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Abstract: Capacitance measurements have been extensively used to measure the anchoring extrapo-
lation length L at a nematic-substrate interface. These measurements are extremely delicate because
the value found for L often critically depends on the sample thickness and the voltage range chosen
to perform the measurements. Several reasons have been proposed to explain this observation, such
as the presence of inhomogeneities in the director distribution on the bounding plates or the variation
with the electric field of the dielectric constants. In this paper I propose a new method to measure
Lp that takes into account this second effect. This method is more general than that proposed in
Murauski et al. Phys. Rev. E 71, 061707 (2005) because it does not assume that the anchoring angle
is small and that the anchoring energy is of the Rapini-Papoular form. This method is applied to
a cell of 8CB treated for planar unidirectional anchoring by photoalignment with the azobenzene
dye Brilliant Yellow. The role of flexoelectric effects and the shape of the anchoring potential are
discussed.

Keywords: nematic liquid crystal; anchoring energy; capacitance measurements; Freedericksz
transition

1. Introduction

Measuring the anchoring energy W of the director at the bounding plates of a nematic
cell is necessary to predict its electrooptical properties under electric field. This is impor-
tant for basic physics to better understand the anchoring phenomena [1–3] and for the
applications to electro-optic devices such as LCD displays to improve their performance
[4]. In this paper, I focus more specifically on the measurement of the polar anchoring
energy in planar cells filled with a liquid crystal (LC) of positive dielectric anisotropy.
This measurement is very classical, but nonetheless extremely delicate as one immediately
realizes after reading the literature on this subject. Indeed, the value of W obtained with
the same LC and the same substates may differ by several orders of magnitude when
measured by different groups [5]. In practice, various techniques have been proposed to
measure W. Some of them analyze the deformation of the director field in the presence of a
wall [6] or in a wedge cell [7–9]. Other use light scattering [10–12]. But the most widely
used techniques are based on the action of an external field. Among them one can cite
all-optical methods using magnetic or electric field as the ones described by Subacius et al.
[13] or Murauski et al. [14] and much more standard methods using an electric field and
capacitance and/or optical retardation measurements. In this last category, the method
proposed by Yokoyama and van Sprang [15] at high electric field (YvS method) is certainly
the most popular. This method consists of plotting R/R0 as a function of 1/CV. Here
V is the applied voltage, C is the capacitance, R is the optical retardation between the
ordinary and extraordinary rays (with the index 0 denoting that the measurement has been
performed without electric field). The model predicts that in a certain range of voltage,
Vmin < V < Vmax, the curve must be a line whose intersection with the ordinate axis gives
W. The first inequality with Vmin ≈ 6Vc, where Vc is the Fredericksz voltage, ensures that
the tilt angle φm in the middle of the cell is equal to π/2 to better than 10−3 rad. The second
inequality ensures that the tilt angle on the plates θ remains small enough in order that
the actual anchoring potential is approximately given by the Rapini-Rapoular formula
W(θ) = 1

2 W sin2 θ [16]. By assuming that it is the case for θ < 0.2 rad, the calculation shows
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that Vmax ≈ 0.2
π

√
ε⊥
ε‖

d
L Vc [17]. In practice, Nastishin et al. have shown that similar results

can be obtained by just measuring the optical retardation in the same range of voltage
(RV method) [5,17]. This method is interesting because it allows a local measurement of
L. The problem with these two methods is that they often give very different values of L
depending on the voltage interval (V1, V2) chosen to perform the fit of the experimental
data, and this, even when (V1, V2) ∈ (Vmin, Vmax). Unphysical negative value of Wa can
even be obtained [17]. According to Nastishin et al. [17] this unexpected behavior could
be due to in-plane inhomogeneities of the cell (such as variations of the anchoring energy,
easy axis, fractures in the patterned electrodes, etc.) thus making these methods difficult to
use to determine a reliable value of W.

In this paper, I propose an alternative method to measure the polar (zenithal) anchor-
ing energy W in a planar cell based on capacitance measurements at high electric field.
The main difference with previous works is that I take into account the variation with
the electric field of the dielectric constant ε‖ and I use the full integral equations to fit the
experimental data. In this way, the limitation to small tilt angles on the plates is waived
and any form of the anchoring potential can be used. I will show that these improvements
are necessary to obtain consistent results when the measurements are performed in thin
samples under high electric field. The experiments will be performed by using the LC
8CB (4-octyl-4’-cyanobiphenyl) and the azo-dye Brilliant Yellow to treat the electrodes for
planar unidirectional anchoring by photoalignment [18–20]. With this treatment, there is
no pretilt angle at the electrodes which simplifies the problem.

2. Basic equations

I consider a planar sample. The x-axis is taken parallel to the anchoring direction on
the electrodes and the z-axis is perpendicular to the electrodes, with z = 0 at the bottom
electrode and z = d at the top electrode. I denote by φ(z) the tilt angle of the director with
respect to the x-axis and by θ the tilt angle on the electrodes (θ = φ(0) = φ(d)). I suppose
that there is no pretilt angle, which means that θ = 0 when no electric field is applied. For
now, the anchoring potential is assumed to be of the Rapini-Papoular form [16]

W(θ) =
1
2

W sin2 θ (1)

and I neglect the flexoelectric effect. When an electric field is applied and the anchoring is
very strong the sample destabilizes above the Fredericksz critical voltage Vc given by [1,21]

Vc = π
√

K1/ε0εa (2)

In this equation, ε0 is the vacuum permittivity, εa = ε‖ − ε⊥ is the dielectric anisotropy of
the nematic phase and K1 is the splay constant. The actual critical voltage V′c is slightly
smaller if the anchoring energy is taken into account and is solution of the following
equation [1,16]:

d
L
= π

V′c
Vc

tan
(

πV′c
2Vc

)
(3)

where L = K1/W is the anchoring extrapolation length. This equation shows that the ratio
d/L must be larger than ≈ 200 in order that V′c ≈ Vc to better than 1%.

The formulas that give the capacitance as a function of the applied voltage are well
known [22,23] and are recalled in Ref. [24]. They considerably simplify at large voltage,
when the maximum tilt angle φm in the middle of the cell is very close to π/2. Numerical
calculations show that this condition is satisfied when V & 6Vc, typically. In this limit,
φm ≈ π/2 to better than 10−3 rad [5]. If the flexoelectric effects are screened out by the ions
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contained in the LC – and this is usually the case experimentally– the capacitance can be
calculated by using the formula [25]:

C
C⊥

= 1 + γ− 2
π

γ
√

1 + γ
Vc

V

∫ 1

sin θ

√
1 + κx2

1 + γx2 dx (4)

where γ = ε‖/ε⊥ − 1 and κ = K3/K1 − 1 (with K3 the bend constant) and C⊥ = ε0ε⊥S/d
is the capacitance measured below the onset of instability (with S the surface area of the
electrodes).

The surface angle θ is obtained by solving the surface torque equation which reads by
using the Rapini-Papoular potential [26]:

sin θ =

√
1 + κ sin2 θ

1 + γ sin2 θ

π√
1 + γ

L
d

V
Vc

C
C⊥

(5)

Solving these two equations allows to determine the ratio C/C⊥ as a function of V/Vc
provided that κ, γ and the ratio L/d are known.

If θ is small, expanding the two previous equations in power series of sin θ yields [27]

C
C⊥

=
1 + γ

1− 2γ L
d
− 2

π

γ
√

1 + γ

1− 2γ L
d

I
Vc

V
(6)

where I ≡
∫ 1

0

√
1+κx2

1+γx2 dx. This equation is valid as long as 2
3 (κ − γ) sin3 θ � I, i.e. as

long as sin3 θ � 1 knowing that I and κ − γ are usually of order unity experimentally.
This imposes that the voltage is not too large, typically less than voltage Vmax defined in
the introduction by taking θ < 0.2 rad. Note that these equations can also be applied to
homeotropic samples by exchanging ε‖ and ε⊥ and K1 and K3 and by denoting by θ the
angle between the director and the normal to the plates [28].

To summarize, the theory predicts that the reduced capacitance C = C/C⊥ must
vary linearly as a function of the inverse of the reduced voltage V = V/Vc provided that
V1 < V < V2 as in the YvS or RV models.

This calculation thus predicts that fitting with a line the capacitance curve C(1/V) in
any voltage range (V1, V2) satisfying V1 > Vmin and V2 < Vmax should allow to determine
L and the elastic anisotropy κ provided that d, C⊥, Vc and the dielectric anisotropy γ are
known precisely. Indeed, the value at the origin of the regression line gives L/d while its
slope gives I and thus κ knowing γ.

In the following, I show that this method, as the YvS or the RV method, fails to work
for measuring L and I explain why. I then show how to improve the fit procedure to obtain
a reliable value of L.

3. Experimental results
3.1. Sample preparation and experimental setup

The LC chosen is 8CB. It was purchased from Synthon (Germany) and used without
further purification. I measured the transition temperatures TNA = 33.8◦C and TNI =
40.75◦C. All the samples were prepared between two ITO coated glass plates. A thin band
of ITO was removed on the sides of the plates and the metallic wires used to measure the
capacitance were soldered on the ITO surface with an ultrasonic iron in order to decrease
the parasitic capacitances. Nickel wires were used as a spacer to fix the sample thickness
and a slow-cure epoxy glue was used to bond them together. To reduce the uncertainties,
thin samples (d ≈ 7.5 µm) with large surface area (S ≈ 2.5 cm2) were used to measure
the dielectric constants, while a thick sample (d ≈ 50 µm) was used to measure Vc. In all
samples, a special care was taken to the parallelism between the two glass plates, always
better than 5 10−5 rad. The thickness of the empty cells was measured with an Ocean
Optics USB2000 spectrometer. The dielectric constant ε⊥ was measured using homeotropic
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samples. In that case, the glass plates were treated with the polyimide Nissan SE-4811.
The polyimide was deposited by spin-coating and the plates were then baked at 180◦C
for 30 min. The measurements of ε‖ and L were performed using planar samples. The
unidirectional planar anchoring was achieved by photoalignment by using a commercial
azo-dye, Brilliant Yellow, sold by Sigma. The dye was dissolved in DMS (0.3 % by weight)
and then deposited by spin-coating at 2000 rpm during 30 s. Before that, the plates were
cleaned with sulfochromic acid, flushed with distilled water and dried at 100◦C during
15 min. Once the dye was deposited, the plates were baked at 95◦C for 30 min. The
unidirectional planar anchoring was obtained by illuminating the plates during 30 min
under normal incidence with the linearly polarized parallel light beam of a mercury vapor
lamp equipped with a filter at λ = 436 nm. The power of the light beam was 1.1 mW/cm2

so that the exposure dose was close to 2 J/cm2. The relative humidity in the room, which is
another important parameter according to Wang et. al. [29], was close to 40% during all
the steps of preparation of the sample. With this protocole a strong planar anchoring was
obtained, with no pretilt angle. All the capacitance measurements were performed at 5 kHz
in the dielectric regime of the LC (I measured a charge relaxation frequency close to 500 Hz
in 8CB) with a LCR meter HP 4284A, initially calibrated with standard capacitors. All the
cells were filled by capillarity in the isotropic phase. Finally, the sample were placed into a
home-made oven regulated to within ±2 mK thanks to a PID controller ATNE ATSR 100.

3.2. Measurement of the dielectric constants ε‖ and ε⊥

14.36

14.35

14.34

14.33

14.32

14.31

ε //

2015105
V (Vrms)

Figure 1. Dielectric constant ε‖ measured in a homeotropic sample as a function of the applied
voltage. The crosses are experimental points and the curve in solid line is the best fit with a parabola.
T = 35◦C.
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Figure 2. Variation as a function of temperature of the dielectric constant ε‖(0) extrapolated at zero
voltage (a) and of the fit parameters a and b (b). The solid lines are just guides for the eye.
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Figure 3. Dielectric constant ε‖ measured below the onset of instability in a planar sample of thickness
d = 7.5 µm.
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Figure 4. Dielectric anisotropy γ calculated by taking the value of ε‖ extrapolated at V = 0 V. The
agreement with the measurements of Morris et. al. [30] is excellent.
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Figure 5. (a) Capacitance curve measured in a planar sample of thickness d = 50 µm at T = 38◦C.
(b) Critical voltage as a function of temperature. The solid line is just a guide for the eye.

I first measured the two dielectric constants. In usual experiments ε⊥ is obtained by
measuring the capacitance C⊥ of a planar sample below the onset of Fredericksz instability
and ε‖ is deduced from an extrapolation to 0 of the capacitance curve C(1/V) by assuming
that L/d � 1. This requires to use very thick samples (except if the anchoring is very
strong, which we do not know a priori) and, in that case, the capacitance measurements are
less precise.

To avoid this difficulty, I directly measured ε‖ using a thin homeotropic sample of
thickness d = 7.5 µm. Measurement were performed between 0.1 and 20 Vrms by step
of 0.1 Vrms and 2 s per step. The dielectric constant ε⊥ was obtained by dividing the
measured capacitance by the capacitance of the empty cell measured at the same voltage.
In this way, I noted that ε‖ was not strictly constant, but increased slightly when the electric
field was increased (Fig. 1). This phenomenon is well known and is due to two effects.
The first one is due to a freezing of the director fluctuation modes and leads to a linear
increase of ε‖ with the electric field [31]. The second is the Kerr effect which is microscopic
in origin. It leads to a quadratic increase of the quadrupolar parameter order [32] and thus
of ε‖ as a function of the electric field. This behavior is well verified in my experiments as
shown in Fig. 1. In this example the experimental data are well fitted by a law of the form
ε‖(0) + aE + bE2 [33]. The same behavior is observed at all temperatures. The temperature
dependence of ε‖(0) and of the fit coefficients a and b is shown in Fig. 2.

Measurements of ε⊥ was performed using a planar cell of thickness d = 7.5 µm.
In that case, only measurements at low voltage, below Vc, are possible. In this range of
voltage, I observed that the capacitance was perfectly constant, meaning that the pretilt
angle was indeed equal to 0. The temperature dependence of ε⊥ is shown in Fig. 3. From
these measurements, I calculated γ by taken for ε‖ the value ε‖(0) measured at low voltage.
The values calculated in this limit are in very good agreement with those measured by
Morris et. al. [30] in a thick planar sample of thickness d = 75 µm (Fig. 4).
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Figure 6. Reduced capacitance curves measured in a planar sample of thickness d = 8.2 µm at
different temperatures. From top to bottom, T = 34, 35, 36, 37, 38, 39, 40 and 40.5◦C.

3.3. Measurement of the critical voltage Vc

The critical voltage was measured with a 50 µm-thick sample. With this thickness,
the measured voltage V′c is equal to Vc to better than 1% if L < 0.25 µm, a condition well
fulfilled experimentally in my experiments at all temperature, as I will check a posteriori
(see Fig. 10(a) below). The measurements were performed by increasing very slowly the
voltage by increments of 10 mV with a time interval of 30 s between each increment. A
capacitance curve is shown in Fig. 5 (a). This curve shows that the measured capacitance
is perfectly constant below the onset of instability, showing that there is no pretilt in my
sample. The measured critical voltage as a function of temperature is shown in Fig. 5 (b).

3.4. Measurements of the extrapolation length L

As the anchoring is expected to be strong with Brilliant Yellow, a pretty thin sample
must be used in order that the tilt angle θ on the plates deviates from 0 in a measurable
way under the action of the electric field. For this reason, I used a 8.3 µm-thick sample and
I measured the capacitance between 0.1 V and 0.5 Vrms typically to obtain C⊥ and between
5 and 20 Vrms to measure the extrapolation length L. At voltage V=5 Vrms the condition
V > 6Vc is always satisfied, so that the basic equations (4) and (5) apply. Typical curves
C(V) measured between 5 and 20 Vrms are shown in Fig. 6. These curves are almost linear,
suggesting that angle θ remains small and Equation (6) applies. In that case, fitting the
curves with the linear law 1 + γapp − p V in any voltage range (V1, V2) with V1 > 5 Vrms
and V2 < 20 Vrms should allow me to measure L by using the equation

L
d
=

γapp − γ

2γ(1 + γapp)
(7)

derived from Equation (6) and the value of γ given in Fig. 3. To test this method, I fitted
the curves within different intervals of voltage (V1, V2). For each fit, I calculated L and
Vmax by using the formula given in the introduction to check whether V2 < Vmax in order
that the model applies. In principe, all the measurements should coincide if the model
applies. In practice, it is not at all the case, the value of L crucially depending on the choice
of the interval (V1, V2), even when the model is a priori valid, as the reader can see in Table
1 obtained by fitting the curve at T = 35◦C. To summarize, I met the same difficulties as
Nastishin et al. when they used the YvS or RV method. In a similar way, I also noted that
the larger V2, the larger the value of L found from the linear fit.
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Figure 7. Capacitance curve measured at T = 40◦C (the dots are the experimental points) and its
fits (solid lines) calculated by taking κ = −0.08 and L = 0.045 µm (a,b) or κ = 0.72 and L = 0.05 µm.
Here ε‖ is assumed to be constant, equal to ε‖(0).

Table 1

Voltage range (V1, V2) Fitted value of L (in µm) V2 Is the model applicable?

(5 V, 9 V) 0.0104 29 V Yes
(5 V, 13 V) 0.0144 21 V Yes
(5 V, 17 V) 0.0178 17 V Yes
(5 V, 20 V) 0.0202 15 V No

In their paper, Nastishin et al. [17] suggest that this problem could be due to inhomo-
geneities of the anchoring conditions. I do not share that view, at least in my experiments,
and suggest that the problem is rather due to the approximations done by using Eq. (6)
with ε‖ constant.

For this reason, I tried in a first attempt to fit my experimental curves with the full
equations (4) and (5), while still keeping ε‖ constant, equal to ε‖(0). In that case, there
are two fit parameters: the elastic anisotropy κ that essentially fixes the slope of the curve
and the ratio L/d that fixes the "height" of the curve. Surprisingly, I noted that it was
not possible to fit correctly my experimental curves at large voltages even with the full
equations. The graphical comparison between the experimental curve and the calculated
ones for two particular values of κ is shown in Fig. 7. For each fit, the root-mean-square
deviation between the experimental curve and the fit curve is minimized as a function of L.
In this example, T = 40◦C and the expected value for κ at this temperature is close to -0.08
according to previous measurements performed in thick samples at low voltage when the
anchoring energy can be assumed to be infinite [30] or by using a full-optical method [24].
For this reason, I performed the first fit (Fig. 7a-b) with this value and found L = 0.037 µm.
In that case, the slope of the theoretical curve is correct at low voltage (below 10 Vrms),
but the model fails to reproduce the increase of the capacitance at large voltage, above
10 V. Increasing the value of κ allows to better fit the behavior at large voltage, but this
time, the slope of the theoretical curve is clearly too large at low voltage. The best global
fit is obtained by taking κ = 0.72 (which is very different from the expected value -0.08)
and L = 0.05 µm and is shown in Fig. 7(c-d). This analysis shows the impossibility to
reasonably fit the experimental curve in the whole range of voltages used experimentally.
Something is clearly missing in the model.
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Figure 8. (a) Capacitance curve measured at T = 40◦C (the dots are the experimental points) and
its fit (in solid line) obtained by taking into account the variation with electric field of ε‖. The best
fit is obtained by taking κ = −0.08 and L = 0.0293 µm. (b) Residuals. (c) Angle θ on the plates as a
function of the voltage.
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Figure 9. Values of κ obtained from the fit of the capacitance curves shown in Fig. 6 by taken into
account the electric field variation of ε‖. The agreement with the values given by Morris et. al. is
excellent.
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Figure 10. (a)Values of L obtained from the fit of the capacitance curves shown in Fig. 6 by taken into
account the electric field variation of ε‖. (b) Corresponding values of W.

For this reason, I tried to fit again my curves by taking into account the dependence
with the electric field of the dielectric constant ε‖ measured previously in homeotropic
samples (Fig. 2). This correction is here justified because the sample is almost homeotropic
between 5 and 20 Vrms and was already taken into account by Murauski et al. [27] in
a similar problem. With the aid of Mathematica 12, I realized that it was possible to
considerably improve the quality of the fits. The example of the same curve as before
measured at T = 40◦C is shown in Fig. 8. In this case the best fit as a function of κ and L
of the whole curve gives κ = −0.08 and L = 0.0293 µm with a residual always less than
5 10−4 in spite of the fact that angle θ is pretty large at this temperature at large voltage.
This is ten times better than before, as we can see by comparing the residuals of the fits
shown in Figs. 7 and 8. In addition, the value of κ found here is in very good agreement
with that found by Morris et. al. [30] or by us (I and J. Colombier) by using a full-optical
method [24]. This good agreement was confirmed at all the other temperatures, showing
the importance of taking into account the electric field dependence of ε‖ in the fit of the
experimental curves at large electric field. The values of κ and L obtained in this way
are shown in Fig. 9 and 10(a), respectively. Finally, the last graph in Fig. 10(b) shows the
temperature dependence of the anchoring energy W calculated by using the value of K1
deduced from our measurements of Vc by taking εa = ε‖(0)− ε⊥. The graph shows that W
decreases when the temperature increases and approaches the melting temperature. By
contrast, no divergence is observed in the vicinity of the smectic A phase, contrary to what
is observed for the bend and twist elastic constants.

4. Role of flexoelectric effects

As we can see in Fig. 8, the fit is not perfect. For this reason I tried to improve it
by introducing a flexoelectric contribution following a procedure detailed in a previous
publication [24]. I found that the best fits were systematically obtained by taking the bulk
flexoelectric coefficient e? = 0 [34]. That means that flexoelectric effects are completely
screened out by the ions in the present experiments. This result was expected because the
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Debye length LD in our samples is of the order of 50 nm, which is indeed much smaller
than the sample thickness [35–37]. This value was obtained from the measurement of the

charge relaxation frequency fc ≈ 500 Hz by using formula λD ≈
√

D
2π fc

[38] and by taking

D = 10 µm2/s for typical value of the diffusion coefficient of ions in 8CB [39].

5. About the Rapini-Papoular form of the anchoring energy
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Figure 11. (a)RMSD as a function of A for the experimental curve measured at T = 40◦C. (b) Value
of L that minimizes the RMSD as a function of A.
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Figure 12. Comparison between the best Rapini-Papoular potential (curve in blue dashed line) and
the best modified Rapini-Papoular potential (curve in red solid line). The two potentials are almost
indistinguishable below θ = 0.4 rad, meaning that in our experiment the Rapini-Papoular potential
can be used to fit the data.

Numerous experiments suggest that the actual anchoring potential shifts from the
Rapini-Papoular form at large tilt angle [2,3,15,40–43]. Another possibility to improve
the quality of the fits is to modify the form of the anchoring potential. Several solutions
have been proposed in the literature. One of them consists of replacing the sinus in the
Rapini-Rapoular potential by an elliptic sinus [42]. This function is complicated to work
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with and I did not use it. Another much simpler and very classical solution is to add a term
in sin4 θ to the potential [15,40,41,44,45]. In that case the anchoring potential can be written
in the form

W(θ) =
1
2

W
sin2 θ + A sin4 θ

1 + A
(8)

and the torque equation (5) becomes

1 + 2A sin2 θ

1 + A
sin θ =

√
1 + κ sin2 θ

1 + γ sin2 θ

π√
1 + γ

L
d

V
Vc

C
C⊥

(9)

To test the pertinency of this correction, I fitted the capacitance curve measured at 40◦C
with this new potential by using the value of κ previously found and I minimized the
root-mean-square deviation (RMSD) between the experimental curve and the theoretical
curve obtained by solving numerically with Mathematica Equations (4) and (9). In practice,
the RMSD was minimized as a function of L = K1/W for different values of A. The result
is shown in Fig. 11. This graph shows that the RMSD passes through a minimum for
A = −0.188 and L = 33.8 nm.

This calculation shows that the actual potential is different from the Rapini-Papoular
potential and flattens when θ → π/2. Such a tendency was already observed experimen-
tally [14,15]. The difference between this potential and the one of the Rapini-Papoular form
is nonetheless very small in the range of angles θ probed in this experiment (θ < 0.4 rad
according to Fig. 8(c) as the reader can see in Fig. 12. This explains why the RMSD does not
change much as a function of A in Fig. 11(a). In practice, it would interesting to use larger
field to test the relevance of this correction to the Rapini-Papoular potential. I also men-
tion that this value of A is compatible with the second order character of the Fredericksz
transition observed here as shown by Guochen et al. [46].

6. Conclusions

This analysis confirms that neglecting the dependence on the electric field of the
dielectric constant ε‖ in the analysis of the capacitance curves at high voltage may be
dangerous and lead to wrong values of the extrapolation length [27]. This effect is clearly
at the origin of the breakdown of the analysis of the capacitance curves with the linear law
given in Eq. (6) which gives values of L strongly dependent on the voltage range used to
fit the data when ε‖ is taken constant. I note that the behavior observed in my analysis,
namely a value L that systematically decreases when the fits are done at large voltages, is
the same as the one reported by Nastishin et. al. [5] by using the YvS or the RV techniques.
This result suggests that the problems faced by these authors are due to the variation with
the electric field of the dielectric constant ε‖ rather than to anchoring inhomogeneities
in the samples. This effect should be particularly important in LC such as 8CB which is
composed of molecules with a strong electric dipole moment.

To measure the extrapolation length, I thus propose a new procedure that is more
general than that proposed by Murauski et al. [27] and perhaps easier to implement. This
procedure consists of solving directly the full equations (3) and (4) governing the problem,
which is much more rigorous than using the approximate equation (5) as these authors do.
Indeed, this equation assumes that the anchoring angle θ is small, typically less than 0.2
rad, which is a strong limitation at large field 1. Another advantage of my method is that it
gives simultaneously the values of the two dielectric constants and of the elastic constants
K1 and K3. My method can also be used to test the shape of the anchoring potential, as it
does not assume that the anchoring potential is of the Rapini-Papoular form. This method
is also easy to implement because the equations (3) and (4) are easily solved numerically,
for instance with Mathematica.

1 I also mention here that formula (2) in Ref. [10] is wrong and must be read B =

√
(1−yp)(1+κyp)

1+γyp
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Last but not least, this method can also be generalized to the case of samples with a
pretilt angle, as the ones obtained by using a rubbed polymer. In that case, it is sufficient
to replace θ by θ − θa in the l.h.s. of Equation (5) where θa is the pretilt angle. Note also
that the measurement of Vc must be performed with a thick parallel planar sample (the
reason for this is explained in Ref. [24]). This is important because badly measuring Vc
changes the slope of the experimental curves C(V) and thus the value of κ. By contrast, the
measurements of the extrapolation length must be performed with an antiparallel sample
in order that Equations (3) and (4) (or (9)) apply. This method could also be applied to
LC with a negative dielectric anisotropy to measure the polar anchoring energy under
homeotropic anchoring.

In the future it would be interesting to perform experiments at larger field to better
test the validity of the Rapini-Papoular form of the anchoring potential. It would also be
interesting to compare the values of L and A obtained in this way with those obtained,
for instance, by measuring the critical voltage V′c in a wedge sample [47] and by using
more sophisticated methods as the one based on spectroscopic ellipsometry [48,49] or the
all-optical compensated method of Murauski et al. [14].
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