
 

 

Article 

Entropy and Entropic Forces to Model Biological Fluids 
Rafael M. Gutierrez 1, 2,*, George T Shubeita 1, Chandrashekhar U. Murade 1 and Jianfeng Guo 1 

1 New York University Abu Dhabi; rmg2165@nyu.edu, geroge.shibeita@nyu.edu, Chandra.murade@nyu.edu, 
dannyguo@nyu.edu  

2 Universidad Antonio Nariño; director.sistemas.complejos@uan.edu.co  
* Correspondence: rmg2165@nyu.edu  

Abstract: Living cells are complex systems that may be characterized by fluids crowded by hun-
dreds of different elements in particular by a high density of polymers; they are an excellent and 
challenging laboratory to study exotic emerging physical phenomena where entropic forces emerge 
from organization processes of many-body interactions. The competition between microscopic and 
entropic forces may generate complex behaviors like phase transitions that living cells may use to 
accomplish their functions. In the era of the big data, when biological information abounds but gen-
eral principles and precise understanding of the microscopic interactions scarce, the entropy meth-
ods may offer significant information. In this work we develop a model where the thermodynamic 
equilibrium results from the competition between an effective electrostatic shortrange interaction 
and the entropic forces emerging in a fluid crowded by different size polymers. The target audience 
for this article are interdisciplinary researchers in complex systems, particularly in thermodynamics 
and biophysics modeling. 
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1. Introduction 
The biological fluids, inside living cells, are crowded by a diversity of polymers as 

chains made of monomers from 1.5 to 7Å length, as DNA is made of nucleotides. The 
diversity of polymers in a biological fluid may have different configurations depending 
on their length, temperature, solvent and crowding [1,2]. Some simple models are useful 
and powerful but they may not account for specific details that eventually become domi-
nant effects. For example, emergent medium and long-range entropic forces may cause 
polymer compression but electrostatic short-range forces cause polymer stretching gener-
ating a resourceful competition of forces with nonobvious behaviors and consequences. 
The outcome of these competing forces strongly depends on small variations of the spe-
cific circumstances such solvent, the nature and size of the polymers involved and the 
crowding they generate to the other polymers and to themselves.  

The quality of the solvent depends on both the chemical compositions of the polymer 
and the kind of solvent molecules. If a solvent has the precise characteristics to cancel the 
effects of excluded volume expansion or compression, depending on the point of view, 
the polymer chain will behave exactly as predicted by the random walk or ideal chain 
model. At short range, the steric effects are nonbonding interactions that influence the 
configuration and reactivity of all ions and molecules of the fluid. Steric effects comple-
ment and can be considered part of the electrostatic shortrange intrapolymer and inter-
polymer interactions, between monomers from the same polymer and monomers from 
different polymers, dictating the shape and reactivity of polymers [1-4].  

Such richness and complexity of biological fluids allow sophisticated dynamics de-
pending on subtle changes of the internal and environmental parameters including tem-
perature in a constant feedback. Therefore, the effects of entropy are ubiquitous in biolog-
ical fluids, in fact it is indispensable for certain emergent properties from the ordering and 
self-ordering processes that give life to inert matter as an emergent quality from the 
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complexity of many interacting simple and not living but very dynamic and sensitive con-
stituents. The ordering power of entropic forces emerges from the tendency of thermody-
namic systems to maximize its entropy understood as a tendency to disorder, but towards 
more probable states. Understanding complexity to develop simple models, capture the 
essentials transforming the complication of diversity into the power of organization [2-5]. 
In this work we model the complexity of a biological fluid by describing the polymer con-
figuration changes by means of two competing and complementary forces: an expanding 
short-range force F1 accounting for electrostatic forces, electronic clouds superpositions 
and quantum exclusion principle among others, and a medium and long-range compres-
sive force F2 accounting for entropic forces like polymer packing, clustering and osmotic 
pressure among others. These two resulting effective forces shape the configuration of the 
polymer and therefore the activity and effects of the molecules, also depending on tem-
perature as a complex thermodynamic system. 

The traditional measures of polymer configurations are the hydrodynamic radius Rh, 
obtained from experimental viscosity measures and quasi-elastic light scattering; the ra-
dius of gyration Rg, obtained from experimental measures of small angle X-ray scattering 
and; the end-to-end distance Re-e, obtained from Fluorescence Resonance Energy Trans-
fer, FRET, among other techniques. In certain particular conditions these three different 
measures have some theoretical approximations and relations. For good solvents Rh  ≈ 
5/3 Rg  and Rg ≈ 1/√6 Re-e. For example, large nonionic polymers like polyethylene glycol, 
PEG, of molecular weight 6kg/M, are constituted by a little less than one hundred mono-
mers with a Rh ≈ 24Å  or Rg ≈ 40Å at standard biological fluid conditions [5-8]. On the 
other hand, small but charged polymers, polyelectrolytes, made of a few monomers, for 
example a short single strand of DNA of the nucleotide or base T (thymine), pT, may have 
Rg of a few to 100Å, depending on the crowding, number of monomers and solvent. There-
fore, the size, shape and compactness of polymer configurations may give very different 
results for the corresponding measures obtained with different techniques [9], depending 
on small variations of the conditions Theoretically, the competition of a negative short-
range expanding force F1, and a positive large range compressing force F2, is well de-
scribed by a Lenard-Jones-like potential, VL-J. For a small pT embedded in a fluid crowded 
by large PEGs, for example, the minimum of the VL-J indicates the thermodynamic equi-
librium of the system, when the pTs have specific values of Rg, Rh and Re-e as the forces F1 
and F2 work to mold its size and shape defining its folding and unfolding properties. The 
crowding, measured by the percentage or density of large polymers, does not have to be 
very high, 20% is considered standard for biological fluids with small polyelectrolytes and 
large nonionic polymers. Small and charged polymers like a small pT, has a characteristic 
stiffness, represented by F1 as it is mainly the repulsion force between the negatively 
charged monomers that constitutes the charged DNA backbone. In contrast, F2 includes 
crowding, the reduction of available volume that effectively increases the concentration 
of macromolecules and generate an osmotic pressure upon themselves and over the other 
constituents of the biological crowded fluid. Therefore, the shape of a pT depends on the 
feedback of these two forces. The different ranges of these two forces result in subtle bal-
ances, when the intensity of one increases the intensity of the other decreases and vice 
versa as the pT changes its configuration, and consequently, changes the results of the 
measures and their quantitative relations.  

This work is divided in four sections: Section 2 presents the theoretical framework, 
section 3 presents the model calculations and compare experimental and theoretical re-
sults, in sections 4 the results are discussed and analyzed and, finally, in section 5 are 
presented some conclusions and perspectives.  

2. Framework and Methods 
A polymer is a complex system with many different possible configurations that may 

be characterized by their size and shape. The most desirable characteristics are those that 
may be verified experimentally, directly or indirectly, and also can be experimentally 
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controlled such as the length of the polymer and the solvent and crowding concentrations. 
Crowding of biological fluids seems to be indispensable for living functions within the 
cell and among the living cells [1-3]. RNA and DNA are confined, packed, twisted, and 
pulled on, depending on their polymeric properties as polyelectrolytes or charged poly-
mers. Their conformation, folding and flexibility strongly depends on ionic solution con-
ditions.  

The configurations of a polymer can be measured in different ways. The hydrody-
namic radius Rh, is experimentally measurable using the diffusion coefficient correspond-
ing to the model of hydrated polymer molecules as solid spheres with radius Rh using the 
Einstein viscosity relation. The root-mean-squared end-to-end distance of a polymer is 
denoted by Re-e, which in standard conditions is Re-e ≈ 3.1Rh [6], for a freely jointed chain 
when ν =1/2 we can write Re-e= 61/2Rg= A0 (6N)1/2 where N is the number of monomers and 
A0 can be interpreted as the effective length of one monomer and, for an ideal chain Re-e 
=N1/2l where l is the Kuhn or persistent length [10]. In general, it is considered the scaling 
relation Re-e ~ Nν where the scaling factor ν = 3/5=0.6 corresponds to a good solvent, for a 
sphere ν =0.33, for theta solvent ν =0.5 and ν = 1 for a straight rope-like polymer. A good 
solvent generates a pair-wise repulsion for a full chain swelling, on the other hand a reg-
ular solvent does not generate repulsion and the chain collapses, closer to a hard sphere. 
Therefore, increasing salt concentration in water a solvent for a polyelectrolyte like a pT, 
acts as bad solvent because it reduces the pair-wise repulsion between the charged mon-
omers of the pT by ionic screening making the polyelectrolyte softer and easer to compress 
into compact configurations by any force that may be present. This is contrary to a good 
solvent that in general is considered a substance that increases the stiffens of the polymers 
to favor the stretched configurations, not the collapsed configurations towards a compact 
sphere, corresponding to low salt concentrations in the case of polyelectrolytes such as a 
pT.  

The radius of gyration Rg, is obtained from angular inertia. Accounts for how the 
mass of an object is distributed about its center of mass. It can be expressed as Rg =A0N ν 
where N is the number of monomers, A0 is the size or effective length of a monomer and 
ν measures the stiffness of the polymer, both depending on salt concentration and are 
experimentally measured for some polyelectrolytes [7]. From experimental data R is cho-
sen equal to Rh which is experimentally measurable. For good solvents Rh and Rg may be 
significantly different. Rg is a model-free measure of the global size of a polymer, it can be 
directly determined from small angle X-ray scattering SAXS [8,11,12]. As already men-
tioned, the dependence of Rg on the number of bases or monomers, N, is well described 
by a general scaling law of the form Rg =A0Nν [13], with the values of A0 and ν well esti-
mated for pT of small N at different concentrations of salt [7]. In the extreme case where 
ν =1, the molecular size scales linearly with the number of monomers, suggesting that the 
monomers in the polymer are rigidly connected, as in the case of a single-stranded DNA 
on short length scales, ssDNA. A smaller value of ν indicates greater molecular flexibility; 
in the limiting case where the polymer behaves as a self-avoiding random walk (SAW) 
chain, it corresponds to ν = 0.588 for large N [13]. The steric contribution is included in A0 
and ν even if it may or may not depend on salt concentration. Therefore, Rg is a good 
measure of the size of a small pT experimentally measurable, it must be a function of salt 
(NaCl) concentration s, of the number of monomers N and of the crowding in percentage 
P, of mass or volume of the fluid. Then, we can write: 

 
𝑅 (𝑠, 𝑁, 𝑃) = 𝐴 (𝑠)𝑁 ( )𝐹(𝑠, 𝑁, 𝑃)  ,                        (1) 

 
where the first two factors of the right-hand side of the equation have the information of 
the pT without crowding and F(s,N,P) is the deformation factor representing the effects of 
crowding which also depends on s and N and obviously of P.  By definition F(s,N,0)≡F0=1 
when P=0. In the absence of long-range interactions, the following mean values relation 
holds, Rg2 = 1/6 Re-e2 .  
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The contour length of a polymer is given by L = NA0, is the polymer stretched by 
pulling its ends apart. The Kuhn length or persistent length l, defines the stiffness of the 
polymer, is the length of n rigid monomers before the polymer bends, smaller for softer 
monomers. The corresponding values of A0 and ν depending on s for a pT are presented 
in table 1, obtained from experimental data [7]. The experimental data can be fitted to the 
following expression and then obtain extrapolated values of A0 and ν for all possible and 
also idealized theoretical very high concentration values of s: 

 
A0 = 11/4 + y/4 and ν = 0.794 – 0.0674y ,                          (2) 

 
   

where y = log10 s, 0 < y ≤ 3 and 0 < s ≤ 20M is the salt concentration. However, accordingly 
to the experimental results, A0 has not a clear tendency as a function of s but a strong 
variability for some particular values of s. Therefore, for the sake of qualitative estimates 
throughout this work, A0(s) is normalized to 1 for all values of s. This normalization gets 
rid of noisy effects at monomer scale and allows to capture essential features at polymer 
scale. 
 
Table 1. Experimental data and extrapolated values using equation 2, for the parameters A0 and ν 
as functions of 0 < s ≤ 20M. The experimental values of ν(s) as a function of s are accurate and well 
fitted to the corresponding equation 2, to be used for comparison of experimental and theoretical 
estimates of Rg. In contrast the values of A0(s) indicated in the table, are a linear extrapolation with 
large and inconsistent deviations from experimental measurements. Therefore, the experimental 
values are not used in this work and it is set A0(s)=1 for all values of s. 

Salt 

[s]= mM 

1mM 

 

12.5 25 125 225 525 1M 10M 20M 

A0(s) 2.750 3.024 3.100 3.274 3.38 3.430 3.500  3.750 4.900 

ν(s) 0.794 0.720 0.700 0.653 0.636 0.607 0.592 0.524 0.504 

 
 

The microscopic forces and their interplay constituting F1 is very complex, including 
the van der Waals  interaction that may change by environmental chemical bonds, tem-
perature increases exclusion volume because of random walk and vibrations, steric effects 
correspond to very short-range but nonbonding interactions like repulsive forces between 
overlapping electron clouds, attraction by Casimir effect become repulsive at certain dis-
tance by electron clouds overlapping, among other microscopic complexities of F1. How-
ever, all of them strongly depend on microscopic charge distributions and therefore can 
be reduced or summarized into an electrostatic force strongly dependent on the ion’s con-
centration provided by the solvent. Then the solvent characteristics represented by salt 
concentration can be directly related with the polymer stiffness as the emergent relevant 
quality at the relevant scales of the VL-J. Thus, through the effective forces F1 and F2, the 
model brings up an effective potential from microscopic interactions and entropic forces 
emergent from the complexity of the system.  

Macromolecular crowding is an effect exerted by large molecules on the properties 
of other large molecules and indirectly to themselves and finally to all the other molecules 
contained in the biological fluid, depending on the crowding percentage of the total mass 
or volume of the fluid. In summary, F1 and F2 result in polyelectrolytes less or more flexi-
ble, with configurations sometimes difficult to explain in terms of experimental measure-
ments, but they do not collapse to globular forms for large ranges of salt concentration [7]. 
Electrostatic repulsion tends to disfavor compaction and folding towards a rope-like con-
figuration. Size decreases with increasing salt concentration because the electrostatic re-
pulsion is increasingly screened by salt ions. However, even for high salt concentrations 
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of 1M, the pT does not collapse into globular forms, indicating that entropic forces are 
neutralized at some point by other forces like friction, viscosity and thermal fluctuations 
as macroscopic expressions of F1. Since water, H2O, with NaCl, s, generates +Na ions 
screening the negative charge of polyelectrolytes, increasing s decreases the stiffness of 
the polyelectrolyte generated by negative charge repulsion between the constituent mon-
omers, changing the polymer configuration to a more spheroid like shape from a more 
stretched rope-like configuration.  

Since the osmotic pressure is an effect of large polymers on polymers of similar size, 
the osmotic pressure on small pTs will be more effective with smaller PEGs for the same 
volume percentage of crowders; smaller crowders may be better [3]. More precisely, pol-
ymers are better crowders for similar size polymers. In addition, the shape of the polymers 
is important to increase the effective surface of interaction. When the polymers are small, 
they no longer can be well approximated by hard spheres, but by soft spheres with 
changes of symmetry and even dimensionality, that can be detected and eventually quan-
tified from the experimental measures Rh, Rg and Re-e. For soft spheres, the work of the 
forces F1 and F2 generate small changes of configurations absorbing or releasing some en-
ergy towards a thermodynamic equilibrium different from that of hard spheres and, in 
such conditions, the relation of the two forces may change and the small polymers can 
eventually stretch under increasing crowding. Therefore, the thermodynamic equilibrium 
is the result of a processes at different scale ranges that can be represented by the interplay 
of the two effective forces F1 and F2 very sensitive to the specific conditions of solvent, size 
of the polymers, crowding and temperature.  

The two resulting effective forces F1 and F2 can be represented by a Lennard-Jones-
like potential, VL-J: 

 
 
 
 
or 
 
 
 
 

 
Traditionally, r is the distance between two interacting particles, ε is the depth of the 

potential well, and σ is the distance at which the particle-particle potential energy is zero, 
and has its minimum at a distance rm, where the potential energy has the value -ε. The 
interpretation in this work for r is not the distance between two particles but the size of 
the pT that changes under the pressure of the PEG. The reference point is one extreme of 
the pT and r is the distance to the other extreme, then rm = (m/n)1/m-nσ represents the com-
pression or expansion of the pT under the two competing forces. The condition m > n rep-
resents the short- and long-range forces respectively. The system with large polymers 
PEG, and a small polyelectrolyte, pT, is depicted in figure 1 with the corresponding VL-J. 
Under this condition m and n can have many different values compared to the most com-
mon and original Lennard-Jones potential’s values m= 12 and n=6. The forces F1 and F2 are 
given by the variation of the potential where negative indicates repulsive and positive 
indicates attractive force, or stretching and compressing the pT respectively:  

 
 

( )
= −𝐹 (𝑟) + 𝐹 (𝑟).                         (4) 

 
 

𝑉 (𝑟) = 𝑎𝜀 −                           (3a)             

𝑉 (𝑟) = 𝜀 − 𝑏 .                     (3b)
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Figure 1. A general Lenard-Jones-like potential representing the forces F1 and F2 in a system of a 
small polyelectrolyte pT under the pressure of large nonionic polymers PEG. 

 
 
From equations 3 a and b, the equilibrium of the system is different depending on s, 

N and P which define the relations between the two forces, determined by: 
 

𝑟 =
/( )

𝜎                             (5) 
 
Different values of the relative intensities and ranges of the two forces represented 

by m and n, correspond to specific values of a and b and a quantitative relation between 
rm and σ. The factor Fmn: 

 
 

𝐹 =
/( )

                              (6) 
 

measures the contraction of the pT, proportional to its length when there is not crowding. 
When Fmn > 1 the pT is compressed and when Fmn < 1 the pT is stretched and in both cases 
the configuration of the polyelectrolyte is changed at the same time that it changes the 
effects of the two forces upon itself.  
 

From the diagram of the VL-J and the corresponding definitions, we identify Re-e=σ 
and rm = βσ = αRe-e where β is the measure of change of size of the pT under the osmotic 
pressure from crowding; Re-e=σ is the size of the compressed pT and rm = βσ = βRe-e is the 
measure of the pT without crowding. This approximation is theoretically valid for any 
other configuration of the pT considering that Re-e measures the characteristic size of the 
pT and its extremes tend to the surface of the volume defined by the polymer as the sta-
tistically more probable locations for them. Therefore, the compression factor depends on 
the number of monomers constituting the pT, N, the salt concentration s, and the crowding 
percentage, P, given by: 

 

𝛽(𝑠, 𝑁, 𝑃) =                               (7) 
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From equations 5 to 7 we get a= βm and b=βm-n.  For example, for a pT approximated by 
an ellipsoid instead of a sphere (the ellipsoid of higher symmetry), from equations 3 and 
4 at thermodynamic equilibrium, the forces F1 and F2 must have the approximated relation 
given by: 
 
 

𝐹 = 𝐹 1 −  ,                             (8) 

 
where d is the largest axes and c the other two equal and smaller axes of the ellipsoid. In 
the case of a sphere when c=d, we obtain F1 = -0.41F2, and for an ellipsoid with c=d/2 we 
obtain F1 = -0.78F2. These simple calculations show the changes that the feedback between 
the pT geometry and the forces can produce on the configurations of the pT. For larger F1 
relative to F2, the configuration of the pT tends to loss symmetry from a sphere to an el-
lipsoid. Since F2 represents a pressure homogeneously distributed over the surface of the 
pT, the relation between the vertical and horizontal components changes when the pT 
losses symmetry, then the effects enhance itself and the ellipsoid gets still flatter, changing 
the relation Re-e/Rg that can be measured experimentally. 
 

 Since the entropic forces are isotropic, in general they are a compression or compact-
ing force upon the pT, but the monomers of the extremes of the pT have more degrees of 
freedom than the other monomers and then they tend to walk away from the others to-
wards the surface of the volume occupied by the polymer, as a more probable configura-
tion. In contrast, F1 is directional and tends to stretch the polymer towards a more elon-
gated and less spherical and symmetric configuration that also generates a positive feed-
back with F2 to make the pT configuration still less symmetric and flatter, tending to re-
duce dimensionality from 3D to 2D towards a parabola or horseshoe like configuration 
and finally to the extreme 1D configuration of a stretched rope. For smaller pTs, this ten-
dency to dimensionality reduction generated by the feedback of the forces and the geom-
etry of the pT is stronger. 

 
The idealized configurations corresponding to different stages of symmetry and di-

mensionality loss may be the following:  
 
1- Rope like shape: is the maximum extended idealized configuration with all the 

monomers in line with the extremes maximally separated from each other. It is the domi-
nant tendency of a strongly charged polyelectrolyte with strong repulsion between mon-
omers, a very stiff polymers difficult to bend. It is an almost 1D configuration. Its total 
length will be approximately equal to Re-e(𝑠,p)=𝐴0(𝑠)N. 

2- Parabola or horseshoe-like shape: is a less extended configuration still domi-
nated by F1 repulsion among monomers but weakened by the larger distance between the 
extreme monomers, the polymer is still stiff but the entropic packing force becomes rela-
tively more important and the extreme monomers can get closer bending the polymer. 
Compared with the rope like shape the dimensionality increases to almost 2D. Its total 
length is still approximately equal to 𝐴0(𝑠)N but Re-e(𝑠,N) has a more complex dependency 
on s and N. 

3- Ellipsoid shape: when the polymer is soft and longer the entropic packing force 
makes the monomers tend to fill more homogenously the space between the two extremes 
defining an elongated volume. The extremes still tend to be at the end of the longer axes 
of the elongated shape because it is where they have less constraints and maximum prob-
ability to be. Its dimensionality increases to 3D.     

4- Spheroid shape: when the polymer is still softer and longer the entropic pack-
ing force makes the monomers to homogeneously fill the space between the extremes but 
with maximum symmetry because the preferred directions defined by the interactions 
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between monomers lose importance but the extremes stay close to the surface for the same 
entropic reasons mentioned before. The spherical symmetry of the volume occupied by 
the monomers becomes definitely 3D, however. The monomers can be more or less dis-
perse in the spheroid volume occupied by the polymer tending to a compact and solid 
sphere.  When the compression force F2 overcomes the expansion force F1, the volume 
occupied by the monomers becomes more and more symmetric and asymptotically tend-
ing to the most compact and further incompressible configuration limited by temperature 
and steric interactions between monomers; larger polymers always have more room for 
compression. For a compact sphere Re-e ~ 2Rg. 

 
Theoretically and formally, the radius of gyration, Rg, is defined as the mean square 

distance of the monomers to the center of mass of the polymer: 
 

𝑅 = ∑ 𝑟  ,                             (9) 
 

             
where N is the number of monomers and ri is the distance from the i-th monomer to the 
center of mas of the polymer, considering all the monomers with mass equal to one. 

 
As indicated previously, the radius of gyration Rg has been measured for different 

values of s and N with P=0 following the scaling relation [6]: 
 

𝑅 (𝑠, 𝑁, 0) = 𝐴 (𝑠)𝑁 ( ).                            (10) 
 
Defining α(s,p) as Rg = α Re-e , the proportionality factor between these two measures 

of a polymer, some theoretical and experimental limits can be compared to understand 
better the changing configurations of a pT under changes of s, N and P causing changes 
of F1 and F2. For high values of s the pTs can be considered freely jointed polymers, i.e. 
stochastic chains in 3D with α≈1/√6≈0.408, following a random walk in 3D in the absence 
of any force: F1=F2=0. Different values of α indicate how different the corresponding pol-
ymer configuration is compared to that of the freely jointed polymer. 

When the monomers are considered hard spheres with no electrical charge of any 
kind, F1=0, and no crowding but with interpolymer entropic force, packing force, which 
means F2 weak, the polymer tends to a symmetric spheroid 3D volume randomly occu-
pied as a tight random walk of the monomers, with the extremes tending to the surface 
by the entropic reason explained above. Depending on the temperature T, the spheroid 
may be more or less compact tending to a dense and solid sphere for very low T. In such 
conditions the polymer can be well approximated by a solid sphere of radius R with 
Rg=(6/5)1/2R ≈ 1.1R corresponding to the mathematical ideal radius of gyration of a solid 
sphere with radius R obtained from the corresponding 3D gyration tensor. If we estimate 
R by making the volume of N solid spheres of unit radius equal to the volume of a solid 
sphere of radius R we obtain R≈∛N then, for a polymer made of N monomers with a com-
pact sphere configuration we obtain Rg ≈ (6/5)1/2N1/3 ≈ 1.1N1/3 indicating that the radius of 
gyration is 10% larger than the radius of the sphere. Considering the entropic tendency of 
the extremes of the polymer to be in diametral opposite sides of the sphere, the end-to-
end distance would be given by, 

 

𝑅 ≈ 2𝑅 =  2𝑁 = 2 𝑅 = 1.8𝑅                (11) 

 
for a solid sphere polymer configuration of N monomers. For a ring-like and a disc-like 
tight and idealized configurations of N monomers Rg ≈ √2N and Rg ≈ N respectively. 
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In order to estimate Rg for different configurations and be able to compare values of Rg 
and Re-e to obtain more information about the actual configurations of a real polyelectro-
lyte under the forces F1 and F2 with different conditions of the parameters s, N and P, we 
use a second theoretical expression for Rg, resulting from the “wormlike” chain model: 
 

  𝑅 = − 𝐿 + − 1 − 𝑒
/

             (12) 

 
where Lp is the persistent length, l=N is the contour length with N the number of mono-
mers and the effective monomer length equal to one. With this model we can estimate Rg 
for polymers of different sizes and with different levels of stiffness. For the maximum 
stiffness, Lp ~ N, and a very large polymer, N→∞, we obtain Rg ≈ N/4, which is the same 
result for the minimum and maximum stiffness of very small polymers, N →1, because Lp 
→ N →1; meaning that small polymers are simple and do not have much room for stiffens 
variability, it is always close to the maximum, Lp ≈ 1. The minimum stiffness Lp = 1, for 
very large polymers, N → ∞, gives Rg → (N/3)1/2. 
 
In the following section, we calculate and compare the results of Rg for the two theoretical 
estimates: the mean square distance to center of mass and the wormlike chain model, 
equations 9 and 13 respectively, with the experimental approximation estimated from 
equation 10. These results allow us to compare the geometry of the configurations gener-
ated by the correspondent stiffness represented in Lp and s concentrations as the emergent 
and observable characteristic from the thermodynamics equilibrium of the forces electro-
static resulting force F1 and the entropic resulting force F2. 

3. Calculations and results 
This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental 
conclusions that can be drawn. In the context of this work the configurations of the small 
polyelectrolytes depend only on the parameters s, N and P. As indicated, we expect a re-
duction of Rg for increasing s and independently of P, both depending on N in a different 
way. Theoretically, we can say that reducing s without crowding, i.e. P=0%, may take the 
polyelectrolyte to different configurations from an ideal rod-like, to a SAW chain and fi-
nally to a disperse ellipsoid or spheroid and finally to a compact spheroid. These idealized 
configurations are related with the scaling exponent ν(s) of equation 10 by ν(s)=3/5=0.6 for 
a good solvent, ν(s)=1/2=0.5 for a theta solvent and ν(s)=1/3≈0.33 for a bad solvent with 
the corresponding values of the solvent concentration s. The approximation of a small 
polyelectrolyte to a spheroid is much better when the solvent is not very good and the 
number of monomers is not too small. 

Figure 2 presents an idealization of five configurations: straight rope-like configura-
tion, SR, almost one-dimensional, ~1D; parabola or horseshoe configuration, Pa, almost 
two-dimensional, ~2D; sparse spheroid, SS, with dimensionality less than three, <3D, a 
compact or dense spheroid, DS, three-dimensional, 3D and; the more realistic self-avoid-
ing random walk configuration, SAW, corresponding to a very good solvent with dimen-
sion <3D. The SAW configuration is the real optimal configuration for an ideal solvent, 
providing maximal surface contact with it, and it may have a fractal dimension 2D < fD 
<3D, which means at the same time the overall volume occupied by the constituent mon-
omers of the polymer and the density or dispersion of occupation of such volume. 

With equations 9, 10 and 11 we estimate in three different ways the radius of gyration 
Rg, and use approximations of the corresponding values of the end-to-end distance Re-e. 
The consistency and differences between the results at different conditions of s, N and P, 
allows us to make some interesting hypothesis about the quantitative and qualitative char-
acteristics of the polyelectrolyte configurations and how do they change, and improve the 
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understanding of the processes performed by the forces F1 and F2 in their nonlinear rela-
tions described by the VL-J potential emergent from the conditions defined by the different 
combination of the parameter values s, N and P. We estimate Rg with equation 9 for dif-
ferent small pT configurations considering monomers of unit mass and radius. 

 

   
Figure 2. The idealized configurations are simplifications of real configurations, although very 
small, with a nonzero probability. However, they provide a good base of configurations with qual-
itative approximations of the main features of symmetry, dimensionality and sparsity of monomers 
or real polymer configurations. The five idealized configurations considered in this work are: the 
3D Dense Spheroid, DS, less than 3D Sparse Spheroid, SS, less than 2D parabola, Pa, 1D Straight 
Rope, SR, and the Self-Avoiding random Walk, SAW, which in an ideal solvent can become a fractal 
object with minimal symmetry, dimensionality and density but maximizing the surface contact with 
the polymer solvent. 

 
Parabola configuration, Pa: For a polymer constituted by N unit length monomers 

with a 2D symmetric parabola configuration, y(x)=x2, we first find the center of mass given 
by x0 = 0 and y0 = (50/320)b2 = 0.18b2 where b is the end-to-end, Re-e, distance truncated at 
y=a. From the formula to calculate the length L of such segment of the parabola that must 
be L=N, we obtain the increment in the x and y directions, ∆x and ∆y respectively, when 
a new monomer is added to the parabola configuration. Then the distance of the N poly-
mer to the center of mass (x0, y0) is given by ri = ((x0-xi )2 + (y0-yi )2)1/2 where xi = xi-1 + ∆x and 
yi = yi-1 + ∆y with i = 1,…,N/2 for N even or i = 0,…, N-1/2 with r0 = 0 if N odd. For such 
parabola configuration depicted in figure 3, equation 9 gets the specific form: 

 

𝑅 = ∑ (2𝑟 )
/                          (13) 

 
 
The estimate of the ri depends on the characteristics of the parabola and can be geo-

metrically elaborated. The factor 2 of the ri appears because of the 2D symmetry of the 
parabola configuration y(x)=x2 where the unfold length of the polymer is N for N mono-
mers of unitary length and mass. 
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Figure 3. Building a polymer Parabola-like configuration, y(x)=x2, monomer by monomer.  
 
Dense Sphere configuration, DS: in this case equation 9 for Rg can be written as: 
 

 𝑅 = [𝑛 𝑟 + 𝑛 𝑟 + 𝑛 𝑟 + 𝑛 𝑟 + ⋯ + 𝑛 𝑟 ]              (14) 
 
 
where ri = 2(i-1)r for i=1,2,…, N is the distance of the i-th monomer’s center to the center of 
the polymer with a sphere configuration, its center of mass, and ni is the maximum num-
ber of monomers that can fit at such distance from the center in order to have spherical 
symmetry. It is obtained from dividing the spherical volume occupied by the polymer VR 

= 4/3πR3 by the spherical volume occupied by one monomer Vr = 4/3πr3. With r=1 the cor-
responding values for a spherical symmetric configuration are r1=0 and n1=1, r2=2 and 
n2=7, r3=4 and n3=19, r4=6 and n4=37,… up to the sum of all ni = N, the total number of 
monomers. Figure 4 shows the maximum number of monomers by layer of the DS con-
figuration. Then, the maximum number of monomers of radius r that can fit in the poly-
mer volume of radius R is VR/Vr = R3/r3 where R increases by units of 2r. Then, for r=1 the 
maximum number of monomers of each layer are respectively 1, 8-1=7, 27-8-1=18, 64-27-
8-1=28, 216-64-27-8-1=116, 1000-116-28-18-7-1=830 and so on. 

 
 

 
 

Figure 4. The maximum number of monomers of radius r that fit inside a DS polymer configura-
tion of radius R = r, 2r, 4r, 6r, 8r, ... 

 
Thus, for the DS we can rewrite equation 9 and equation 14 reduces to, where all ri = r = 1: 
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𝑅 = [0 + 7(2𝑟) + 19(4𝑟) + 37(6𝑟) + 152(8𝑟) + ⋯ + 𝑛 𝑟 ]        (15) 
 
Sparse Sphere configuration, SS: correspond to the same equation 15, but the ni are 

smaller than those for DS and the maximum ri may be larger to fit the same number of 
monomers tightly packed in a DS configuration. The Rg values for a DS may vary from 
those very close to the Rg of a DS to those corresponding to a SAW embedded in a spherical 
volume with very low density of monomers by unit volume. 

Ring configuration, Ring: in a ring configuration of radius R of N monomers, all the 
distances to the center of mass  are equal, ri = R for all i = 1,…, N and R is estimated divid-
ing the perimeter of the ring, 2πR, by the diameter of one monomer, 2r. Applying equation 
9 with N=19 and all the ri = 6r and all the ni=1 for i=1 to 19 we obtain Rg=6r and Rg/N=0.316, 
both much larger than the corresponding values for a compact sphere. 

Straight Rope, SR, and SAW: the application of equation 9 to SR and SAW are 
straightforward, in the second case considering the ri with a random angle and the con-
straint defined by the projection 1D to be Re-e. In the following tables we present the dif-
ferent results for Rg estimated from the three equations 9, 10 and 12. 

In table 3 we present the results of Rg, using equation 10 for polymers of N monomers 
with stiffness ν(s), for the different values of s from table 1, with the corresponding values 
of Rh and Re-e estimated by the approximation of large polymers but depending on salt 
concentration s. In the indicated conditions the total unfolded length of the polymer is N, 
and for the DS approximation R=N1/3.  

In Table 4 are presented the results of the radius of gyration Rg, estimated for SAW 
with “wormlike chain” model, equation 12, for different persistent lengths Lp, represent-
ing the stiffness of the polyelectrolyte: larger Lp corresponds to a stiffer polymer, with 
effective monomer length normalized to unity. For large polymers, N → ∞, the minimum 
stiffness, Lp = l, gives Rg ~ (N/3)1/2, and maximum stiffness Lp → N gives Rg ~ N/4. For small 
polymers N → 1, maximum and minimum stiffens are about the same and Rg ~ N/4. 

In Table 5 we present the results of Rg for dense and sparse spheres, DS and SS, pa-
rabola, Pa, and straight ropelike, SR, ideal small polymers for the same values of N, esti-
mated as the mean square distance of the monomers to the center of mass, equation 9.  
The disperse sphere is a sphere with radius R + r where R is the radius of the compact 
sphere and r is the radius of one monomer. 

 
Table 3. Approximated values of Rg, Rh, Re-e and R of small polyelectrolytes of N = 20, 30, 40, 50 and 
60 monomers for different salt concentrations s = 12.5, 25, 125, 225 and 525mM. With normalization 
respect to A0(s), the Radius of gyration is Rg = Nν(s) with the corresponding values of ν(s) given in 
table 1, the hydrodynamics radius Rh=(5/3Rg)1/2, the end-to-end distance Re-e=3.1Rh , the total unfolded 
length L= N and R=N1/3 the radius of a compact sphere of N monomers of radius r=1. 

N                   20 30    40       50       60 

Measure [s]=mM, ν(s) 

 

 

Rg = Nν(s) 

12.5, 0.720 8.8 11.7 14.5 17.0 19.4 

25, 0.700 7.9 10.5 12.8 14.9 16.9 

125, 0.653 7.1 9.2 11.1 12.8 14.4 

225, 0.636 6.5 8.4 10.0 11.5 12.9 

525, 0.607 6.2 8.0 9.5 11.0 12.0 

 

 

Rh=(5/3Rg)1/2 

 

12.5, 0.720 3.8 4.4 4.9 5.3 5.7 

25, 0.700 3.6 4.2 4.6 5.0 5.3 

125, 0.653 3.4 3.9 4.3 4.6 4.9 

225, 0.636 3.3 3.7 4.1 4.4 4.6 

525, 0.607 3.2 3.6 4.0 4.3 4.5 
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Re-e=3.1Rh
 

 

12.5, 0.720 11.8 13.7 15.2 16.5 16.6 

25, 0.700 11.3 13.0 14.3 15.5 16.5 

125, 0.653 10.6 12.1 13.3 14.3 15.2 

225, 0.636 10.2 11.6 12.7 13.6 14.4 

525, 0.607 10.0 11.3 12.3 13.2 14.0 

R=N1/3  2.7 3.1 3.4 3.7 3.9 

 
 

Table 4. The radius of gyration Rg, estimated with the “wormlike chain model”, equation 13, for 
different persistent lengths Lp, representing the stiffness of the polyelectrolyte: larger Lp corresponds 
to a stiffer polymer, with effective monomer length normalized to unity. For large polymers, N → 
∞, the minimum stiffness, Lp = l, gives Rg ~ (N/3)1/2, and maximum stiffness Lp → N gives Rg ~ N/4. 
For small polymers N → 1, maximum and minimum stiffens are about the same and Rg ~ N/4. 

Rg 

Lp 1 

min.  

stiffness 

2 3 4 5 (N/10) (N/5) (N/2) N 

Max. 

stiffness 

N 

20 2.4 3.2 3.6 4.0 4.2 (2) 3.2 (4)  4.0 (10)  5.0 5.3 

30 3.0 4.1 4.8 5.3 5.7 (3) 4.8 (6)  6.0 (15)  7.3 8.0 

40 3.5 4.8 5.7 6.3 6.9 (4) 6.3 (8)  7.9 (20)  9.7 10.5 

50 4.0 5.4 6.5 7.3 7.9 (5) 7.9 (10)  9.9 (25)12.0 13.1 

60 4.4 6.0 7.2 8.1 8.9 (6) 9.5 (12) 11.9 (30)14.5 13.8 

 
 

Table 5. Rg for compact and disperse spheres, parabola and ropelike ideal small polymers of N= 20, 
30, 40, 50 and 60 monomers, estimated as the mean square distance of the monomers to the center 
of mass, equation 9. The disperse sphere is a sphere with radius R + r where R is the radius of the 
compact sphere and r is the radius of one monomer. 

 

 

N 

 Rg  

Dense Sphere, 

DS of aprox 

R=N1/3 

R=N1/3 Sparse 

sphere, SS 

Parabola, 

Pa 

Straight 

Rope 

Ring 

Rg=R=N/2π 

20 3.3 2.71 4.7 3.5 11.53 3.2 

30 3.8 3.11 5.2 4.5 17.31 4.8 

40 4.5 3.42 6.3 5.4 23.08 6.4 

50 4.9 3.68 6.6 6.7 28.86 8.0 

60 5.3 3.91 9.6 7.0 34.63 9.5 

 

4. Discussion 
Authors should discuss the results and how they can be interpreted from the per-

spective of previous studies and of the working hypotheses. The findings and their impli-
cations should be discussed in the broadest context possible. Future research directions 
may also be highlighted. Table 6 presents a synthesis of the different measures of Rg, 
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experimental and theoretical as well the corresponding approximations of Rh and Re-e. For 
the experimental measures of Rg two idealistic extremes are considered. One of very small 
salt concentration, s=1mM, and another of very large salt concentration, s=10M. These two 
limits are intended to compare with the idealist configurations DS, SS, Pa and Rope, sim-
ulating the stiffness of the polymer by ideal qualities of the solvent that may change the 
output of the forces F1 and F2. 

Despite the approximations, idealizations and sometimes strong assumptions of 
these calculations, the results organized in table 6 offer the opportunity to make some 
analysis that may help to understand a little more the complexity of the biological fluids. 
For example, a small polymer DS configuration, N~20, the persistent length must be small, 
Lp < 3, and the equivalent salt concentration must be very high, s >10M. This indicates a 
compromise between the highest stiffness that a small polymer can have, which is low, 
and highest stiffness that a solvent can provide, which can be very high or optimal. How-
ever, as a nonlinear feedback process, the interplay between the different ranges and in-
tensities of F1 and F2 can substantially change the VL-J and, therefore, its critical points of 
thermodynamic equilibrium. The possible thermodynamic equilibrium has more alterna-
tives with higher probabilities for larger polymers. However, when the size of the polymer 
increases and the solvent capacity to soften the polymer is reduced, the results show a 
tendency of mixed configurations with less symmetry, less spatial density and less homo-
geneity of the distribution of monomers in space. Thus, the polymer configurations at 
thermodynamic equilibrium become more diverse and complex, reducing the probability 
of the more symmetric and compact states, in particular when the temperature is not very 
low giving energy and instability oscillations to the monomers. For example, for larger 
polymers, N~60, and very small concentrations of solvent, the configurations tend to cor-
respond more to very sparse SS with tendency to SAW, highly reducing the symmetry 
and dimensionality of the configuration, corresponding to larger persistent lengths, Lp > 
N/5.  These changes of configuration correspond to changes of the forces F1 and F2 and 
their relations, which in its turn generate further changes in the configurations until the 
thermodynamic equilibrium is achieved. Therefore, theses subtle but important changes 
on the shape and size of the configurations of the polymers eventually may change com-
petition into complementarity of F1 and F2 increasing Re-e when it is not expected, because 
the complexity of the entropic forces may transform the expected effects of crowding, P > 
0, in some particular and specific conditions of solvent and length of the polymer.  

 
Table 6. Comparative organization of the results of Rg estimated from experimental data and theo-
retical models with the corresponding Rh and Re-e approximations, for some different polymer 
lengths and salt concentrations of small polymers constituted by N=20,30,40,50 and 60 monomers of 
unit length and mass. 

N 20 30 40 50 60 

Measure [s]=mM, ν(s)  

 

 

 

Rg = Nν(s) 

Equation 10 

1, 0.794 10.8 14.9 18.7 22.3 25.8 

12.5, 0.720 8.8 11.7 14.5 17.0 19.4 

25, 0.700 7.9 10.5 12.8 14.9 16.9 

125, 0.653 7.1 9.2 11.1 12.8 14.4 

225, 0.636 6.5 8.4 10.0 11.5 12.9 

525, 0.607 6.2 8.0 9.5 11.0 12.0 

1000, 0.592 5.9 7.5 8.9 10.1 11.3 

10000, 0.524 4.8 5.9 6.9 7.8 8.5 

 

Rg 

DS 3.3 3.8 4.5 4.9 5.3 

SS 4.7 5.2 6.3 6.6 9.6 
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Equation 9 Pa 3.5 4.5 5.4 6.7 7.0 

Rope 11.5 17.3 23.1 28.9 34.6 

 

Rg 

Equation 13 

Lp=1 2.4 3.0 3.5 4.0 4.4 

Lp=2 3.2 4.1 4.8 5.4 6.0 

Lp =4 4.0 5.3 6.3 7.3 8.1 

Lp ≈ N/2 5 7.3 9.7 12 14.5 

Lp ≈ N 5.3 8 10.5 13.1 13.8 

 

 

 

Rh=(5/3Rg)1/2 

 

1, 0.794 4.2 5.0 5.6 6.1 6.6 

12.5, 0.720 3.8 4.4 4.9 5.3 5.7 

25, 0.700 3.6 4.2 4.6 5.0 5.3 

125, 0.653 3.4 3.9 4.3 4.6 4.9 

225, 0.636 3.3 3.7 4.1 4.4 4.6 

525, 0.607 3.2 3.6 4.0 4.3 4.5 

1000, 0.592 3.1 3.5 3.8 4.1 4.3 

10000, 0.524 2.8 3.1 3.4 3.6 3.8 

 

 

 

Re-e=3.1Rh
 

 

1, 0.794 13.1 15.4 17.3 18.9 20.3 

12.5, 0.720 11.8 13.7 15.2 16.5 16.6 

25, 0.700 11.3 13.0 14.3 15.5 16.5 

125, 0.653 10.6 12.1 13.3 14.3 15.2 

225, 0.636 10.2 11.6 12.7 13.6 14.4 

525, 0.607 10.0 11.3 12.3 13.2 14.0 

1000, 0.592 9.7 11.0 11.9 12.7 13.4 

10000, 0.524 8.8 9.8 10.5 11.2 11.7 

 
Ideally, when s is very large and tends to saturation, the stiffness of the polymer tends 

to be negligible reducing ν towards the lower limit ν(s) > 10M ≈ 1/2 = 0.5 corresponding 
to an ideal solvent to obtain a polyelectrolyte of maximum softness. The configuration of 
such polymer strongly depends on temperature and on any tiny physical or entropic force 
of short, medium or large range. It has strictly Lp=1 only limited by the hard sphere exclu-
sion of neighbor monomers. 

When short range steric, electrostatic, electron clouds exclusion and any other repul-
sive force are considered, Lp increases and not all the nearest neighbor locations of a mon-
omer are equally probable, F1 is a short-range repulsion between monomers, including 
the two extreme monomers being pushed towards the surface of the volume occupied by 
the polymer, increasing Re-e. Therefore, the stiffness of the polymer is increased, ν(s) ≈ 1M 
≈ 3/5 = 0.6 corresponding to an ideal chain or self-avoiding random walk chain, SAW, very 
soft for long and medium lengths but stiff for short lengths, increasing the persistent 
length to Lp > 1; at such lengths the repulsion of F1 dominates the contraction of F2. If this 
local stiffness is very strong and could propagate to the whole polymer, it would stretch 
to its maximum extent like a rigid straight rope with Lp = N, with N the number of mono-
mers of unitary length. With this configuration the polymer losses all its remaining 3D 
isotropic symmetry and becomes a 1D straight rope of aligned monomers. In the absence 
of any other force or thermodynamic perturbation, it can be represented by a total absence 
of solvent and therefore the maximum stiffness with ν(s ≈ 0) ≈ 1. In this idealized situation 
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the monomers strongly repel each other stretching the polymer to its maximum length 
and Lp = Re-e = N, the contour length. 

 
When the polymer is very soft with ideal solvent and the short range steric, electro-

static, electron clouds exclusion and any other repulsive force are dismissed, F1 ~ 0, the 
complexity of the system allows the emergence and dominance of the packing or agglom-
eration force as a medium and long-range entropic force relative to the size of a monomer. 
This tendency formally represented by a force, emerges from the thermodynamic poten-
tial generated by the tendency to increase entropy towards configurations with larger 
probability, those with more equivalent spatial monomer distributions which correspond 
to the more compacted globular configurations. These configurations are the most sym-
metric and isotropic, they are fully 3D spatial distributions of monomers occupying a 
spheroid volume in space. The packing force as one constituent of F2 is relatively weak 
and long range but persistent, making the globular configurations inevitable when the 
other conditions allow. In these configurations the only constrain of the monomers is the 
directional chemical bonds between neighbor monomers to conform the polymer. By sym-
metry, isotropy and entropy, the tight globular configurations must have spheroid shape 
with the extreme monomers tending to the surface of the volume, with an approximated 
radius R = N1/3, obtained from Vp/Vm where Vp = 4/3πR3 is the volume of the polymer and 
Vm = 4/3πr3 is the volume of a monomer, respectively with radii R and r, considering r=1. 
In three dimensions, 3D, the spheroid compacity generated by the entropic packing force 
reduces the persistent length because the angle between nearest neighbors always 
changes making Lp < 1, what can be seen or represented as a further decrease of stiffness 
of the polymer with smaller ν emulating a much larger salt concentration s, ν(s→∞) ≈ 1/3 
= 0.33. 

The Dense Spheroid, DS, has the maximum symmetry and is fully 3D, the Sparse 
Spheroid, SS, can have different degrees of sparsity reducing symmetry and dimension-
ality from 3D up to configurations contained in a 2D disc or even in a ring or incomplete 
ring with parabola, Pa, or horseshoe-like configuration with dimension even lower than 
2D towards a Straight Rope, SR, with minimum symmetry and dimensionality of 1D. The 
Self-Avoiding random Walk, SAW, is a more real configuration but also more complex 
and with diverse equivalent and non-equivalent configurations, thus highly probable but 
difficult to distinguish one specific configurations from others because they may have 
very similar values for all possible measures. These configurations have a fractal dimen-
sion fD where f may be < 2 < 3, significantly increasing and even maximizing, even more 
than the straight rope, the surface contact of the polymer with the solvent. Along with this 
local configuration of the monomers with their own local stiffness, may be superimposed 
a global shape such as a parabola or horseshoe configuration with a different global or 
overall stiffness that may be much more sensitive to F2, in particular in the direction of 
changing Re-e and its relations with Rg and Rh, changing the value of the compression factor 
F(s,N,P)  in equation 1 or equivalently the definition of α(s,p) as Rg = α Re-e, just after equa-
tion 10. This is all a consequence of a nonlinear feedback process between the forces F1 
and F2 with the configuration shape of the polymer that they themselves produce in the 
rich complexity of all possible configurations. 

5. Conclusions 
This section is not mandatory but can be added to the manuscript if the discussion is 

unusually long or complex. This work presents a qualitative interpretation of the diversity 
of small polyelectrolyte configurations using a simple model based on a Lennard-Jones-
like potential. These configurations and the corresponding conditions are mostly theoret-
ical idealizations although qualitative realities of the diversity of polymer configurations 
in a biological fluid. Despite its simplicity, the model allows new hypothesis emerging 
from the competition and cooperation of electrostatic and entropic forces emerging from 
the complexity and richness of the interactions of the polymer with the fluid, in particular 
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the symmetry and dimensionality changes of the configurations. This description gathers 
new information from different traditional measures of the size of polymer configurations 
in specified conditions and about the processes towards the thermodynamic equilibrium.  

The complexity of a biological fluid generate competition between microscopic and 
entropic forces producing a rich diversity of polymer configurations that may give the 
living cell the capacity to perform its living functions. The competition between these two 
effective forces become synergies in particular and specific conditions generating organi-
zation patterns, structures and dynamics with unexpected results such as sudden changes 
of the effective stiffness of the polymers.     

The most important perspective to continue this work is a more quantitative study 
with the rigor and precision necessary to determine the specific values of the parameters 
and variables that generate new emergent qualities of the biological fluid and, the corre-
sponding verification and even prediction of experimental measurements. 
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