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Abstract: The traditional sequent peak algorithm (SPA) was used to assess the reservoir 

volume (VR) for comparison with deficit volume, DT, (subscript T representing the 

return period) obtained from the drought magnitude (DM) based method with draft 

level set at the mean annual flow on 15 rivers across Canada. At an annual scale, the 

SPA based estimates were found to be larger with an average of nearly 70% compared 

to DM based estimates. To ramp up DM based estimates to be in parity with SPA based 

values, the analysis was carried out through the counting and the analytical procedures 

involving only the annual SHI (standardized hydrological index, i.e. standardized 

values of annual flows) sequences. It was found that MA2 or MA3 (moving average of 

2 or 3 consecutive values) of SHI sequences were required to match the counted values 

of DT to VR. Further, the inclusion of mean, as well as the variance of the drought 

intensity in the analytical procedure, with aforesaid smoothing led DT comparable to 

VR. The distinctive point in the DM based method is that no assumption is necessary 

such as the reservoir being full at the beginning of the analysis - as is the case with SPA. 

Keywords: Deficit volume; drought intensity; drought magnitude; extreme number 

theorem; Markov chain; moving average smoothing; standardized hydrological index; 

sequent peak algorithm; reservoir volume. 

 

1. Introduction  

 

 A considerable amount of research can be traced to the hydrologic 

drought models that focus on the estimation of drought duration and 

magnitude (previously termed as severity) using the river flow data. Two 

major elements of the hydrologic drought studies have been the truncation 

level approach and the analysis by simulation and/or analytical methods. The 

analytical methods are pursued by the use of the frequency analyses of 

drought events in terms of duration and deficit volumes. The noteworthy 

contributions in this area of frequency analyses are that of [1], [2], [3], [4], 

among others. The other route in the domain of analytical methods is the use 

of the theory of runs, which is well documented in [5 - 13].  Several hydrologic 

drought indices have been suggested such as standardized runoff index (SSI) 

[14], streamflow drought index (SDI) [15], and standardized hydrologic index 

(SHI) [12, 13]. These indices are essentially standardized (statistically) values 
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of historical stream flows or in some transformed version (normalization in a 

probabilistic sense) at the desired time scale. The standardized hydrological 

index (SHI) is the standardized value (statistical) of river flows with the mean 

0 and the standard deviation equal to 1, unlike the standardized precipitation 

index (SPI), which is normalized after standardization [16]. On the monthly 

time scale, it is the month-by-month standardization and so on at the weekly 

time scale. 

The major application of the SPI refers to drought monitoring which is 

an essential element in the process of drought early warning and 

preparedness. Applications of SPI are amenable because of the widespread 

availability of precipitation data. Though some attempts have been made to 

classify the hydrological drought [15] on the lines of SPI, yet such uses of 

hydrological drought indices are limited. However, there have been 

investigations on the use of SPI to relate the propagation of meteorological 

droughts to hydrological droughts in Spanish catchments [17] and for the U.K. 

catchments [18], among others. Despite such limitations, hydrological drought 

indices have potential in the estimation of drought magnitude that plays an 

important role in the assessment of shortage of water in rivers and 

consequently in reservoirs. Even with the aforesaid studies, few investigations 

other than Sharma and Panu [19, 20] have been made to link the deficit volume 

to reservoir volume, and also how and at what time scale of analysis would be 

aptly meaningful in this regard. 

 The term drought magnitude has been variously defined in the earlier 

literature such as the drought severity [5, 6] and the deficit volume [2]. In this 

paper, the term deficit volume (denoted by D) represents the deficiency or the 

shortage of water below the truncation level in a river flow sequence, and the 

drought magnitude (M) refers to the deficiency in terms of the SHI 

(standardized flow) sequences. The deficit volume and drought magnitude 

are related by the linkage relationship: D = σ × M [5], in which σ is the standard 

deviation of the flow sequence. The analyses are usually conducted in the 

standardized domain to assess deficit volume, D through the above linkage 

relationship.  

To the best of the authors’ knowledge, no research investigations other 

than those of authors [19, 20] have been reported in the literature on the 

application of drought indices and magnitude based analyses, and models for 

sizing reservoirs. This paper represents one of the pioneering attempts to 

address and bridge the above gap and demonstrate the utility of such analyses 

of drought magnitude in assessing the size of reservoirs. The standardized 

hydrological index (SHI) has been used in this analysis utilizing streamflow 

data from Canadian rivers. The data on annual, monthly and weekly flow 

sequences were analyzed using the draft at the mean annual flow for sizing 
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the reservoirs. However, the authors’ preliminary investigations indicate that 

the detailed analysis related to the sizing of reservoirs be conducted at an 

annual scale in view of ease and simplicity in handling annual streamflow 

data.  

2. Preliminaries on Methods for Sizing the Reservoirs 

 

The two textbook based methods [21], [22] for sizing the reservoirs are 

the Rippl graphical procedure and the sequent peak algorithm (SPA). In the 

Rippl method, the graphical plot of cumulative inflows as well as outflows is 

used to derive an estimate of the reservoir size. In the SPA, the calculations are 

conducted numerically using the cumulative or residual mass curve methods 

to obtain the estimate of reservoir volume, VR. In the drought magnitude based 

method, SHI sequences are obtained after standardization. It corresponds to 

truncating the annual river flow sequences at the mean level or SHI value = 0. 

Since the drought lengths and corresponding magnitudes yield conservative 

values for the design of reservoirs, therefore SHI = 0 as a truncation level is 

preferred and has been used in the analysis. The SHIs below the truncation 

level are referred to as the deficit (dubbed as d), whereas above the level are 

referred to as the surplus (dubbed as s). In a historical record of N (= T) years, 

there shall emerge several spells of deficit and surplus, and the longest spell 

length of deficits (representing LT) is recorded. Likewise, the corresponding 

deficits are added to represent the largest magnitude (MT). These deficits are 

being referred to as drought intensities and represent truncated values of SHIs 

below the truncation level. The foregoing approach of calculation of LT and MT 

is dubbed as the counting procedure in the ensuing sections.  The largest 

deficit volume (DT) during the drought period is computed as DT = σ × MT [5]. 

It is noted that the unit of DT is the same as that of σ because MT is a 

dimensionless entity. It is stated that the quantity DT obtained using either the 

DM based counting or analytical procedure is perceived equivalent to VR 

calculated by the SPA method.  In the counting procedure, the entities MT and 

DT are respectively obtained from the historical or observed data and hence 

are denoted as MT-o and DT-o, where subscript “o” stands for the observed. 

 

2.1. Estimation of deficit volumes by DM model 

The majority of models for estimation of drought magnitude are built 

on the frequency distribution of drought events [2], [4]. The moving average 

(MA) and sequent peak algorithm (SPA) form the important tools for analysis 

[9], [2]. In the other approach, probability based relationships are 

hypothesized for estimating drought magnitude (M) using the relationship: 

drought magnitude = drought intensity × drought length [23]. As mentioned 

above in the text, drought intensities essentially are deficit spikes and are 
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derived by truncating a SHI sequence. The deficit spikes have a negative sign 

because each spike lay on the downside (negative side) of the truncation level, 

with the lower bound as - ∞ and an upper bound as truncation level such as 

z0, which is also a negative number with maximum value as 0. It is tacitly 

assumed that the SHI sequences obey standard normal probability density 

function (pdf) which after truncating at the desired level (z0) shall result in a 

truncated normal pdf, whose mean and variance would be different from 0 

and 1. One can develop a probabilistic relationship for MT expressed as 

follows, through the use of the extreme number theorem [7], [24] that 

implicitly involves drought intensity and drought length (LT).  

                                        P(MT ≤ Y) = exp [−Tq(1 − qq)(1 − P(M ≤ Y)]   (1) 

In which, q represents the simple probability of drought and qq represents the 

conditional probability that the present period is drought given the past 

period is also drought and T is equivalent to return period; M stands for the 

drought magnitude which takes on non-integer values represented by Y, and 

P (.) represents the notation of cumulative probability. Since Y’s (such as Y1, 

Y2, Y3, Y4, ..…) correspond to values of M, thus the largest of them will 

represent MT. In the above expression, M is construed to follow a normal pdf 

with mean and variance related to the mean and variance of drought intensity 

and a characteristic drought length. The characteristic drought length is 

related to mean drought length and the extreme drought length, LT.  

At the annual level, the flow sequences in Canadian rivers have been 

found to follow the normal pdf [13], leading SHI sequences to obey the 

standard normal pdf. Therefore, the assumption of deficit spikes to obey 

truncated normal distribution is reasonably justified.  Based on the above 

premises, a detailed derivation has been tracked by Sharma and Panu [19, 20] 

and are not reproduced here for the sake of brevity. The final expressions for 

the purpose of the present paper are described as follows.  

E(MT) = ∑
(Yj+1 + Yj)

2

n1

j=0
[P(MT ≤ Yj+1) − P(MT ≤ Yj)] = MT−e  (2) 

To compute [P (MT ≤ Yj+1) – P (MT ≤ Yj)] in Equation (2), the integration of 

the normal probability function is numerically performed as described in 

Sharma and Panu [12]. Theoretically, the upper limit of summation (n1) in 

Equation (2) is ∞, but for numerical integration purposes, a finite value is 

chosen.  For drought magnitude analysis based on annual flows, a value of n1 

= 30 (with an increment in j = 0.05 was found to be large enough to ensure 

sufficient accuracy in the process of numerical integration. For brevity, 

henceforth E (MT) shall be written as MT-e, i.e. an estimated value of MT. It may 

be noted that Equation (2) involves both the mean and variance of drought 

intensity to arrive at a value of MT-e. Likewise, the estimated value of DT is 

designated as DT-e (= σ × MT-e). 
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A particular version of MT-e involving the mean of drought intensity 

only can be written as follows: 

MT−e = abs [− 
exp(−0.5 z0

2 )

q√2π
− Z0] . LT    (“abs” means absolute) (3) 

Where, LT is the largest drought length obtained using Markov chain based 

algorithm, q is drought probability at the truncation level z0.  For example, a 

standard normal pdf respectively can be truncated at z0 = 0.0 (mean level) and 

z0 = - 0.30 (which is 70 % of a mean level) and the corresponding drought 

probability q can be found from standard normal probability tables to be 0.5 

and 0.38. 

 

3. Data Acquisition and Calculations of Reservoir Volumes 

 

Fifteen rivers from prairies to Atlantic Canada (Figure 1, Table 1) were 

involved in the analysis. The rivers encompassed drainage areas ranging from 

97 to 56369 km2 with the data bank spanning from 38 to 108 years. The flow 

data for these 15 rivers were extracted from the Canadian hydrological 

database [25]. To increase the number of samples, some of the rivers with large 

data sizes such as the Bow, English, Lepreau, Bevearbank, and North 

Margaree were also analyzed by forming 2-4 subsamples with the data size of 

40 years or more. This type of analysis created around 30 samples from 15 

rivers to obtain a robust and reliable estimate of the performance statistics. 

Based on the above premises, the results of various analyses are described in 

the sections to follow. 

 

 
 Figure 1 Location of the river gauging stations used in the analysis [Source: Environment Canada] 
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Table 1 Summary of statistical properties of annual flows of the rivers under consideration 
 

Name, location, and the numeric 

identifier in Figure 1 of the River 

Period of 

Record (Year) 

Area 

(km2) 

Mean 

(m3/s ) 

cv γ ρ 

[1] Bow River at Banff,  

      AB05BB001, (51°10’ 30’’N, 115°34’10’’W) 

[2] South Saskatchewan River at Medicine Hat  

     AB05JA001, (50°03’ 00’’N, 110°40’ 00’’ W)  

[3] English River at Umfreville,  

      ON05QA002, (49°52’ 30’’N, 91°27’30’’W) 

[4] Pic River near Marathon,  

     ON02BB003, (48°46’ 26’’N, 86°17’49’’W) 

[5] Pagwachaun River at highway#11, 

 ON04JD005, (49°46’ 00’’N, 85°14’ 00’’W) 

[6] Nagagami River at highway#11, 

  ON04JC002, (49°46’ 44’’N, 84°31’ 48’’W) 

[7] Batchwana River near Batchwana, 

   ON02FB001, (46°59’ 36’’N, 84°31’ 31’’W) 

[8] Goulis River near Searchmont,  

      ON02FB002, (46°51’ 37’’N, 83°38’ 18’’W) 

[9] North French near Mouth,  

      ON04MF001, (51°05’ 00’’N, 80°46’ 00’’W) 

[10] Beaurivage A. Sainte Entiene,  

      QC02PJ007, (46°39’ 33’’N, 71°17’ 19’’W) 

[11] Lepreau River at Lepreau,  

       NB01AQ001,  (45°10’ 11’’N, 66°28’ 05’’W) 
[12] Bevearbank River at Kinsac,  
      NS01DG003, (44°51’ 04’’N, 63°39’ 50’’W) 

[13] N. Margaree at Margaree valley, 

 NS01FB001, (46°22’ 08’’N, 60°58’ 31’’W) 

[14] Upper Humber R. at Reidville, 

 NF02YL001, (49°14’ 34’’N, 57°21’ 36’’W) 

[15] Torrent River at Bristol pool,  

       NF02YC001, (50°36’ 26’’N, 57°09’ 05’’W) 

108 (1911-18) 

 

59  (1960-18) 

 

97  (1922-18) 

 

48  (1971-18) 

 
   50   (1968-18)  

 

   38   (1981-18) 

 

   51  (1968-18)  

 
   51  (1968-18)  

 

   52  (1967-18) 

 

   75 ( 1926-00) 

 

 100 (1919-18) 

 

   97 (1922-18) 

 

   90 (1929-18) 

 

   66 (1953-18) 

 

   59 (1960-18) 

2210 
 

 56369 

 

    6230 

 

4270 

 
2020 

 

2410 

 

1190 

 
1160 

 

6680 

 

709 

 

239 

 

97 

 

368 

 

2110 

 

624          

39.12 
 

167.08 

 

58.75 

 

50.21 

 
23.07 

 

24.59 

 

22.20 

 
18.17 

 

95.48 

 

14.19 

 

7.41 

 

3.04 

 

17.03 

 

80.05 

 

24.81 

0.13 

 

0.35 

 

0.32 

 

0.24 

 
0.25 

 

0.22 

 

0.20 

 
0.21 

 

0.21 

 

0.26 

 

0.22 

 

0.19 

 

0.14 

 

0.13 

 

0.15 

0.05  

 

0.20  

 

0.30 

 

-0.06 

 
0.18 

 

-0.14 

 

0.21 

 
0.21 

 

0.004 

 

1.15 

 

0.53 

 

0.15 

 

0.49 

 

0.42 

 

0.72 

0.06 

 

0.12 

 

0.21 

 

0.13 

 
0.06 

 

0.08 

 

0.03 

 
0.08 

 

-0.04 

 

0.19 

 

0.10 

 

-0.19 

 

0.17 

 

0.15 

 

0.18 

Note: cv, γ, & ρ respectively represent the coefficient of variation, skewness, and lag-1 autocorrelation of annual flows.  

The first step in the analysis was to discern the role of time scale in 

influencing the reservoir size. Therefore, reservoir volumes (VR) were assessed 

using the SPA at the demand level equivalent to the mean flows at the annual, 

monthly, and weekly scales. The procedure advanced in Linsley et al. (21) was 

used to calculate the VR. In turn, the VR values were compared with the deficit 

volumes, DT-o. The calculations were done by writing Macros in Visual Basic 

and coupling them with associated data in the Microsoft Excel framework. 

Therefore, flows were standardized at the above three time scales to obtain 

SHI sequences. In all three time scales, the values of the drought probability, 

q, were obtained by the counting procedure in which an SHI sequence was 

chopped at level 0 (mean level). In general, the annual flows tend to follow a 

normal pdf in the Canadian settings so, at the mean level, q values cluster 

around 0.50 (Table 2, column 2). In view of the gamma pdf of the flow 
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sequences, at the monthly and weekly scales [13], the q values are significantly 

larger than 0.50 (Table 2, columns 3 and 4).  

      Table 2   Calculations of storage volumes at the mean level of flows for varying time scales. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Note: The italicized values in parentheses are calculated at the mean levels (variable means) of 

  the respective months and weeks without standardization of the flow sequences. 

 

The drought magnitudes, MT-o were computed for each time scale and 

accordingly converted to DT-o. On the annual scale, there is only one set of µ 

and σ, whereas there are respectively 12 and 52 such sets of µ and σ at the 

monthly and weekly scales. Therefore, in the calculations of DT-o at the 

monthly and weekly scales, an averaged out (arithmetic average) value, 

denoted by σav was used in the analysis. Various versions of σ such as σmin 

(subscript min for minimum), σmax (max for maximum) and the geometric 

mean of 12 monthly and 52 weekly values were tried, and the arithmetic mean 

 

River name & 

data size 

Computations of Storage Volumes (m3) 

Sequent Peak Algorithm (SPA ) Drought magnitude (DM) 

Annual Month Week Annual Month Week 

1 2 3 4 5 6 7 

S. Saskatchewan 

1960-2011, N=52 

S. Saskatchewan 

1970-2011, N=42 

q=0.50 

2.19×1010 

 

q=0.50 

1.59×1010 

q=0.58 

2.24×1010 

 

q=0.58 

1.63×1010 

q=0.59 

2.28×1010 

 

q=0.58 

1.65×1010 

q=0.50 

1.63×1010 

 

q=0.50 

8.41×109 

q=0.58 

7.91(8.52)×109 

 

q=0.58 

7.11(7.79)×109 

q=0.59 

6.54(7.30)×109 

 

q=0.58 

6.13(6.80)×109 

Bow River 

1940-2011, N=72 

 

Bow River 

1911-1960, N=50 

 

Bow River 

1960-2003, N=44 

q=0.50 

1.61×109 

 

q=0.48 

1.67×109 

 

q=0.50 

1.21×109 

q=0.54 

1.62×109 

 

q=0.54 

1.77×109 

 

q=0.54 

1.24×109 

q=0.55 

1.68×109 

 

q=0.55 

1.85×109 

 

q=0.55 

1.28×109 

q=0.50 

7.79×108 

 

q=0.48 

1.08×109 

 

q=0.50 

6.21×108 

q=0.54 

5.65(4.27)×108 

 

q=0.54 

5.31(5.05)×108 

 

q=0.54 

5.55(4.14)×108 

q=0.55 

4.84(4.10)×108 

 

q=0.55 

3.51(3.89)×108 

 

q=0.55 

4.79(4.24)×108 

English River 

1922-2009, N=88 

 

English River 

1922-66, N=45 

 

English River 

1975-2011, N=37 

q=0.52 

7.86×109 

 

q=0.49 

5.60×109 

 

q=0.50 

4.49×109 

q=0.57 

7.97×109 

 

q=0.57 

5.92×109 

 

q=0.55 

4.51×109 

q=0.58 

8.06×109 

 

q=0.58 

6.00×109 

 

q=0.55 

4.59×109 

q=0.52 

3.73×109 

 

q=0.49 

3.19×109 

 

q=0.50 

2.85×109 

q=0.57 

3.67(3.20)×109 

 

q=0.57 

3.41(2.88)×109 

 

q=0.55 

2.18(2.10)×109 

q=0.58 

3.80(3.24)×109 

 

q=0.58 

3.55(2.92)×109 

 

q=0.55 

2.27(2.17)×109 

Beaverbank 

River 

1961-2000, N=40 

q=0.50 

8.00×107 

q=0.59 

8.73×107 

q=0.65 

9.10×107 

q=0.50 

6.37×107 

q=0.59 

4.63(4.78)×107 

q=0.65 

2.96(2.72 )×107 

Pic River 

1971-05, N=35 

q=0.51 

1.48×109 

q=0.58 

1.77×109 

q=0.60 

1.82×109 

q=0.51 

9.68×108 

q=0.58 

1.17(1.13)×109 

q=0.60 

9.94 (8.09)×108 

Goulish River 

1968-10, N=43 

q=0.49 

1.10×109 

q=0.57 

1.21×109 

q=0.63 

1.25×109 

q=0.49 

8.11×109 

q=0.57 

3.35(2.48)×108 

q=0.63 

3.70(2.49)×109 
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turned out to be the best estimator [12]. The DT-o values were also estimated 

without standardization and truncating the flow series at the variable mean 

levels corresponding to the respective monthly and weekly time scales. In the 

standardized domain, the variable means are homogenized with a common 

mean = 0.  

 

 

  Figure 2 Redistribution of drought lengths and magnitudes with varying MA smoothing. 

 

The MA sequences can be formed from flows or the SHI sequences, 

alike. However, it is convenient to apply flow sequences to compute the VR 

using SPA, whereas DM based method explicitly requires SHI sequences. 

When the annual SHI (or flow) sequence is used without involving any 

moving average operations then such a sequence is designated as moving 

average 1 (MA1) sequence. In other words, a non-averaged value of SHI (or 

flow) is essentially the annual SHI (or flow). When consecutive 2 or 3 or annual 

SHIs (or flows) are averaged out then such a running sequence is termed as 

MA2 or MA3 sequence. Figure 2 displays MA1, MA2 and MA3 annual SHI 

sequences with the drought parameters for the South Saskatchewan River. The 
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MA1 sequence (flows) was subjected to analysis to compute the mean (µ), 

standard deviation (σ) and lag-1 autocorrelation (ρ). The aforesaid statistics 

were also evaluated for the MA2 and MA3 (flows) sequences and are shown 

in Table 3. Using the above values of mean and standard deviation, the MA1, 

MA2 and MA3 flow sequences were converted to respective SHI sequences. 

In the process of analysis, the number of drought spells (Ns) dropped from the 

MA1 through MA3 sequences and are presented in column 5 of Table 3. After 

a few MA smoothing, Ns attained nearly an equilibrium state and thus 

suggesting no further MA smoothing were warranted. For example, in Table 

3, Ns values for MA3 smoothing marginally deviate from MA2 but 

significantly drop from MA1. 

 

Table 3   Summarized VR (SPA) and DT (DM method -counting) on the MA smoothed annual SHI Sequences.  

 

For a comparative analysis on VR, the counting procedure was applied 

to the MA1 sequences. The VR (Table 3, column 11 and in the subsequent text) 

were computed using SPA for comparison with DT-o. The counting for DT-o was 

done in terms of MT-o (SHI sequences, Table 3), which were truncated at the 

level of 0 (z0 = 0), then converted to DT-o (DT-o = σ × MT-o). In the MA1 smoothing, 

there is only one standard deviation, so after calculating the value of MT-o1, the 

value of DT-o1 was obtained using the above relationship by replacing σ with 

σ1, i.e. the standard deviation of the MA1 sequence. 

 

 

River details 

 

MA 

number 

 

Mean 

(m3/s) 

 

q 

 

Ns 

 

σ (m3/s-yr.), ρ 

Computation of Reservoir Volume (m3/s-yr.) 

DM Method SPA* 

MT-o MT-e ‘DT-o  DT- o VR ** 

1 2 3 4 5 6 7 8 9 10 11 

Bow river 

N=108(1911-18) 

MA1 

MA2 

MA3 

39.12 

39.10 

39.08 

0.48 

0.49 

0.51 

26 

15 

15 

5.18,  0.06 

3.79,  0.57 

3.23,  0.68 

5.84 

13.02 

14.52 

7.02 

13.22 

15.15 

30.27 

49.35 

47.48 

30.27 

67.46 

75.23 

78.11 

-- 

-- 

Bow River 

N=62(1955-16) 

 

MA1 

MA2 

MA3 

38.44 

38.48 

38.51 

0.52 

0.46 

0.53 

17 

10 

9 

5.12,  0.11 

3.84,  0.57 

3.25,  0.65 

4.98 

11.08 

12.20 

6.72 

10.52 

11.39 

25.45 

42.53 

39.65 

25.45 

56.67 

62.44 

54.73 

-- 

-- 

Saskatchewan 

River   

N=59(1960-18) 

MA1 

MA2 

MA3 

167.1 

167.5 

167.9 

0.51 

0.48 

0.54 

14 

7 

6 

58.83,  0.20 

45.95,  0.66 

40.63,  0.81 

8.86 

10.72 

13.71 

6.62 

11.09 

13.07 

521.09 

509. 58 

557.04 

508.59 

630.68 

806.41 

708.07 

-- 

-- 

Saskatchewan 

River  

N=42(1970-11) 

MA1 

MA2 

MA3 

159.8 

158.4 

157.3 

0.50 

0.46 

0.43 

12 

6 

5 

60.62,  0.09 

44.40,  0.53 

37.11,  0.74 

4.40 

9.46 

10.39 

5.88 

8.41 

9.85 

266.72 

420.20 

385.37 

266.72 

573.67 

629.53 

504.28 

-- 

-- 

* SPA denotes sequent peak algorithm, ** VR reservoir volume by the closest SPA. The bold letters signify values 

.corresponding to VR. 
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Figure 3 Flow-diagram for computing deficit volumes under various options in the DM method 

 

When the DT-o based on the MA1 analysis did not match or were far less 

than the VR, then the analysis was extended to MA2 and at times to MA3 

sequences. For the MA2 smoothing, the value of DT-o (denoted as DT-o2) was 

obtained using the corresponding value of the standard deviation (denoted by 

σ2) and MT-o (say MT-o2), i.e. DT-o2 = σ2 × MT-o2. For further comparison, another 

value of DT-o2 was also computed using σ1 (based on MA1 or the original flow 

sequence), i.e. DT-o2 = σ1 × MT-o2 (Table 3). Likewise, for the MA3 smoothing, two 

values of DT-o3 were obtained; one based on σ3 (DT-o3 = σ3 × MT-o3; σ3 being the 

standard deviation obtained after MA3 smoothing) and another value as DT-o3 

= σ1 × MT-o3. The aim is to choose the MA smoothing that will provide the best 

equivalence of DT-o to VR. The above sequence of computations is portrayed in 

a flow diagram (Figure 3). In the flow diagram, the symbols DT-o and MT-o are 

denoted by DT and MT for the sake of brevity and ease of writing and they can 

also represent DT-e and MT-e with the common multiplier σ1. In the flow 

diagram VR’ stands for the standardized value of VR, i.e. = VR/σ1, which 

corresponds to MT.           

 

Parallel to the counting procedure, the MT values (denoted as MT-e) were 

obtained by using the analytical procedure (Equations 2 and 3). The 

corresponding values of DT-e were computed (DT-e = σ1 × MT-e). The VR values 

were compared with the values of DT-e. Two values of MT-e were computed for 

each situation, i.e. one value using the mean as well as the variance in Equation 

(2) and the other value by simply using the mean based on Equation (3), thus 
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yielding two values of DT-e. Both the values were compared with VR for 

arriving at an appropriate value of DT-e for further analysis and use.  

4. Results 

 

4.1. Role of the time scale on the size of reservoirs  

 

To discern the role of the annual, monthly and weekly time scales, VR 

(SPA) and DT-o (counting procedure in the DM method) from the respective 

flows and SHI sequences were computed and are summarized for 6 rivers in 

Table 2. It was found that the values of VR at the aforesaid time scales were 

fairly close to each other with a tendency to slightly increase (0 to 20% with an 

average value of 10%) at the monthly and weekly scales compared to the 

annual scale. The monthly and weekly DT-o values tended to decrease 

compared to annual values of DT-o with an average reduction of 25% (range 

from 21 to 59%).  The other point that emerged from the calculations was that 

the VR was greater than DT-o at all-time scales. For example, at the annual scale, 

VR values were found to be larger (ranging from 0 to 200%), with an average 

of nearly 70%. The reduction in the storage requirement in terms of deficit 

volumes makes sense because at monthly and weekly scales the actual 

drought periods are estimated more accurately due to time scale effects and 

are usually shortened and thus requiring less amount of water to meet the 

demand. On the contrary, in the SPA based calculations for VR, the fluctuations 

at a shorter time scale would be larger requiring greater reservoir volume to 

damp out such fluctuations to meet the constant demand.  

 The above numbers displaying large discrepancies between the SPA 

and DM based (MA1) estimates highlight that either the SPA yields excessive 

values of reservoir volume or the DM method yields too small estimates at the 

draft level of mean annual flow (MAF, 1µ ). At the annual scale, however, 

when the draft was lowered to 0.90µ or less, the estimates by the SPA and DM 

method converged to the same value [20].  In other words, a region with a 

draft level between 0.90µ and 1µ requires special consideration for the 

estimation of reservoir volumes by the DM method. The SPA based estimates 

can be construed as fixed with little scope to lower them in view of the inherent 

algorithm imbued in it. But the DM based estimates can be boosted by utilizing 

the MA procedure to attain parity with SPA based estimates. The SPA has 

been in vogue since the 1960s [26] and is universally accepted to design the 

reservoir capacity, therefore, the focus in this study is to arrive at a suitable 

MA smoothing that should yield DT comparable to VR at the draft level of  1µ.  

The DM based estimates (italicized, Table 2) at the monthly and weekly 

scales without standardization were found to be slightly different (mostly 

smaller) in comparison to the standardization based values (SHI sequences). 
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On average, the standardization based estimates were found about 12% larger 

than those based on the non-standardized values. This discrepancy can be 

perceived to arise because of σav, which has been taken as the representative 

value of the standard deviation to convert the magnitude in deficit volume (DT 

= σav× MT). Needless to mention that σav is an estimator representing 12 values 

of monthly σ’s and is unlikely to be the best for all situations, but is construed 

to be a better option compared to other options mentioned earlier. Since 

standardization is purely statistical in this operation, the pdf of monthly 

sequences is less likely to play the role in explaining the aforesaid discrepancy. 

At the annual scale, however, it should be noted that the standard deviation 

has only one value, thus estimates by both routes turned out to be identical. 

Therefore, only one value of DT-o is reported in Table 2. Since these estimates 

(i.e. without standardization) do not require the use of standard deviation in 

the calculations and thus can be deemed more accurate. However, the 

standardization procedure is better amenable to statistical analysis, and 

estimates based on this approach are more conservative (i.e. higher compared 

to the non-standardization, Table 2). Based on the foregoing reasoning, the 

route involving standardization (i.e., the use of SHI sequences) for the 

estimation of DT-o has been preferred in subsequent analyses and the annual 

scale is considered as a first choice.  

 

4.2. Comparison of reservoir sizes using the SPA and the DM based counting 

procedure  

In computing the DT-o, the first step is to choose the right value of σ at each 

MA smoothing. For example, in the MA2 smoothing, there are two DT-o: one based 

on σ2 (i.e. 'DT-02 = σ2 × MT-o2) and another based on σ1 (i.e. DT-02 = σ1 × MT-o2).  For the 

MA1 smoothing, there is only one standard deviation and thus DT-o1 = 'DT-o1 (Table 

3). It is apparent from Table 3 that 'DT-o values either inconsistently decrease or 

increase in MA2 and MA3 smoothing; whereas DT-o values are consistently 

increasing and hence σ1 is the crucial parameter to be used for matching to the VR 

to arrive at an appropriate MA smoothing. In other words, σ1 must be used as a 

multiplier with MT-o in every MA smoothing for estimation of DT-o and the role of σ2 

and σ3 is confined to the standardization of the smoothed MA2 and MA3 flow 

sequences. It should be noted that for consistency and ease, only 1.0 σ1 is being used 

as a multiplier. Other fractions of σ1 (such as 1.2, 1.1, 0.90 or 0.80) were neither 

considered nor tested for their efficacy in this study.  

In assessing the efficacy of various smoothing, the values of DT-o and VR 

were compared on a 1:1 basis and the performance statistics, viz. the Nash-

Sutcliffe efficiency (NSE), and the mean error (MER) were used [27]. To arrive 

at the above estimates of performance statistics, values of VR and DT-o were 

standardized dividing them by σ1 (MA1). In other words, a 1:1 comparison 
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was made between DT-o /σ1 = MT-o and VR /σ1 (denoted by VR'). In doing so, the 

wild variation in these entities (i.e. DT-o and VR) from small to large rivers were 

homogenized while rendering them non-dimensional, and thus resulting in 

sensible estimates of NSE and MER. The efficacy is being tested using NSE 

and MER [27] as these statistics have been widely used during the past 50 

years and are time tested measures in hydrologic investigations.  

Based on aforesaid calculations, it was found that MT-o for MA1 

sequences turned out to be significantly less than VR' with a caveat that in a 

few cases, the values of MT-o were found to be equal to VR'. In other words, the 

values of the MT-o compared poorly with VR' which is also apparent from an 

utterly low value of NSE ≈ 24% and MER ≈ -39% (Table 4). In brief, the VR' 

tended to be very conservative (meaning larger), whereas DM based 

estimates, i.e. MT-o appeared to be significantly smaller. Since the discrepancies 

in values of MT-o and the VR' were excessively large, therefore, the MA2 and 

MA3 smoothing were considered.  

 

Table 4   Performance statistics for comparison of SPA based VR with DM based DT. 

 

Firstly, the MA2 based MT-o2 values were compared to the VR' on a 1:1 

basis.  It was discovered that with the MA2 smoothing, the matching to VR' 

significantly improved resulting in NSE ≈ 72% and MER ≈ -13% (Table 4). In 

other words, the underestimation was ameliorated significantly as the value 

of MER ascended from -39% to -13%. Although the NSE values have improved 

remarkably, there still existed a scope for improvement in the estimates of the 

DT-o because underestimation was endemic as revealed by MER of -13%. 

Thus, MA3 smoothing was undertaken (flow chart-Figure 3) and values 

of MT-o3 were obtained. The MA3 sequences resulted in the over-estimation of 

DT-o values with MER = 17.50% although the value of NSE dropped marginally 

to 69.36% (Table 4). In short, the MA2 smoothing led to the under-counting 

whereas the MA3 smoothing led to the over-counting of the DT-o values with 

NSE being nearly the same. For comparison with values of VR, therefore, it was 

considered reasonable to average out the DT-o values based on the MA2 and 

the MA3 smoothing. Such a comparison was made by plotting the average 

 

Type of model 

 

Performance 

statistic 

Drought magnitude based analysis 

MA1 MA2 MA3 Average of  

MA2 & MA3 

Calculations by the counting method 

from the observed flow data 

NSE (%) 

MER (%) 

24.33 

-38.83 

71.93 

-13.04 

69.36 

17.50 

86.73 

2.23 

DM model with consideration of the mean of 

drought intensity only, Equation (3) 

NSE (%) 

MER (%) 

25.90 

-49.80 

49.08 

-36.30 

56.70 

-26.83 

53.60 

-31.56 

 DM model with consideration of the mean and 

variance of drought intensity, Equation (2)  

NSE (%) 

MER (%) 

46.23 

-23.71 

72.01 

0.75 

65.08 

13.85 

71.02 

7.30 
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values of the MT-o2 and MT-o3 against the values of VR' and resulted in a 

remarkably improved match with NSE ≈ 87% and MER ≈ 2% (Figure 4A, Table 

4). The important point to be noted is that at every smoothing, a new value of 

MT-o will emerge, which is multiplied by the MA1 smoothing based value of σ 

(= σ1) to arrive at the new estimate of DT-o. 

 

 
Figure 4 Comparison of SPA based VR with (A) MT-o by counting procedure (B) MT by a hybrid procedure  

                i.e. MT  = a bigger value between MT-o and MT-e 

 

In the process of moving from the MA1 smoothing to the MA2 

smoothing, there has been a considerable reduction in the number of drought 

spells (column 5, Table 3). Such a reduction suggests that there is a significant 

increase in the drought length (Figure 2) and in turn, there is also a significant 

increase in the drought magnitude. In other words, the smoothing procedure 

led to the amalgamation of smaller drought episodes with the larger ones 

which resulted in enhanced values of the DT-o (or MT-o). Such enhanced values 

have been found to compare well with VR (or VR').  

 

4.3. Comparison of reservoir sizes using the SPA and DM based Model 

 

The drought magnitudes (MT-e) in the standardized domain were 

estimated using Equations (2) and (3). At the annual scale, the characteristic 

drought length was found equivalent to extreme drought length, LT [12], 

obtained from the Markov chain based relationship. In the first version, the 

MT-e was estimated by involving only the mean of the drought intensity i.e. 

Equation (3) while in the second version, both the mean and variance of 

drought intensity were considered i.e. Equation (2) to arrive at estimates of the 

MT-e and hence estimates of the DT-e. The calculation for DT-e was done using σ1, 

i.e. DT-e = σ1× MT-e, which is similar to the case of DT-o.  Because of similarity, the 

best multiplier was σ1 for all MA smoothing in the estimation of DT-e. For 
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example, there are two estimates of DT-e (viz. DT-e2 = σ2× MT-e2 and DT-e2 = σ1 × 

MT-e2) if the MA2 smoothing was conducted, then the appropriate value will 

be DT-e2 (= σ1 × MT-e2), which, in turn, should be comparable to VR or the 

counting based DT-o2. One can advance similar arguments to the MA3 

smoothing. Succinctly, σ1 is the multiplier for all MA smoothing chosen for 

estimating DT-e in the analytical approach as was the case for DT-o. It was found 

that the estimation by a simple version involving only the mean of the drought 

intensity proved too inadequate both in terms of NSE and MER. The 

calculations showed that values of MT-e are nearly 50% of VR with the MA1 

smoothing and such an underestimation persisted even with the MA3 

smoothing leading to the value of MER = - 27% (Table 4 ). The NSE for the 

MA3 smoothing was also low with the highest value nearly equal to 57%. 

Similar was the case for the MA2 smoothing with NSE = 49% and MER = -36% 

(Table 4). 

In view of the abysmal values of the performance statistics by Equation 

(3), Equation (2) was used to estimate MT-e and its corresponding DT-e. The 

performance statistics turned out to be encouraging. Although, there was a 

significant underestimation (≈ -24%) for the MA1 smoothing, however, the 

underestimation improved remarkably (MER= 0.75%) with the corresponding 

NSE =72% for the MA2 smoothing. A consideration of MA3 smoothing 

resulted in a significant overestimation of nearly 14% and a slight reduction of 

NSE to 65%, which suggested that the MA3 smoothing is less meaningful. 

However, the estimates of MT-e, based on the MA2 smoothing and the MA3 

smoothing were averaged out and the resultant performance statistics 

improved compared to those of the MA2 smoothing with an acceptable 

overestimation (7.30%). Likewise, the NSE of 71% was almost equal to 72% 

that was obtained for the MA2 smoothing. In nutshell, the analytical (model) 

approach also yielded estimates of MT-e (or DT-e) which are in agreement with 

those of the counting method. However, the analytical procedure proved a bit 

rigorous as it involved the numerical integration of relevant equations 

reported by Sharma and Panu [12] and the resultant output from which, in 

turn, became input into Equation (2). 

It was observed that the MA2 smoothing resulted in similar values of 

NSE for both the counted DT-o as well as the estimated DT-e (Equation 2). The 

counted values of DT-o were ameliorated by averaging the values obtained 

from the MA2 and the MA3 smoothing.  Such an averaging by the analytical 

estimates involving the MA2 and MA3 smoothing resulted in little 

improvement over the counted values. At this point, it was mooted that the 

MA2 smoothing is preserved and the larger value between DT-o (MT-o) and DT-

e (MT-e) (Table 5) be used as the final estimate of the reservoir volume. For an 

evaluation of the performance statistics, viz. NSE and MER, the VR’ and MT 
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(larger between MT-e and MT-o) were compared on a 1:1 basis (Table 5, Figure 

4B).  

 

Table 5 Summary of the VR', MT-o and MT-e based on the hybrid procedure on MA2 smoothed annual 

 SHI sequences for the selected rivers. 

  

 

River name and 

Flow data size 

 

 

ρ 

 

σ1 

(m3/s-yr) 

Counting Method 

MT-o = 

Analytical Method 

MT-e = 

 

Best 

MT 

 

VR  

(m3/s-yr) 

 

 

VR' (DT-o /σ1) DT-e / σ1 

(Eq. 3) 

DT-e / σ1  

(Eq. 2) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Bow River 

(1911-18) N=108 

Bow River 

(1955-18)N=64 

S. Saskatchewan R. 

(1960-18) N=59 

S. Saskatchewan R. 

(1970-11)N=42 

English River 

(1922-18) N=97 

English River 

(1965-16) N=52 

Pagwachaun River 

(1968-18) N=51 

Bevearbank River 

(1922-1997) N=76 

0.57 

0.57 

0.66 

0.53 

0.58 

0.51 

 

0.40 

 

0.30 

 

5.18 

5.05 

58.83 

60.62 

19.06 

18.73 

 

5.79 

 

0.56 

 

13.02 

11.29 

10.72 

9.46 

9.00 

11.55 

 

4.61 

 

4.17 

 

7.55 

6.37 

6.73 

5.30 

7.39 

5.64 

 

5.17 

 

5.45 

 

13.22 

10.66 

11.25 

8.41 

12.87 

9.19 

 

8.33 

 

8.95 

 

13.22 

10.66 

11.25 

9.46 

12.87 

11.55 

 

5.17⃰⃰ 

 

5.45⃰ 

 

78.11 

56.73 

708.07 

257.52 

254.72 

 

30.44 

 

2.69 

 

2.63 

 

15.08 

11.23 

12.04 

8.32 

13.36 

10.64 

 

5.26 

 

4.69 

 

 Note: *(asterisk) means the value is based by comparing MT-o and MT-e (Equation 3) because of ρ being < 0.42. 

 

The foregoing selection criteria of the larger estimate between the MT-e 

and the MT-o (named as hybrid procedure) resulted in the value of NSE about 

85% with an acceptable level of overestimation (MER = 4.7%).  The criteria 

performed well in a majority of rivers except in cases where ρ was found to be 

less than 0.42 for the MA2 sequences. In such cases, the value of the MT-e based 

on Equation (3) was compared with the estimate of the MT-o and the bigger 

value was chosen to represent the reservoir volume. In nutshell, the MA2 

smoothing is satisfactory for the evaluation of reservoir volumes at the annual 

scale and conversely, a little gain is achieved by invoking higher MA 

smoothing, with the caveat that the bigger one between DT-e (= σ1  × MT-e ) and 

DT-o (= σ1 × MT-o) should be chosen as the estimator of deficit volume to 

correspond with reservoir volume.  

 

5. Discussion 

 

From the foregoing analysis, it was observed, that the discrepancy 

between the VR (SPA) and DT (DM) is significant at the draft level of mean 
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annual flow when only MA1 smoothing is applied on SHI sequences. The 

large discrepancies between the SPA and DM based (MA1) estimates are an 

eye-opener in that either the SPA yields too large values of reservoir volume 

or the DM method yields too small estimates. No such estimates can be 

considered to be absolute as each method has its own logistics and limitations. 

In the case of SPA, the difference between the full reservoir level (reservoir is 

assumed to be full at the beginning) and the lowest level reached during the 

sampling period, is taken as the reservoir volume. During this intervening 

period, several droughts including the longest one may occur and the recovery 

in the water levels in the reservoir may succeed. Conversely in the DM based 

method, no such assumption is invoked and thus the total shortfall of water 

below the long term mean flow in a river during the longest drought period is 

regarded as the required reservoir volume. The reservoir should be designed 

to store the above volume of water during the period of excess flow in the 

river. 

In a bid to attain the same DT values as VR using the DM based method, 

the drought lengths and in turn, the magnitudes were amplified by a moving 

average procedure that resulted in the MA2 and MA3 sequences. The DT 

values based on the MA2 sequences tend to undercount whereas those based 

on the MA3 sequences tend to over count compared to the VR. On an annual 

basis, either MA2 or MA3 smoothing can only be conducted because there is 

no smoothing operation between these two, i.e. there is no integer number 

between MA2 and MA3 smoothing. Therefore, any further refinement of 

results stresses that the analysis should be conducted at a shorter time scale 

(i.e. the monthly scale). There exists an opportunity for a suitable match 

between the VR and DT values, provided MA smoothing such as 3-, 4-, 5-, 6- or 

higher monthly SHI sequences are utilized [28]. This is an area for further 

research justifying the use of monthly based analysis in the design of 

reservoirs. 

It turned out that at the demand level at the mean annual flow of a river, 

the VR values tend to be not significantly different from each other irrespective 

of what time scale is chosen. In contrast, the drought magnitude based method 

resulted in significant discrepancy among these estimates (DT) with the annual 

time scale yielding much higher values compared to those at the monthly and 

weekly scales. In such a scenario, one can even be tempted to limit the analysis 

to the annual flow sequences only as it is trivial and the annual flow data can 

easily be synthesized or generated at any desired location on a river. The aim 

is to store enough water to meet any exigency or unaccounted episodes. There 

is also a need to examine other methods of estimating the reservoir capacity 

and compare them with the DM based estimates. Finally, all the estimates may 

be averaged out to arrive at the final design value of the reservoir capacity. 
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6. Conclusions 

 

The analysis was carried out to compare the VR and DT respectively, 

using the SPA and the DM based method (counting and analytical procedures) 

on the flow data from 15 rivers across Canada. The estimates of VR at the 

annual, monthly and weekly scales with the draft set at the mean annual flow 

level were observed close to each other with a tendency to slightly increase at 

the monthly and weekly scales. On the contrary, estimates of DT at monthly 

and weekly scales tended to decrease compared to the annual scale. At all 

three time scales, the DT estimates turned out to be smaller than VR. To 

ameliorate the DT to the level of VR, the counting and analytical procedures (in 

the DM based Method) were applied to flow and SHI sequences on an annual 

scale. In the counting procedure, the best parity was found with the averaged 

out values of DT-o that were obtained by MA2 and MA3 smoothing of SHI 

sequences. Likewise, the analytical procedure yielded similar results (in terms 

of DT-e) when applied on MA2 and MA3 smoothed SHI sequences. In the 

analytical procedure, the relationships were built on the extreme number 

theorem, the truncated normal probability distribution of the drought 

intensity, normal distribution of the drought magnitude and a Markov chain 

based value of extreme drought length. The estimation of DT-e was found 

inadequate when only the mean of the drought intensity was used. The 

consideration of the mean and the variance of the drought intensity in the 

analytical procedure turned out to be satisfactory and corroborated the results 

obtained from the counting procedure. Another finding of the study was that 

the MA2 smoothing of SHI sequences is sufficiently provided that the larger 

value between DT-o and DT-e is taken as a counterpart value of the reservoir 

volume for design purposes. The novel feature of the DM method lies in its 

ability to assess the reservoir volume without assuming the reservoir being 

full at the beginning of the analysis as is the case with SPA. Further, the DM 

based method is capable of considering the return period and associated risk 

in the design process of reservoirs. However, the DM method requires flow 

sequences to be stationary unlike the SPA, which applies to stationary and 

nonstationary flow sequences alike.  It is recommended that the study be 

extended to the monthly scale at varying draft levels such as 80%, 70%, 60%, 

50% etc. of the mean annual flow, which are largely used where environmental 

concerns are the overriding factors in the design of reservoirs across the globe. 
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