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Abstract

We derive the thermal noise spectrum of the Fourier transform of the
electric field operator of a given wave vector starting from the quantum-
statistical definitions and relate it to the complex frequency and wave
vector dependent complex conductivity in a homogeneous, isotropic sys-
tem of electromagnetic interacting electrons. No additional assumptions
were used in the proof. We analyze separately the longitudinal and trans-
verse case with their peculiarities. The Nyquist formula for vanishing
frequency and wave vector, as well as its modification for non-vanishing
frequencies and wave vectors follow immediately. Furthermore we discuss
also the noise of the photon occupation numbers.

keywords: fluctuations, noise spectra, linear response, longitudinal and trans-
verse electric fields, Nyquist noise, photon number noise

1 Introduction

There are in the literature several theoretical approaches to the thermal noise in
solids. The basic result is Nyquist’s law from 1928 [1] for voltage noise at zero
frequency, confirmed simultaneously by the experiment of Johnson [2]. Later in
1951 Callen and Welton [3] established a formula relating the integrated voltage
noise spectrum to the frequency dependent resistance based on a fluctuation-
dissipation theorem. In 1985 Ref.[4] gave a derivation of the Callen-Welton spec-
tral density based directly on the spectrum of the voltage fluctuations within a
mean-field approximation, as well as a more exact one taking into account the
Coulomb interactions. In this last formula the frequency dependent resistance is
replaced by a certain frequency-dependent impedance. Thereafter, derivations
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of the noise spectral density under different stochastic, thermodynamic electric
circuitry approaches with sometimes differing results were published and finally
Ginzburg and Pitaevskii in 1988 [5] without mentioning Ref.[4] also confirmed
the spectral density of Callen-Welton within a Langevin approach to the electri-
cal circuit, however only with constant resistance R, inductance L and capacity
C. In a more recent book of one of the authors [6] an alternative derivation of
the result of [4] was given, starting from the electric field fluctuations. See also
the recent review articles [7], [8], that however implicitly include the internal
electric field produced by the charged particles in the acting field i.e. are mean-
field theories overlooking a delicate point of electrodynamics in the frame of the
linear response theory and Ref.[8] concentrates more on mezoscopic systems,
while the previous literature aimed mainly macroscopical condensed matter. It
uses however a definition of a ”quantum fluctuation” we do not share.

In this paper we want to describe our theoretical approach in a system-
atical way since we believe this is the only one staying on the sound basis
of quantum statistical mechanics and electrodynamics. One starts from the
quantum-mechanical definition [9] of the fluctuation of an observable in a sys-
tem in macro-canonical equilibrium defined as the average quadratic deviation
in time. The noise spectrum is just its Fourier transform. We use the defini-
tion of the complex frequency and wave-vector dependent dielectric function (or
conductivity) by the well-known modification of Kubo’s linear response theory
[10] in an e.m. interacting system due to [11] and [12]. Like in [4] we stress this
role of the internal electromagnetic fields (here including also the magnetic one)
produced by the particles themselves. We treat ultimately the fluctuations of
the local charge density and local current density as true sources of the elec-
tromagnetic equilibrium noise. We already have shown there that this leads to
differences with respect to results obtained within the mean-field or the circuitry
approaches, although quantitatively they may be not so important.

The only implicit thermodynamic element here is the expectation, that linear
response theory is correct i.e. the thermodynamic limit introduces irreversibility.

Along this line we derive the thermal noise spectrum of a longitudinal electric
field of wave-vector ~k in a homogeneous isotropic system. We obtain a gener-
alized Nyquist formula relating it for non-vanishing frequency ω (of the noise)

and wave-vector ~k (of the field) to the frequency and wave-vector dependent
longitudinal dielectric function (or conductivity).

Thereafter, we derive the never touched noise spectrum of the transverse
electric field (radiation field) starting from the non-relativistic QED by neglect-
ing the retardation (i.e. in the 1/c2 approximation). A Nyquist -like relation
occurs again. Though, it has certain peculiarities due to the fact that unlike by
the longitudinal field, the noise may be related to the conductivity only when
the frequency ω of the noise is related to the wave vector of the field as ω = ck.

Within the same 1/c2 approximation of the QED we discuss also the noise
spectrum of the photon occupation numbers. This also may be expressed
through the electronic transverse current-current correlator. However due to
the photonic factors under the integrals it cannot be related to the transverse
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conductivity.
Our results were obtained without supplementary assumptions.
We give also in the Appendices a comparison of this derivation to the alter-

native proof of the frequency dependent Nyquist formula given in Ref.[4] un-
derlining the essential role of the charge density fluctuations in the longitudinal
case. In this context we discuss the deficiency of the Callen-Welton fluctuation-
dissipation theorem [3] which was formulated years before the realization of the
role of the internal field produced by the charged particles.

2 Fluctuations and their spectral density.

The time fluctuation ∆X(t) of a given observable (hermitian operator) X in
thermal equilibrium is defined [9] as the average square deviation

∆X(t) = 〈(X(t)−X(0))
2〉0 ≥ 0 , (1)

where the average is taken over the macro-canonical equilibrium density matrix

ρ0 ≡
e−β(H−µN)

Z
(2)

and the time evolution of the operator X is given by

X(t) = e
ıHt
~ Xe

−ıH(t)
~ . (3)

This is analogous to the general definition of a fluctuation both in classical- or
quantum statistics.

Expanding Eq. 1 one has

∆X(t) = 〈X(t)2 +X(0)2 −X(t)X(0)−X(0)X(t)〉0
= 2〈X(0)2〉 − 〈X(t)X(0) +X(0)X(t)〉0 . (4)

Leaving apart the constant 2〈X(0)2〉 usually chosen to be vanishing, the
entity of interest is

δX(t) = 〈X(t)X(0) +X(0)X(t)〉0 (5)

which is a real and even function of t. As a consequence its Fourier transform

δ̃X(ω) =

∫ ∞
−∞

dteıωtδX(t) = 2

∫ ∞
0

dt cos(ωt)δX(t) (6)

is also real and even. Moreover, according to the Wiener-Khinchin Theorem
[13, 14], [15] it is positive. This is defined [9] as the ”noise” spectrum of X in
quantum statistics 1.

1An asymmetrical ”quantum noise”
∫∞
−∞ dteıωt〈X(t)X〉0 as in Ref.[8] has no direct mea-

surable physical meaning since 〈X(t)X〉0 is not the average of a hermitian operator.
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It is easy to show, by expansion in the basis of the eigenfunctions of H−µN
for any observable X (here X ≡ X(0)) the following two identities

δ̃X(ω) = 2 coth

(
β~ω

2

)
<
{∫ ∞

0

dte−ıωt〈[X,X(t)]〉0
}

(7)

= 2~ω coth(
β~ω

2
)<
∫ ∞
0

dte−ıωt
∫ β

0

dλ〈XX(t+ ı~λ〉0 . (8)

Correlators of both types appear in the linear response theory. Our pur-
pose is to relate the electromagnetic thermal noise to the coefficients of that
formalism.

3 Linear response theory.

3.1 Linear response to an applied electromagnetic field.

In a system of electromagnetic interacting charged particles the perturbing
Hamiltonian contains only the applied (external) fields. However, the charged
particles themselves are sources of electromagnetic fields. This makes the for-
mulation of the problem more delicate. The linear part of the perturbation due
to applied electromagnetic scalar V ext(~x, t) and vector potentials ~Aext(~x, t) is

H ′(t) =

∫
d~x
{
ρ(~x)V ext(~x, t)−~j(~x) ~Aext(~x, t)

}
. (9)

The average internal e.m. field has yet to be calculated. Together with the
external field it gives rise to the total e.m. field in the system (matter). The
conductivity is defined through the relationship between the average current and
this total field. This relationship may be given explicitly only in homogeneous,
isotropic systems after Fourier transformation in time and space variables.

The average of the current density operator

~j(~x, t) =
e

2m
ψ(~x)+

(
−ı~∇+

e

c
~Aext(~x, t)

)
ψ(~x) + h.c (10)

given by the generalization2 of Kubo’s adiabatic linear response theory [10] to
the above general electromagnetic perturbation is

〈jµ(~x, t)〉= lim
s→+0

∫ t

−∞
dt′est

′
∫ β

0

dλ

∫
d~x ′〈jν(~x ′,−ı~λ)jµ(~x, t− t′)〉0Eextν (~x ′, t′) (11)

where µ, ν = 1, 2, 3 are vector-indices and summation over double indices is
understood, while s is the adiabatic parameter we shall omit for simplicity in
the following. (The current density operators in the correlator being already
those in the absence of the external field!)

2In his original paper Kubo considered only the perturbation by a constant homogeneous
electric field.
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This relationship is gauge invariant and valid for any external electric field
stemming from the e.m. potentials

~Eext = −∇V ext − 1

c

∂

∂t
~Aext . (12)

It may be obtained by linear response to the perturbation Eq.9, which involves
its time-derivative, followed by the use of the continuity equation for ∂ρ/∂t and
partial integration assuming the vanishing of the correlator at infinite space-
and time- distances.

If the e.m. interaction between the charged particles is ignored, one may
reinterpret the e.m. field ~Eext as the mean-field ~Emean. Only within this
approximation the kernel of Eq. 11 may be related directly to the conductivity
of that system.

As it stays Eq.11 actually needs the formulation of the whole problem within
the non-relativistic QED (see for example Ref.[6] for the definition of its Hamil-
tonian HQED), not just the usual Coulomb Hamiltonian used in condensed
matter theory. This emerges from the necessity to consider the averages of both
the longitudinal and transverse electric fields.

However, after the first few steps we shall resort to a simplified approach
by neglecting the retardation i.e. in an 1/c2 approximation of the QED in
which the motion of the electrons and photons are separated. The photons are
considered to be free, while the charged particles interact directly by charge-
charge and current-current forces. Their e.m. Hamiltonian [16], [17] (here for
sake of simplicity just for electrons) is

He.m. =

∫
d~xψ+(~x)

[
~2

2m

(
∇− ıe

~c
~Aext(~x, t)

)2
+ eV ext(~x, t)

]
ψ(~x)

+
1

2

∫
d~x

∫
d~x′

N
[
ρ(~x)ρ(~x ′)− 1

c2
~jT (~x)~jT (~x ′)

]
|~x− ~x ′|

, (13)

where ~jT (~x) is the transverse part of the current density Eq.10

~jT (~r, t) ≡ ~j(~r, t) +
1

4π
∇
∫
d~r′
∇′~j(~r′, t)
|~r − ~r′|

(14)

and the symbol N [...] means taking the normal product of the operators.
Of course beside this electromagnetic part one may include any other inter-

action of the electrons like those with the crystal lattice, phonons, impurities,
etc.
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3.2 Frequency and wave vector dependent conductivity in
a homogeneous, isotropic system.

In a homogeneous (translation invariant) system3 one obtains by Fourier trans-
formation in time and coordinate of Eq. 11

〈j̃µ(~k, ω)〉 =

∫ ∞
0

dt

∫ β

0

dλ

∫
d~xeı(

~k~x+ωt)〈jν(0, 0)jµ(~x, t+ ı~λ)〉0Eextν (ω,~k) (15)

i.e. one has a local relationship in the Fourier space

〈j̃µ(~k, ω)〉 = κ(~k, ω)µνE
ext
ν (ω,~k) (16)

with

κ(~k, ω)µν =

∫ ∞
0

dt

∫ β

0

dλ

∫
d~xeı(

~k~x+ωt)〈jν(0, 0)jµ(~x, t+ ı~λ)〉0 . (17)

If the system under consideration is isotropic, then one may separate the
longitudinal and transverse parts

κ(~k, ω)µν =
kµkν
k2

κL(k, ω) +

(
δµν −

kµkν
k2

)
κT (k, ω) (18)

and

〈~̃jL(~k, ω)〉 = κL(k, ω)~̃E
ext

L (~k, ω) (19)

〈~̃jT (~k, ω)〉 = κT (k, ω)~̃E
ext

T (~k, ω) . (20)

It is important to remark here that the frequency and the wave vector in the
transverse case are not independent (ω = ck).

3.2.1 The longitudinal dielectric function and conductivity.

In the longitudinal case it is convenient to consider the dielectric function ε(~k, ω)
using the relationship between the charge density and the scalar potential in the
Coulomb gauge

〈ρ̃(~k, ω)〉 = K̃L(k, ω)Ṽ ext(~k, ω) (21)

with

K̃L(k, ω) =

∫ ∞
0

dt

∫
d~xeı

~k~xeıωtKL(~x, t) (22)

and

KL(~x, t) ≡ θ(t)

ı~
〈[ρ(~x, t) , ρ(0, 0)]〉0 (23)

obtained directly from the linear response to the perturbation with the Hamil-
tonian of Eq. 9 in the presence of just a scalar external potential.

3In a crystal homogeneity and isotropy may be considered after space-averaging on a scale
larger than the elementary cell.
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Since in the Coulomb gauge the average internal and the external scalar
potentials are given by the Poisson equations

k2〈Ṽ int(~k, ω)〉 = 4π〈ρ̃(~k, ω)〉 (24)

k2Ṽ ext(~k, ω) = 4πρ̃ext(~k, ω) (25)

and the longitudinal dielectric function is defined by the relationship between
the external charge density and the total potential V = V int + V ext

k2εL(k, ω)Ṽ (~k, ω) = 4πρ̃ext(~k, ω) (26)

by using Eq. 21 one gets

εL(k, ω) ≡ 1

1 + 4π
k2 K̃L(~k, ω)

. (27)

Using he continuity equation for the Fourier transforms of the averages

〈j̃L(~k, ω)〉 = −ω
k
〈ρ̃(~k, ω)〉 (28)

and ẼextL (~k, ω) = ıkṼ ext(~k, ω) one gets also

κL(k, ω) =
ıω

k2
K̃L(k, ω) . (29)

Thus the complex longitudinal conductivity

σL(k, ω) =
κL(k, ω)

1 + 4π
ıω κL(k, ω)

(30)

results. The complex conductivity is of course related to the complex dielectric
function by

εL(k, ω) = 1− 4π

ıω
σL(k, ω) . (31)

It is important to have in mind that in the mean-field approximation that
considers Coulomb forces only in a self-consistent manner, the longitudinal con-
ductivity is just proportional to the longitudinal current correlator of the non-
interacting charges.

3.2.2 The transverse conductivity.

From

〈~̃jT (~k, ω)〉 = κT (k, ω)~̃E
ext

T (~k, ω) (32)

neglecting the retardation

〈~̃E
int

T (~k, ω〉 = ıω
4π

c2k2
〈~̃jT (~k, ω)〉 = ıω

4π

c2k2
κT (k, ω)~̃E

ext

T (~k, ω) (33)
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and therefore with the definition

〈~̃jT (~k, ω)〉 = σT (k, ω)

(
~̃E
ext

T (~k, ω) + ~̃E
int

T (~k, ω)

)
(34)

we get

σT (k, ω) =
κT (k, ω)

1 + ıω 4π
c2k2κT (k, ω)

(35)

Since the transverse external electric field obeys the wave equation, in these
equations the variables ω and k are related by ω = ck ! Therefore one might
speak just about a frequency dependent transverse conductivity

σT (ω) =
κT (ω/c, ω)

1 + ı 4πω κT (ω/c, ω)
(36)

3.3 The noise spectrum of the longitudinal electric field.

From the hermiticity of the operator ~E(~x, t) it follows that after Fourier trans-

forming in the space variable ~̃E(−~k, t)+ = ~̃E(~k, t) and we may define two her-
mitian scalar operators (observables) as the ”real” and ”imaginary” parts of the

longitudinal field operator
~k
k
~̃E(~k, t)

ERL (~k, t) =
~k

2k
(~̃E(~k, t) + ~̃E(−~k, t)) (37)

EIL(~k, t) = −ı
~k

2k
(~̃E(~k, t)− ~̃E(−~k, t)) (38)

The noise of any of these observables (omitting the upper indices R,I) according
Eq. 7 is

δ̃EL
(ω, k) = 2 coth

(
β~ω

2

)
<
{∫ ∞

0

dte−ıωt〈
[
EL(~k, 0), EL(~k, t)

]
〉0
}

(39)

Here the inverted order of arguments (ω, k) in the notation underlines that ~k
is the wave-vector of the electric field, while ω is the frequency of the noise
spectrum.

The Fourier transform of the longitudinal electric field is related by the
Poisson equation (∇ ~E(~x, t) = 4πρ(~x, t)) to the Fourier transform of the charge
density by

ẼL(~k, t) = −ı4π
k
ρ̃(~k, t) . (40)

It is obvious that the quantities of interest are 〈[ρ̃(~k), ρ̃(~q, t)]〉 with ~q = ±~k.
One has, using translation invariance in homogeneous systems
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〈[ρ̃(~k), ρ̃(~q, t)]〉0 =

∫
d~x ′eı~q~x

′
∫
d~xeı

~k~x〈[ρ(~x− ~x ′), ρ(0, t)]〉0

=

∫
d~x ′eı(

~k+~q)~x ′
∫
d~xeı

~k~x, 〉[ρ(~x), ρ(0, t)]〉0

= Ωδ~k+~q,0

∫
d~xeı

~k~x〈[ρ(~x), ρ(0, t)]〉0 (41)

with Ω being the volume (under cyclic boundary conditions).

In the case ~q = ~k the δ-condition implies ~k = 0, and one is left with the
commutator of the total charge with the charge density at the origin. The
former is a conserved quantity and therefore it can be taken at any time, in
particular at the same time t as the local charge, whith the result that their
commutator is zero. Therefore only the case ~q = −~k contributes, and one gets

δ̃EL
(ω, k) = (42)

−2Ω coth

(
β~ω

2

)
(4π)2

k2
<
{∫ ∞

0

dte−ıωt
∫
d~xe−ı

~k~x〈[ρ(~x), ρ(0, t)]〉0
}
.

On the other hand, for Coulomb systems in the frame of the linear response
theory (see Eqs. 22, 23 and 27 ) the following relationship for the longitudinal
dielectric function holds

4π

~k2
<
{∫ ∞

0

dte−ıωt
∫
d~xe−ı

~k~x〈[ρ(~x), ρ(0, t)]〉0
}

= =

{
1

εL(~k, ω)

}
(43)

and we identify

δ̃EL
(ω, k) = −8π~Ω coth

(
β~ω

2

)
=

{
1

εL(~k, ω)

}
. (44)

This is our most general new result for the noise spectrum of the longitudinal
electric field of wave vector ~k.

In the classical limit ~→ 0 it reduces to

lim
~→0

δ̃EL
(ω, k) = −16πΩkBT=

{
1

εL(~k, ω)

}
. (45)

This coincides with the corresponding result [18] obtained in the frame of the
classical plasma theory.

In the quantum mechanical version for ~k → 0

δ̃EL
(ω, 0) = −8π~Ω coth

(
β~ω

2

)
=
{

1

εL(0, ω)

}
(46)

= 8π~Ω coth

(
β~ω

2

)
=εL(0, ω)

<εL(0, ω)2 + =εL(0, ω)2
.
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Since at ω → 0 only the imaginary part of the dielectric function diverges
as 4π

ω σdc, we get in this limit

δ̃EL
(0, 0) = 4kBT

Ω

σdc
. (47)

Taking into account, that in the case of a constant electric field in space E
the Fourier transform is proportional to the volume Ω, we may conclude that
its noise is given by

〈δE2〉0 =
4kBT

Ωσdc
. (48)

On the other hand introducing the resistance

R =
L

σdcS
(49)

and the potential drop as
U = EL (50)

where S and L are the cross-section and the length of the sample from Eq. 47
follows

〈δU2〉0 = 4RkBT (51)

and this is finally the old Nyquist theorem [1] .

4 The noise spectrum of the transverse electric
field.

Let us consider now the noise of the transverse (radiation) electric field ~ET (~x, t)
in a homogeneous, isotropic sample. There are two possible polarizations of this
field defined by the two orthogonal to each other and to the wave vector ~k unit

vectors ~e
(λ)
~k

= ~e
(λ)

−~k
(λ = 1, 2). It is convenient then to discuss the electric field

along a non-specified polarization ~e(~k).
The transverse electric field operator in the non-relativistic QED is given by

~ET (~x, t) = −1

c

∂

∂t
~AT (~x, t) (52)

with the transverse vector potential operator (radiation field) in the Heisenberg
image of the free Hamiltonian being

~AT (~x, t) =

√
~c
Ω

∑
λ=1,2

∑
~q

1√
|~q|
~e
(λ)
~q e−ı~q~x

(
e−ıcqtb~q,λ + eıcqtb+−~q,λ

)
(53)

(with periodical boundary conditions) and[
b~q,λ, b

+
~q ′,λ′

]
= δ~q,~q ′δλ,λ′ . (54)
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We consider analogously to the treatment of the noise of the longitudinal
electric field the two hermitian (scalar) operators constructed from the Fourier
transform of the electrical field in the space variable

ERT (~k, t) =
1

2
~e~k(~̃ET (~k, t) + ~̃ET (−~k, t)) (55)

EIT (~k, t) = −ı1
2
~e~k(~̃ET (~k, t)− ~̃ET (−~k, t)) (56)

for an arbitrary polarization direction ~e~k .
The noise of the observable ERT according to Eq.8 is

δ̃ER
T

(ω, k)=2~ω coth(
β~ω

2
)<
∫ ∞
0

dte−ıωt
∫ β

0

dλ〈ERT (~k, 0)ERT (~k, t+ ı~λ)〉0 (57)

and analogously for EIT .
From this step on we shall neglect the retardation. Then since only the

internal electric field fluctuates one may express the transverse electric field
directly by the transverse current density

ET (~k, t) = − 4π

(ck)2
∂

∂t
jT (~k, t) (58)

where of course jT (~k, t) is the projection of the current density on the same
chosen polarization direction. Consequently we consider the time evolution also
in the 1/c2 approximation i.e. in the frame of the Hamiltonian Eq. 13.

Thereafter we get, as in the longitudinal case the only surviving contribution

δ̃ET
(ω, k)=2

(4π)2

(ck)4
~ω coth(

β~ω
2

)<
∫ ∞
0

dte−ıωt
∫ β

0

dλ〈j̇T (~k, 0)j̇T (−~k, t+ ı~λ)〉0 .

(59)
(Since this equation is valid for both fields ERT and EIT we omited the R, I

indices.) However, here the argument for the absence of the other contributions
is due only to the presence of the Kronecker-delta δ~k in front of them. For our
final result relating the noise spectrum to the transverse conductivity these are
anyway irrelevant since unlike in the longitudinal case, the wave vector and the
frequency of the transverse field are not independent

Using also the invariance against space inversion it may be shown, that the
real part of the integral over λ is even in time, while the imaginary part is odd.
Therefore, the time integration my be extended to −∞ , where the correlations
are supposed to vanish.

Due to time translation invariance of the equilibrium average one may trans-
fer the time derivation of the first current on the second one (implying a change
of sign) and after two integration by parts one has

∫ ∞
0

dte−ıωt
∫ β

0

dλ〈j̇T (~k, 0)j̇T (−~k, t+ ı~λ)〉0 =

ω2

∫ ∞
0

dte−ıωt
∫ β

0

dλ〈jT (~k, 0)jT (−~k, t+ ı~λ)〉0 . (60)
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Further,

〈jT (~k, 0)jT (−~k, t+ ı~λ)〉0 = Ω

∫
d~xeı

~k~x〈jT (0, 0)jT (~x, t+ ı~λ)〉0 (61)

and therefore we have finally

δ̃ET
(ω, k) = 2Ωω2 (4π)2

(ck)4
~ω coth(

β~ω
2

) (62)

× <
∫ ∞
0

dte−ıωt
∫ β

0

dλ

∫
d~xeı

~k~x〈jT (0, 0)jT (~x, t+ ı~λ)〉0 .

Now, from Eq.17 we had

κ(k, ω)T =

∫ ∞
0

dt

∫ β

0

dλ

∫
d~xeı(

~k~x+ωt)〈jT (0, 0)jT (~x, t+ ı~λ)〉0 (63)

and using Eq.35

κ(k, ω)T =
σT (ω, k)

1− ıω 4π
c2k2σT (k, ω)

. (64)

At first glance it seems that we found a simple relationship between the noise
of the transverse field and the transverse conductivity. However the correct
interpretation is more subtle. In the case of the transverse conductivity the
variables ω and k are not independent: ω = ck. Therefore, according to Eq. 36
one has just a frequency dependent conductivity and

κ(ω, ω/c)T =
σT (ω)

1− 4πı
ω σT (ω)

. (65)

In the transverse noise spectral density k is the wave vector of the electric
field while ω is the frequency of the noise. They are independent variables. A
direct relationship to the transverse conductivity however exists only along the
line ω = ck.

Thus

δ̃ET
(ω, k)|k=ω/c = −Ω8π~ coth(

β~ω
2

)= 1

1− 4πı
ω σT (ω)

= −Ω8π~ coth(
β~ω

2
)= 1

εT (ω)
. (66)

This relation is the analogue of Eq. 44 for the noise spectrum of longitudinal
fields.

Actually our definition and discussion of the noise spectrum of the transverse
electric field follows that of Ref.[9], but just brings it farther through the 1/c2

approximation and relates it to the transverse conductivity.
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5 The noise spectrum of the photon occupation
numbers.

Beside the field noises one might consider also the noise of the photon occupation
numbers. The noise spectral density of the photon occupation numbers n~k (with
an arbitrary chosen polarization not mentioned) is given by

δ̃n~k
(ω) = 2~ω coth(

β~ω
2

)<
∫ ∞
0

dte−ıωt
∫ β

0

dλ〈n̂~kn̂~k(t+ ı~λ〉0 (67)

where n̂~k ≡ b
+
~k
b~k is the operator of the number of photons of wave vector ~k and

the given polarization we do not mention in the notation.
On the other hand analogously to Eq.60 we have

∫ ∞
0

dte−ıωt〈n̂~k(0)n̂~k(t+ ı~λ)〉0 =
1

ω2

∫ ∞
0

dte−ıωt〈 ˙̂n~k(0) ˙̂n~k(t+ ı~λ)〉0 . (68)

However, retaining the lowest order in 1
c from the full QED Hamiltonian

1

c
~jT (~x, t) ~AT (69)

we have

ṅ~k(t) =
ı

~c

∫
d~x
[
~jT (~x, t) ~AT (~x, t), n~k(t)

]
(70)

and ∫ ∞
0

dte−ıωt〈n~k(0)n~k(t+ ı~λ)〉0 = − 1

(~ωc)2

∫ ∞
0

dte−ıωt
∫
d~x

∫
d~x ′ (71)

〈
[
~jT (~x, 0) ~AT (~x, 0), n~k(0)

][
~jT (~x ′, t+ ı~λ) ~AT (~x ′, t+ ı~λ), n~k(t+ ı~λ)

]
〉0

where the transverse vector potential operator is defined by Eq. 53.
In what follows we neglect as before the retardation and ignore consequently

terms higher order than 1/c2. Within this approximation we remain only with
an approximate Hamiltonian being the sum of the 1

c2 e.m Hamiltonian Eq. 13
(as well as some other interactions) for electrons and of the free Hamiltonian of
the photons both in the averaging over equilibrium as in the time evolution.

Performing the commutations and taking again into account the translation,
rotation and reflection invariance in the coordinate space we get after some
algebra

δ̃n~k
(ω) = 2

coth(β~ω2 )

ckω
<
∫ ∞
0

dte−ıωt
∫ β

0

dλ〈j̃(~k, 0)jT (0, t+ ı~λ)〉e0 ×[
e−ı(ω−ck)t− ckλ(1 +Nk) + e−ı(ω+ck)t+ckλ)Nk

]
(72)

where

Nk ≡
1

eβkc − 1
(73)
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is the Bose distribution of photons.
The above expression resembles Eq.62 for the noise of the transverse elec-

tric field, however they differ essentially due to the presence of the photonic
factors alongside the electronic current-current correlator under the integrals.
Therefore, it cannot be related to the transverse conductivity. Nevertheless, Eq.
72 may be the starting point for the direct computation of the photon number
noise spectrum within some approximations for homogeneous, isotropic solid
state models.

On the other hand, photon number fluctuations may be very important
in mesoscopical systems in the ”quantum limit”. The above equation, whose
derivation does not depend on the thermodynamic limit may serve for their
discussion.

6 Conclusions.

We started from the generally accepted quantum statistical definition [9] of the
thermal fluctuation of an observable as its average square deviation in time
and the noise as its Fourier transform. We have chosen as relevant electro-
magnetic observables the real and imaginary parts of the Fourier transforms of
the longitudinal ẼL(t,~k) and transverse ẼT (t,~k) electric fields as well as the
photon number n~k(t) in a homogeneous isotropic system. These three kind of
noise spectra we discussed exhaust the different experimental configurations of
electromagnetic thermal fluctuations in (macroscopical) condensed matter.

We use throughout the improved linear response theory according to the
proper definition of the total field in a system of electromagnetically interacting
charged particles according to [11] and [12] (see also Ref.[6]) to relate the thermal
noise spectrum of the Fourier transform in the space variable of the ”real”
and ”imaginary ” (hermitian) parts of the longitudinal and transverse electric
field operators to the frequency and wave-vector dependent complex dielectric
function (or conductivity). Our approach may be considered as the the QED
version of the old analysis of electromagnetic fluctuations [18] in the classical
plasma theory. In the case of a longitudinal field in the zero wave vector and
zero frequency limit the classical Nyquist theorem [1] results, while for non-
vanishing frequencies a modification of the result of Ref.[3] as it was predicted
earlier in Ref.[4] emerges. Actually we got as well in the longitudinal as in
the transverse case more general results Eq.44 and Eq.66, including k 6= 0.
However, in the transverse case the relationship to the transverse conductivity
occurs obviously only for ω = ck and it was obtained from the QED within the
1/c2 approximation i.e. after neglecting the retardation.

Finally, we discussed also the noise spectrum of the photon occupation num-
bers within the same 1/c2 approximation. This noise spectrum Eq.72 is again
related to the transverse electronic current-current correlator. However, due to
the presence of photonic factors under the integrals it cannot be related to the
transverse conductivity.

It is important to mention, that in our derivations no other ingredients were
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introduced except the implicit assumption of linear response theory about the
time-decay of correlations (i.e. irreversibility in the thermodynamic limit).

Appendices

A Our original derivation.

The result of the previous Section for the spectral density of the thermal noise
Eq.46 was earlier derived by Ref.[4], however in a different manner. One con-
siders a sample of length L (along the z axis) and cross-section S and defines
the voltage drop along the sample as

U =
1

S

∫
dxdy [V (x, y, L)− V (x, y, 0)] (74)

where4

V (~x) =

∫
d~x

ρ(~x ′)

|~x− ~x ′|
(75)

is the potential created by the internal charge density. In the limit S →∞ one
has

U =
4π

S

∫
d~xzρ(~x) . (76)

Using the equation of continuity

∂ρ(~x, t)

∂t
+∇~j(~x, t) = 0 (77)

and the vanishing of the normal component of the current density at the ends
of the sample (isolated sample!) one relates the potential drop to the averaged
charge flux in the z -direction

I ≡ S

Ω

∫
d~xjz(~x) (78)

by

∂U(t)

∂t
= 4π

L

S
I(t) (79)

and correspondingly the spectral densities of their fluctuations (with the original
notations) are related

δU2
ω = (

4πL

Sω
)2δI2ω . (80)

4In this paper we use the Gauss system of units, while in [4] the SI system was used.
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On the other hand, according Eq. 1.8 of the Ref.[4] based on linear response
theory and noise formula, δI2ω is related to the longitudinal conductivity by

δI2ω = 2
S

L
~ω coth(

β~ω
2

)<{ σL(ω)

1− ı4π
ω σL(ω)

} (81)

and one gets

δU2
ω = 2~4π

L

S
coth(

β~ω
2

)<
4π
ω σL(ω)

1− ı4π
ω σL(ω)

. (82)

Or taking into account also the relationship between the complex conduc-
tivity and the complex dielectric function Eq.31

δU2
ω = 8π~

L

S
coth(

β~ω
2

)= 1

1− ı4π
ω σL(ω)

= −8π~
L

S
coth(

β~ω
2

)= 1

εL(ω)

that is identical to Eq. 46.
Now, one has the frequency dependent resistance

R(ω) =
L

S<σL(ω)
(83)

along the z direction and one may define a capacity between the end cross-
sections of the sample

C(ω) =
S

L4π
<εL(ω) =

S

L4π
(1 +

4π

ω
=σL(ω)) . (84)

If the resistance and the capacitor are parallel linked, then the resulting
impedance Z(ω) is

1

Z(ω)
=

1

R(ω)
+ ıωC(ω) . (85)

Then in terms of these extensive entities typical for electric circuits the
resulting generalization of the Nyquist formula for any non-vanishing frequency
looks as5

δU2
ω = 2~ω coth(

β~ω
2

)<Z(ω) . (86)

A specific aspect of this somewhat lengthy derivation is that the isolation
of the sample (no current flow perpendicular to the boundary cross-section) is
explicitly included. However, in both derivations the origin of the fluctuation is
the fluctuation of the charge density in the system and the results are identical.

Our generalization of the Nyquist formula Eq.86 for non-zero frequencies
differs from that obtained by Callen-Welton [3] by the replacement of the re-
sistance R(ω) of Eq. 83 by the impedance Z(ω) Eq.85. This discrepancy is
however irrelevant in the case of wires, where the capacity C(ω) of Eq.84 is
negligible.

5In the original paper unfortunately a misprint occurred in this equation (namely instead
of <Z(ω) stand <Z(ω)−1 )!
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We have already remarked that in the classical plasma theory a similar
correct electrodynamical approach [18] starting from the fluctuations of the
electric field has revealed that the thermal noise is proportional to the imaginary
part of the inverse dielectric function. Therefore even in that frame one has a
deviation from the Callan-Welton spectral density as it is contained in Eqs. 85,
45.

B The Callen-Welton formula.

Callen and Welton [3] long before Kubo [10] treated linear transport due to
an applied potential drop V and related it to the currrent-current correlation.
Thereafter they derived the integrated noise spectrum:

〈V 2〉 =
2

π

∫ ∞
0

dω

(
1

2
~ω + ~ω[eβ~ω − 1]−1

)
R(ω) (87)

≡ 1

π

∫ ∞
0

dω~ω coth

(
β~ω

2

)
R(ω) . (88)

In Ref.[3] no explicit definition of the noise spectral density is given. Nev-
ertheless the integrand is usually interpreted as the noise spectral density. An
instant derivation of this spectrum results indeed [4] if one considers the quan-
tum mechanical current fluctuation as the source of the noise, express it by the
Kubo formula of the conductivity in its mean-field version (i.e. V is interpreted
as the s.c. potential drop) and implicitly to the frequency-dependent resistance

(δI2ω)K = 2~ω coth

(
β~ω

2

)
1

R(ω)
. (89)

Multiplying with R(ω)2 one gets indeed the voltage noise of Ref.[3]

(δV 2
ω )CW = 2~ω coth

(
β~ω

2

)
R(ω) . (90)

To our knowledge, this is the first and only direct proof [4] of the Callen-
Welton spectral density.

It is worth to mention here that the original form Eq.87 suggests a false
connection to photons by the presence of the Bose function.

This result still differs from our Eq. 86 by the apparition of the resistance
R(ω) instead of the real part of the impedance Z(ω) of Eq.85. The origin of this
discrepancy stems from the implicit use of the mean-field version of the linear re-
sponse by [3] in their fluctuation-dissipation theorem, without explicit Coulomb
interactions. It starts therefore with current fluctuations of non-interacting
charges. However, as it was already stressed, the Kubo formula does not de-
fine properly the conductivity in Coulomb interacting systems. Immediately
after Kubo other authors [11],[12] pointed out, that the Kubo formula has to be
corrected by including the induced field produced by the electrons themselves.
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It implies also, that not the complex dielectric function satisfies the dispersion
relations, but its inverse [19].

All this prompted us to derive the voltage noise directly from the fluctuations
of the voltage, or electric field intensity. This way leads in the presence of
Coulomb interactions to the Nyquist result at ω → 0, while for non-vanishing
frequency it is the more general expression Eq.86. However, as we already
mentioned, the discrepancy in the macroscopic results of Eqs. 86 and 90 may
be irrelevant if the capacity C(ω) of Eq. 84 is negligible.

To conclude, Eq. 90 is valid in the mean-field approximation, while Eq. 86
beyond it. The appearance of the capacitance is a pure Coulomb effect absent
in the mean-field approximation.
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