probability p tends to
0.5. On the other hand, in every case, the superiority of our T estimation algorithms is
more evident as the parameter ¢ in (26) grows, i.e., the noise u(t) is further away from
the Q-properness condition.

5.2. Ty-Proper case

Consider the values a = 6 in (25), b = 0.3 in (26), and the Bernoulli probabilities
for the three sensors as in Section 5.1. Note that, under these conditions, both x(t) and
y(i) (t),i=1,2,3, are jointly T,-proper.

Thus, we are interested in comparing the behavior of T, centralized fusion estima-
tors with their counterparts in the quaternion domain, i.e., the quaternion semi-widely
linear (QSWL) estimators. For this purpose, the T, and QSWL error variances, P, (t|s)
and Pogw (t|s), respectively, have been computed by considering different Bernoulli
probabilities for the three sensors.
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Figure 1. Difference between QSL and T; error variances for the problem of (a) filtering, (b) 3-step
prediction and (c) fixed-point smoothing.
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Figure 2. Mean of the difference between QSL and T; error variances for the problem of (a)
filtering, (b) 3-step prediction and (c) fixed-point smoothing.
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Specifically, we consider the filtering, the 3-step prediction, and the fixed-point
smoothing problems at t = 20, and, as a measure of comparison, we use the differ-
ence between both QSWL and T, error variances, which are defined as DE,(t|t) =
PQSWL(t|t) — Py (tt) (filtering), DE,(t +3|t) = PQSWL(t +3|t) = Po(t+3|t) (3-step pre-
diction), and DE;(20|t) = Pgosw,(20]t) — P2(20]t) (fixed-point smoothing).

Figures 3-4 compare the difference between QSWL and T, centralized estimation
error variances for different Bernoulli probabilities p;, p» and p3. Specifically, Fig.
3 analyzes the filtering and 3-step prediction error variance differences DE;(t|t) and
DE;(t + 3|t) for the following cases:

1.  Case 1: for values of p; = 0.1,0.5,0.9 in three situations: p, = 0.9 and p3 = 0.1,
p2 =0.1and p3 = 0.9,and pr = p3 = 0.5;

2. Case 2: for values of pp = 0.1,0.5,0.9 in three situations: p; = 0.9 and p3 = 0.1,
p1 =0.1and p3 = 0.9, and p; = p3 = 0.5;

3. Case 3: for values of p3 = 0.1,0.5,0.9 in three situations: p; = 0.9 and p, = 0.1,
p1 = 0.1 and p2 = 0.9, and pP1=p2 = 0.5.

It should be highlighted that similar results are obtained with any other combination
of Bernoulli probabilities p;, i = 1,2, 3.

From these figures, we can reaffirm that T, processing is a better approach than
the QSWL processing in terms of performance (DE, > 0), and also this fact is more
evident when the probabilities of the Bernoulli variables decreases (that is, the delays
probabilities increase).

The differences between both QSWL and T, error variances for the fixed-point
smoothing problem are illustrated in Fig. 4. Note that, since the behavior of the dif-
ferences between QSWL and T, fixed-point smoothing errors is similar for Bernoulli
probabilities values p; and 1 — p;, these differences are analyzed in the following cases:

1.  Case 4: for values of p; = 0.1,0.3,0.5 in three situations: p, = 0.1 and p3 = 0.3,
p2 =03 and p3 = 0.1, and pp = p3 = 0.3.

2. Case 5: for values of pp = 0.1,0.3,0.5 in three situations: p; = 0.1 and p3 = 0.3,
p1 =0.3and p3 = 0.1, and p; = p3 = 0.3.

3. Case 6: for values of p3 = 0.1,0.3,0.5 in three situations: p; = 0.1 and p, = 0.3,
p1 =0.3and p, =0.1,and p; = po = 0.3.

In every situation the better behavior of T, processing over the QSWL processing is
verified and also this superiority increases when the Bernoulli probabilities tends to 0.5,
i.e., when there is a similar chance of receiving updated and delayed information.

6. Discussion

From among the different sensor fusion methods, it is the centralized fusion tech-
niques that provide the optimal estimators from measurements of all sensors. Nev-
ertheless, to avoid the computational burden involved in these estimates, especially
in systems with a large number of sensors, suboptimum estimation algorithms have
been traditionally designed by using a decentralized fusion approach. This paper has
overcome the above computational difficulties without renouncing to obtain the opti-
mal solution, by considering hypercomplex algebras. Quaternions and, more recently,
tessarines are the most common 4D hypercomplex algebra used in signal processing.
Neither of these algebras always performs better than the other and the choice of the
most suitable one is conditioned by the characteristics of the signal.

Due to the commutativity and reduced computational complexity, the tessarine
algebra makes it particularly interesting for our purposes. Thus, under conditions of
Ty-properness, filtering, prediction, and fixed-point smoothing algorithms of reduced
dimension have been devised for the estimation of a vectorial tessarine signal based
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Figure 3. Difference between QSWL and T, error variances for the problem of filtering (left
column) and 3-step prediction (right column) for Cases 1-3.
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Figure 4. Difference between QSWL and T, error variances for the fixed-point smoothing problem

for Cases 4-6.
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on one-step randomly delayed observations coming from multiple sensors stochastic
systems with different delay rates and correlated noises. The reduction of the dimension
of the problem under Tj-properness scenarios makes it possible for these algorithms
to facilitate the computation of the optimal estimates with a lower computational cost
in comparison with the real processing approach. It should be highlighted that this
computational saving cannot be attained in the real field.

The good performance of the algorithms proposed has been experimentally illus-
trated by means of two simulation examples, where the better behavior of the proposed
T} estimates over their counterparts in the quaternion domain under Ty-properness
conditions has been evidenced.

In future research, we will set out to explore the design of decentralized fusion
estimation algorithms for hypercomplex signals and investigate the use of new hyper-
complex algebras in this field.
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Appendix A Proof of Theorem 1

The proof is based on the innovation technique. Consider the one-state delay model:

x(t+1) =®(H)x(t) +a(t), t>0

yi(t) = DY (Bex(t) + DV (ex(t—1) + DY ()v(t) + DV (1wt —1), t > 1
(A1)

and define the innovations as & (t) = yx(t) — yx(t|t — 1).
In order to simplify the proof of Theorem 1, the following results have been previ-
ously established.

Appendix A.1 Preliminary results

The following property, stated without proof, about the correlations between the
innovations & (t) and the augmented state x(¢) and the noises @ (t) and vi(t), will be
useful in the proof of Theorem 1.

Property Al. Given the system (A1), and under the Assumptions 1-4, the following correlations

hold:

1 Efa(nel()] = S (o).

2. E[a(t)ef(s)] = Ogpxm, fort >s.
3. E[v(t)ef(n] = RO (1)

4. E[w(t)&f(s)] = O4rpxm, fort > s.

Moreover, the following results will be of interest in the derivation of the formulas
given in Theorem 1.

Lemma A1. Denote AD] (t) = D} (t) —
For any tessarine random vectors ay (t), ez (
following relations hold:

(17 (1) and AD " (1) = DV (1) -1 (1),
t) € T*R" and B(t) € T, for any dimension q, the
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1. E[aD] (e (ha(s)aD] ()] = £i{Cov(i ())O(ZHE[al(t)’z”(s 1z)} et
2 E[AD](m(ed()D] (1] = Li{Cov(3 (1) o (2"Elaa(0af(5)]2) } £F
5. E[aD](m (0ad()D " (1)] = —£{ Cov(i'( >>o(ZHE[m(t)af(snz)}cf-
4. E[AD(Om()B(s)| = 0uxg
5. E[Dl(m(ad(s)D] (0] = £ E[# ()7 (1)] o (Z"Ela (Nad(s)] £) } £F
6. E[Dl(Ha(ad(s)D " (1)] =
L E[7°(5) (arw = ()] o (Z"Elar ()ad(5)) ) } £F.
7. B[P mnads)D " (1] =
C{E[(Ln = 7 () (Ln = 7 ()] 0 (£*Elwr (e ()] 2 ) } £F.

Proof. The proof isimmediate from (1) and taking into account that D} (t) = Ly diag(7"(t)) ct
and D" (1) = £ diag(1ar, — 5 (1) L. O

Appendix A.2 Expressions in Theorem 1

Although tessarine algebra is not a Hilbert space, the existence and uniqueness of
the projection of an element on the set of measurements {yy(1),...,yx(s)}, fork =1,2,
is guaranteed ([22]). Now, from Theorem 3 of [22], we obtain

X(t|t) = X(t[t — 1) + Le(t)ex(t), (A2)

with Li(t) = O (t)Q, ' (t), where @y(t) = E[x(t)ell(t)] and Ox(t) = Elex(t)el(t)].
Then, by applying T- properness conditions, (10) is directly devised.

Taking projections on both sides of the state and observation equations in (A1) onto
the linear space spanned by {&(1),...,&(t — 1)}, and using Property A1, we have

X(t+1]t) = S(1)X(tt) + He(t)ex(t) (A3)
Ve(tt—1) =11 2( )Cﬁ(t|t—1)+fI,((1‘”’)(t)[(',’§<(t—1|t—1)+€z(t—1\t—1)] (A4)

where F(t) = S(OTIY ()01 (1) and ¥(t[£) = Gy () (t), with Gy (£) = R(OIT) () (8).
Then, (11) follows from (A3) and the Ty-properness conditions on ®(t) and ﬁZ(t)

established in Proposition 1 and Remark 3. Likewise, (12) is easily obtained from (A4).
Consider now the gain matrix Ly () = @, (t)Qy L(#) in (A2). Denote the prediction

error and its covariance matrix as €(f|t — 1) = x(t) — x(t|t — 1) and P(¢|t — 1) = E[e(t|t —

1)ef(t|t —1)], respectively. Then, by applying (A1), (A4), e(t|t — 1) L x(t|t — 1), Property

3 and Property A1, we have

Or(t) =P(t|t—1

DETI () +8(t =Rl 0+ 8- DI
A (- 10—

e (1) — (- 1)8(t— 1GEE— DI (1)
— (- 1O (- DGR - DI (1), £>1 (a5)

)
CHU

and thus, the recursive expression (13) is directly obtained from (A5), by applying the
Tx-properness conditions on ®(t), and denoting by Py (¢t — 1) the first m x m submatrix
of P(t|t —1).


https://doi.org/10.20944/preprints202107.0389.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021 d0i:10.20944/preprints202107.0389.v1

Next, we devise the expression for the innovation covariance matrix (14). For this
purpose, the innovations are rewritten in the following form

ex(t) = AD] (1) Cx(t) + ﬁ;f( t)Ce(t|t—1) —AD] (1)C x(t—l)+ﬂ,((1‘7)(t)éé(t—1|t—1)
+ D (¥ + DYV (vt —1) — A ()G (- De(t—1). (A6)

From (A3), the prediction error €(t + 1|t) can be expressed as

Je(t|t) +a(t) — He(t)ex(t). (A7)

e(t+1t) =

As a consequence, from (A7), using Property 3 and Property A1, and taking into account
that e(t|t) L & (t), we have

Ela(t)e” (t[1)] = —Fix(1) Ok (1), (A8)
Ele(t + 1|1)e(t[t)] = ®(+)P(t|t) — H() O (t), (A9)
E[e(t|t)o(t)] = =0 (1)GE(t), (A10)
E[e(t|t) 9" (t +1)] = Ogprarn, (A11)
E[e(t+ 1) (t)] = S(t) — ®(1)Ok(1)GE (1) — Hi () (HGE(H),  (A12)
E[ (t+ 1|t) ( +1)] = Oy x4Rn- (A13)

Then, the expression (14) for the innovation covariance matrix is obtained from (A6),
by using Lemma A1, Property 3, Property Al, (A9)-(A13), &(t +1|t) L &/(t), and by
applying Ty properness conditions. Furthermore, the recursion of D(t) = E[x(t)x"(¢)]
given in (16) is a direct consequence of the augmented state equation in system (A1l). In
a similar way, Eq. (15) follows.

In the following step, consider the filtering error covariance matrix P(t[t) =
Ele(t|t)et(t|t)] with e(t|t) = x(t) — x(¢|t). From (A2), we directly obtain that P(t|t) =
P(tt—1) — @k(t)ﬂk_l(t)ég(t) and thus (17) holds by virtue of Ty properness condi-
tions.

Finally, from (A7) , and taking into consideration that (f|t) L &(t), (A8), and
Property Al, we have

P(t+1]t) = ®(1)P(t[t) D" (1) — Fie(1) O} (1) B" (1)
— & ()0 (H)H (1) — He(H) O () HE(1) + Q).

From T} properness conditions (18) follows.

Appendix B Proof of Theorem 2

From the projection of x(t + T) onto the linear space spanned by {e(1),...,&(t)},
we have
x(t+tlt) =®(t+T1—1)x(t+7—-1]t), T >2

Then, from T} properness conditions, (19) holds.
Finally, from (19), it is clear that the prediction error covariance matrix Py (t + T|t)
satisfies the recursive expression (20).

Appendix C Proof of Theorem 3

By projecting the state x(t) onto the linear space spanned by {&;(1),...,&(s)}, we
have
x(t]s) = x(t|s — 1) + L (t,8)ex(s), t <s (A14)

with Li(t,s) = 0c(t,5)Q, ' (s), where 8;(t,s) = E[x(t)ell(s)]. Then, (21) is directly
derived from (A14), by applying Ty properness conditions.
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Consider the matrix 8y (t,s). From (12) and (8), we have

B(t,s) = E[X(t)&¥(s]s — 1)]CTTI} (s) + E[x()e™ (s — 1|s — 1)]C (I — T} (5))
—Bi(t,s — 1)G(s — 1)(Iy — 1] (5))

Let us define the matrix E(t,s) = E[x(t)&"(s|s)]. Thus, from (A1) and (A3), it follows
that

Bi(t,s) = [E(t,s—l)cbﬁ(s—n Be(t, 5—1)HH(S—1)]C I

U

(s)
+ [E(hs —1)€" = Be(t,s — 1)GR(s - )| (1, — T (5)) (A15)

Then, (22) follows from T proper conditions.
In a similar way, from (A1), (A2), (A3) and (A15), E(t, s) is of the form

E(t,s):[E(t,s—l)cb‘*<s—1)—ék<t,s—1)HH(s—1)]( — Tl (s)L (s))
— [B(ts = 1)€T = 8¢(t,s — 1)GH(s = D] (1 — [T (5))L(5)  (A16)

where E(t,t) = P(t|t). Then, (23) follows from T} proper conditions.
Finally, (24) can be easily derived from (21).
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