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ABSTRACT

The nonlinear deformation and stress analysis of a circular torus is a difficult
undertaking due to its complicated topology and the variation of the Gauss
curvature. A nonlinear deformation (only one term in strain is omitted) of
Mindlin torus was formulated in terms of the generalized displacement, and a
general Maple code was written for numerical simulations. Numerical inves-
tigations show that the results obtained by nonlinear Mindlin, linear Mindlin,
nonlinear Kirchhoff-Love, and linear Kirchhoff-Love models are close to each
other. The study further reveals that the linear Kirchhoff-Love modeling of
the circular torus gives good accuracy and provides assurance that the non-
linear deformation and stress analysis (not dynamics) of a Mindlin torus can
be replaced by a simpler formulation, such as a linear Kirchhoff-Love theory
of the torus, which has not been reported in the literature.

1. Introduction

Torii or toroidal shells are widely used in various industrial applications, such as water tanks,

fuel reactor shells, rocket fuel tanks, and piping. The torus has been studied for more than 110 years.

For a review on the analysis of axisymmetric toroidal shells, including a historical perspective, the

reader is referred to the literature [1, 2, 3,4, 5,6, 7,9, 10, 11, 12].

Reissner [13] and Meissner [14, 15] derived a mixed equation to determine the elastic defor-

mation of shells of revolution under axisymmetric loading [5]. Wissler [16] applied the Reissner-

Meissner equations to toroidal shells and obtained the first exact series solutions. Tolke [17] further

expanded the Reissner-Meissner theory, combining the equations by cleverly transforming them

into a single complex differential equation. Tolke’s complex differential formulation was later fur-
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ther developed into a general theory of shells by Novozhilov [1]. Chang (name later changed to
Zhang) [18] proposed an asymptotic solution of Tolke’s toroidal equations in the 1/3-order Bessel
functions and search of his group [19]. Tao [20] obtained the exact homogenous solution of the
Reissner-Meissner torus equation in terms of the Heun function [21]. Sun [10, 11] obtained the
exact solution of the Novozhilov torus equation in terms of Heun functions as well, and proposed
a computational algorithm based on the Novozhilov equation [1]. Sun [11] studied the geometry-
induced rigidity in an elastic torus from a circular to oblique elliptic cross-section based on the
nonlinear Kirchhoff-Love theory of shells.

In classical plate/shell theory [28], the transverse normal and shear stresses are neglected. The
first-order shear deformation plate/shell theory extends the kinematics of the classical shell the-
ory (CST) by relaxing the normally restrictions and allowing for arbitrary but constant rotation of
transverse normals [22, 23, 24]. The third-order shear deformation plate/shell theory further re-
laxes the kinematics hypothesis by removing the straightness assumptions, i.e., the straight normal
to the middle surface before deformation may become cubic curves after deformation [25]. The
most significant difference between the classical and shear deformation theories is the effect of in-
cluding transverse shear deformation on the predicted deflections, buckling loads, and frequencies.
In general, the classical plate/shell theory under-predicts deflection and over-predicts frequency as
well as buckling loads of plates/shells with a side-to-thickness ratio of order 20. Therefore, for a
thick shell with a side-to-thickness ratio of order less than 20, the first- or third-order shear defor-
mation shell theory should be used [26]. The reason behind the difference is that the shells with
the classical kinematics are "stiffer" than those with the higher-order kinematics. Regarding the
nonlinear shear deformation of the torus, or the so-called Mindlin torus, no results have been re-
ported in the literature, except [27], in which the natural frequencies of moderately thick and thick

toroidal shells were studied.
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To investigate the influence of the shear deformation on the torus, the Mindlin displacement
model is applied to the torus in this work. The rest of this paper is organized as follows. In Section 2,
the nonlinear displacement governing equations of the Mindlin torus are derived. Several numerical
investigations on the circular Mindlin torus acted on by internal pressure and combined forces are
carried out in Sections 3 and 4. Results from different models of the theory of shells are presented

in Section 5. Conclusions with perspectives are given in Section 6.

2. Formulation of elastic Mindlin torus in terms of generalized displacement field

Up to now, there have been three kind of formulations of a torus, i.e., the mixed formulation
[13, 15], complex-form formulation [1, 17], and displacement formulation [11]. Each has differ-
ent advantage and disadvantages, and the governing equations in terms of displacement must be
adopted for nonlinear shear deformation of shells.

Recently, [11] derived the displacement equations of the torus using the Kirchhoff-Love theory,
which assumes that a normal line remains straight and perpendicular to the neutral plane of the shell
middle surface during bending. In contrast, Mindlin theory retains the assumption that the line re-
mains straight, but is no longer perpendicular to the neutral plane. This means that Kirchhoff theory
applies to thin plates, while Mindlin theory applies to thick plates, in which shear deformation may
be significant.

A surface of revolution is generated by the rotation of a plane curve about an axis in its plane.
This generating curve is called a meridian, and an arbitrary point on the middle surface of the shell
is described by specifying the particular meridian on which it is found, and by giving the value of
a second coordinate that varies along the meridian and is constant on a circle around the axis of the
shell, which is called a latitude circle [5].

A meridian is identified by the angular distance 6 of its plane from that of a datum meridian

and a second coordinate is chosen, namely, the angle ¢ between a normal to the shell and its axis
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Figure 1: Surface of revolution.

of revolution. If the middle surface of the shell is a sphere, these coordinates are the spherical
coordinates used in geography: @ is the longitude and ¢ is the complement to the latitude, i.e., the
co-latitude [5].

Figure 1 shows a meridian of the shell. Let r be the distance of one of its points from the axis of
rotation and r, its radius of curvature. In our equations we also need the length r,, measured on a
normal to the meridian between its intersection with the axis of rotation and the middle surface. Itis
the second radius of curvature of the shell, and we read from Fig. 1 the relation r = r, sin ¢. For the

line element ds of the meridian, we have ds = r,d¢, and since dr = dscos ¢ and dz = dssin ¢,

drysin¢

g T1cos ¢.

we have the relations Z—; =r,cos ¢, Z—; = r, sin ¢ and Gauss-Codazzi relation

For the shells of revolution shown in Fig. 1, the positions of points on the middle surface will
be determined by the angles 6 and ¢. Further, let r; be the radius of curvature of the meridian and
r, the radius of curvature of the normal section, tangential to the parallel circle. This second radius

is equal to the segment of the perpendicular to the middle surface between this surface and the axis

of the torus.

The principal radii r, are given by r, = ﬁ = %S;“” Applying the Gauss-Codazzi relation
rycos¢ = dnd we find principal radii r; = ﬁ%. Therefore, we have the principal radii
of the circular torus as follows: r, =a, r, = —— +a

sin ¢
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Figure 2: Geometry of the torus; the Lamé coefficients are A| =r,, and A, = r,sin¢

Under the same assumptions and restrictions as in the classical plate theory, but relaxing the
normality conditions, for the first-order theory, the displacement field (U, V', W) in a shell can be

expressed in the form

U($,0) = u(p) + {I(d),
V(g,0) =0, (1

W(.0) = w(¢),

in which £ is coordinate in thickness direction, (u, v, w) are the displacements on the mid-surface of
the shell and (9) are the rotations of a normal to the reference surface. (u, w, 9) are the generalized
displacements of the torus.

The strain and curvature change of the full nonlinear theory of shells [6, 26, 28, 29] are shown
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Table 1

Full nonlinear theory: strain field (g4, €4), the change of curvature (k,, xy)

and the shear strain y,

1, du 11 du 2 192
;(E+W)+——(—+LU) +§19

¢ 202 °d¢
—_———
&g Rj;nsil¢(ucot¢+w)+ %[%(ucot¢+w)}2
Ko %% l(g—; w)%%+§282
Kg szssflqs@ (liii(fz(s::i;ﬁ I(ucot ¢ + w)
1) 9+ %Z—g - g

Table 2

Shallow shells: the strain field (e, £5) and the change of curvature (x4, k) and the shear strain y,,

in Table 1.

— Lodu 1g2
€¢ = a(l;;ﬁ +LU)+ 219
_ sin
gg | = R+asin¢(ucot¢+w)
. T
¢ |~ ade
K cos ¢
4 R+{1f1in¢
— law _u
7¢ - 9+ adeo a

Based on the above full strain field, several approximations are proposed [6, 26, 28, 29]. A

popular one is the nonlinear theory of shallow shells [26], which can be formulated by omitting all

the underbrace teams in Table 1; the strain fields of the theory of shallow shells are shown in Table

2.

It should be noted that if the term, %a—lz(j—;') + w)?, were kept, the Maple code in the appendix

does not work due to the fact that the dsolve/numeric/bvp/convertsys unable to convert to an explicit

first-order system. In order to find out which term causes the problem, let’s check the structure of
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Table 3
A nonlinear theory: strain field (e, &), the change of curvature (x, xp)

and the shear strain y,, to be used in this paper

— 1,.du I1 du 5 1 o2
€y | = ;(E +w) + Ez(w% +w )+§,9
———
i 1 sin ¢ 5
g | = R:;nsil¢(u00t¢+W)+E[W(ucmd)-'-wH
ao Ldu _ 1d9 T
= “m (o tw-—+ =9
" vaot 3ap T aag T @
Ky | = cos¢ 9+ sm¢>c9s¢> 9ot b+ w)
R+asing (R + asin ¢)2
= Tdw _u
Yo | = 9+ 00 "

the term %;—z(s—; + w)?, which can be expanded as follows
11 du 2 11 du 2 du 2
——=(—+w) ===[(—) +w— + w’l. 2
2a2(a’q’> w) 2612[((1(1)) wd¢ w?] )
——

After trying, we found that the underbrance term, (Z—;)z, is the source of the problem, which will
be delectable compared with other terms, because the deformation in the meridian direction ¢ is
relatively smaller than the deformation in the hoop or angular 6 direction.

To capture more rich deformation information, the strain field (e e €,), the change of curvature
(k> Kp) and shear strain (y,hi) are used in this paper, as shown in Table 3.

It worth mentioning that a circular torus using the nonlinear strain field listed in Table 3 has
not been seen in the literature.

The resultant membrane forces are Ny = K(e,+vey), Ny = K(vey+égy), the resultant bending
moments are M, = B(k,+vk,), My = B(vk,+k,), and resultant shear force Q y = kGhy,, where
the membrane stiffness K = %, the bending stiffness B = %, the thickness is denoted by #,

the Young’s modulus is denoted by E, and the Poisson ratio is denoted by v, and k = % is called

shear correction factor [26].

Page 7 of 19


https://doi.org/10.20944/preprints202107.0371.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2021

Figure 3: Loading, forces, and moments of the torus

Regarding the forces shown in Fig. 3, the balance equations [26] are

%((R + asin $)N,) —aNycosp+(R+a sin 90,

—(R+asing)N,9 + a(R + asing)q, = 0,
d
d¢

Ny sin ¢

N
(R + asin $)Q,) — a(R + asin ¢)(7‘” t Raasing 3)

_ 4
d¢

%((R + asin )M ) —acos M, — a(R + asin »Q, =0,

((R+asing)N,9) + a(R + asin ¢)q, =0,

where the distributed loads g, and g, = p are along the ¢ and ¢ directions, respectively.

Equation 3 can be further simplified by substituting the constitutive relations into Eq. 3, which
will generate final equations as a six-order nonlinear ordinary differential equation (ODE) system
about the generalized displacement (u, w, d). Clearly, the ODE system has no analytical solution
and we must turn to a numerical solution.

For simplification of presentation, physical units will not be plotted in all figures, and are listed

in Table 4.
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Table 4
Physical units used in this paper
R a h E v | My | Ny
m m m|N/m>| 1| N | N/m
0y oy u w 0,
N/m | N/m*> | m m m

Note: N is the physical unit of force and denotes Newtons.

3. Half-torus acted on by combined loads F, P,and M at free boundary

When there were no oblique angles, namely, f = 0, all formulations reduced to the normal

elliptic torus. A normal torus with a cut along its parallel at ¢ = % or ¢ = —% under load F is
LN N
P P
F F

Figure 4: u(-7)=0, w(-3) =0, fl—:(—g) =0, Ny(7) =0, Q4(n) = P, My(m) = M

shown in Fig. 4.

From combined results shown in Fig. 5, it is clear that the stress and deformation are affected

by the thickness change.

4. A 3/2-half-torus acted on by the combined loads F, P,and M at free boundary

A %—half—torus acted on by combined loads is shown in Fig. 6.
A %—half—circular—torus with a fixed boundary at ¢ = —% and ¢ = wr actedonby F,, P, M, and
q is shown in Fig. 6. For this problem, we will vary the thickness while keeping other parameters

constant. The numerical results of the circular torus are shown in Fig. 7.
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Figure 5: Torus under the combined loads F, P,and M. Torus data: @ = 03[m], R = 1[m], E =
20x 101N /m?, v=0.3, M = 100[N], F =300[N /m], P = 500[N /m], and h = 0.05k[m]

5. Comparison of studies and discussion: Mindlin torus vs. Kirchhoff-Love torus

To show the effect of the shear deformation on the strength and deformation of the torus and

validation of the Kirchhoff-Love assumption, we present some comparison studies between the
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Figure 6: u(-2) =0, w(-%) =0, 24(-2) = 0, Ny(x) =0, Qy(x) = P, My(n) = M

s do
Table 5
Full nonlinear Kirchhoff-Love theory: strain field (4, £4) and the change of curvature (x4, xp)
= Tdu T _Tdw L uy
£y | = a(d¢+w)+21( ade T
g | = —R:;ns‘i’; ¢(u cotp +w) + 5[—Rj;nfn ¢(u cot ¢ + w))?
= | T4 Tdwfuy T du g _Tdw uy T Tdw  uy)
Ko | = ad¢( a¢:1¢ +1a()j+ a2(d¢ +w;d¢(¢ a dglbd+ DTzl adp T 2
= _CosQ 14w U SIM@eose (14w 4 U
Ko | = R+asin¢( adgp + a) + (R+asin¢)2( adg + a)(uCOt¢+ w)

Mindlin torus and Kirchhoff-Love torus in both nonlinear and linear deformations.

For comparison purpose, the strain field of the Kirchhoff-Love shells can be obtained by re-

placing the rotation 9 by 9 = —%fi—: + g, and then we have the strain field of the Kirchhoff-Love
shells as shown in Table 5.

In the following, we will test both Mindlin and Kirchhoff-Love assumptions for thick shells, for
which the thickness is h < g, which is beyond the range of the thin-shell assumption 4 < %. As
previously, we only change the torus thickness while keeping all other parameters constant. The
comparisons are shown in Fig. 8.

The digital results of the internal moment and force are listed in Table 6. Some abbreviations are
defined as: NLinM, nonlinear Mindlin; LinM, linear Mindlin; NlinKL, nonlinear Kirchhoff-Love;
LinKL, Kirchhoff-Love.

The numerical studies show that the results of NLinM are close to those of LinM, NLinKL,

and LinKL, except for the shear force Q e
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Figure 7:  Torus data: a = 03[ml], R = 1[ml, h = S[ml, E = 2.0 x 10" N /m?, v

80[N /m?], F = 300[N /m], P = 500[N /m], M = 100[N]

The digital results of the generalized displacement (u, w, &) are listed in Table 7.

= 03,9 =

The numerical studies show that the generalized displacements (u, w, 9) of NLinM are close

to those of LinM, NLinKL, and LinKL in the case of thickness 2 = 4h

thin>»

where the thickness of a
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Figure 8:

Torus data: a = 0.3[m], R = 1[m
200[N /m], P = 1500[N /m], M = 50[N] an

I, E
h=:

[
dh=3

= 0.06[m]

(d) Vertical deformation 6.

=20x 10""N/m?, v =03, q=20[N/m*], F =

Table 6
Results of moment and membrane force
(@=-5] NLnM | LinM | NLnKL | LinKL
M¢[N] —107.983 —107.982 —129.328 —129.327
N¢[N/m] —2135.575 | =2135.571 | =2135.575 | —=2135.571
Q¢[N/m] 2331.061 2331.036 2505.783 2505.756
NLinM, nonlinear Mindlin; LinM, linear Mindlin; NlinKL, nonlinear Kirchhoff-Love; LinKL, Kirchhoff-Love
Table 7
Generalized displacement (u, w, 9)
@=m] NLnM | LinM | NGnKL | LinKL
u[m] —7.228e—7 | =7.228¢ -7 | =7.157e =7 | —=7.157e -7
w[m] 9.062¢ —6 | 9.062¢e—6 | 8.860e—6 | 8.860¢ —6
9 —-0.127¢e—4 | =0.127¢—4 | —0.127e—4 | —0.127e -4

NLinM, nonlinear Mindlin; LinM, linear Mindlin; NlinKL, nonlinear Kirchhoff-Love; LinKL, Kirchhoff-Love

thin torus is defined as h,,;, = %. The torus with thickness £ can be definitely considered a "thick"

torus.

The comparison studies clearly indicate that the nonlinear Mindlin torus modeling can be re-

placed by the modeling of the linear Kirchhoff-Love torus. The reason behind this scenario is that
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all the square terms of both strain and rotation can be neglected from elastic energy perspectives.
To have a better idea on the contribution of different energy densities, the shearing energy
density, bending energy density and membrance energy density are shown in Fig.9. The numerical

results of the elastic energy densities have not been seen in the literature.
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/
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00002 00004 [\
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0 0
n .m0 n o= 3n o=
4 4 2 4
0
pver—————
(c) Membrance energy density E,,,. (d) Shearing-bending energy density comparison.

Figure 9: Torus data: @ = 0.3[m], R = 1[m], E = 20 x 10''N/m?, v = 0.3, ¢ = 20[N/m?], F =

[
200[N /m], P = 1500[N /m], M = 50[N] and h = g = 0.06[m]

Fig.9 clearly reveals that the bending energy is bigger than the shear energy, and membrane
energy is much bigger than both bending energy and shear energy. Therefore, the shearing energy
makes little contribution to the deformation and stress of the circular torus and can be omitted,

namely
E=E,+E,+E ~E,+E, 4)

where the total elastic energy density E, the membrane energy density E,, = %(N o€p + Ny&p), the

bending energy density E, = %(M #Kg T Myk,), and shear energy density E; = %Q oY
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The above statement can not be applied to the high frequency dynamics of Mindlin torus, be-
cause for dynamics the shearing effect will be enormous and can’t be omitted anymore [22, 23, 24,

31, 32].

6. Conclusions

The full nonlinear displacement formulations were derived for the Mindlin torus. To verify the
formulation, we wrote a Maple code and carried out several numerical simulations. Our investiga-
tions show that the results obtained by the nonlinear Mindlin, linear Mindlin, nonlinear Kirchhoft-
Love, and linear Kirchhoff-Love models are close to each other due to the domination of combining
effect of membrance and bending deformation. The study reveals that the linear Kirchhoff-Love
modeling of the circular torus gives good accuracy, the nonlinear deformation analysis of a Mindlin
torus can be simply replaced by a simpler formulation, such as the linear Kirchhoff-Love theory of
a torus, which is a remarkable result.
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Appendix: Maple code of full nonlinear theory of circular torus

Note: The code is written using Maple solver rkf45, which finds a numerical solution using a

Fehlberg fourth-/fifth-order Runge-Kutta method with degree-four interpolation.

restart; with(plots);Digits := 20;
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for k from 2 to 4 do

a:=0.3;b:=a;R :=1;h := a/20*k;

mu := 0.3;E :=2%10e+11;

K := E*h/(-mu*mu + 1);B := E*¥h*h*h/(12*(-mu*mu + 1));
kappa := 5/6;G := E/(2*(1 + mu));

ql:= 0;qn := 20;

F :=200;P := 1500;m := 50;

R1 :=a;R2 := a + R/sin(phi);

Al :=RI1;A2 := R2*sin(phi);

ell := diff(u(phi), phi)/Al + w(phi)/R1;

el2 := 0;el3 := -vartheta(phi);

€22 := diff(A2, phi)*u(phi)/(A1*A2) + w(phi)/R2;
e2l :=0;e23:=0;

varepsilonl :=ell + diff(u(phi), phi)*w(phi)/(A1*R1)
+ 1/2*w(phi)/R1*w(phi)/R1 + el3*el3/2
varepsilon2 := e22 + 1/2*e22%e22;

k11 := diff(vartheta(phi), phi)/Al;

k12 :=0; k13 := -vartheta(phi)/R1;

k22 := diff(A2, phi)*vartheta(phi)/(A1*A2);

k21 :=0;k23 :=0;

varkappal :=el1*k11 + e12*k12 + e13*k13 + k11;
varkappa2 := e21*k21 + e22*k22 + e23*k23 + k22;
T2 := K*(mu*varepsilonl + varepsilon2);

M2 := B*(mu*varkappal + varkappa2);
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N1 := kappa*G*h*(vartheta(phi) + diff(w(phi), phi)/A1 - u(phi)/R1);
sunl := T1(phi) = K*(mu*varepsilon2 + varepsilonl);

sun2 := M1 (phi) = B*(mu*varkappa2 + varkappal);

sun3 := N1 = (diff(A2*M1(phi), phi) - diff(A2, phi)*M2)/(A1*A2);
sun4 := diff(A2*T1(phi), phi) - diff(A2, phi)*T2 + (NI/R1 + ql)*A1*A2
- A1*A2*T1(phi)*vartheta(phi)/R1 = 0;

sun5 := diff(A2*N1, phi) - (T1(phi)/R1

+ T2/R2)*A1*A2 + qn*AT1*A2

diff(-A2*T1(phi)*vartheta(phi), phi) = 0;

equs := sunl, sun2, sun3, sun4, sun5;

bc :=u(-Pi/2) = 0, w(-Pi/2) = 0, vartheta(-Pi/2) = 0, T1(Pi) = F,
M1(Pi) = m, kappa*G*h*(vartheta(Pi) + D(w)(Pi)/A1 - u(Pi)/R1) = P;
sys := [bc, equs];

vars := [M1(phi), T1(phi), u(phi), w(phi), vartheta(phi)];

nonmd := dsolve(sys, vars, numeric, output = listprocedure);

M11[k] := rhs(nonmd[2]);

Q1[k] := kappa*G*h*(rths(nonmd[5]) + rhs(nonmd[7])/A1 - rhs(nonmd[4])/R1);
N11[k] := rhs(nonmd[3]);

hori[k] := rhs(nonmd[4])*cos(phi) + rhs(nonmd[6])*sin(phi);

verti[k] := -rhs(nonmd[4])*sin(phi) + rhs(nonmd[6])*cos(phi);

ur[k] := rhs(nonmd[4]);

wr[k] := rhs(nonmd[6]);

psi[k] := rhs(nonmd[5]);

print(k);
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end do;
plot([seq(M11[k](phi), k =2 .. 4)], phi = -Pi/2 .. Pi,
legend = ["k=2", "k=3", "k=4"], linestyle = [3, 5, 1],

color = ["black"”, "red", "blue"], axes = boxed)
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