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Simple Summary: A novel framework based on Faster RCNN-FPN architecture has been pro-

posed for the detection of abnormal cells in whole slide images from cervical Pap smear test. Ex-

perimental results demonstrate that the proposed framework outperforms other state-of-the-art 

object detectors. Particularly, when combined with tagging of the negative image samples using 

traditional computer-vision techniques, 6-9% improvement in mAP has been achieved. 

Abstract: Cervical cancer is a worldwide public health problem with a high rate of illness and 

mortality among women. In this study, we proposed a novel framework based on Faster RCNN-

FPN architecture for the detection of abnormal cervical cells in cytology images from cancer 

screening test. We extended the Faster RCNN-FPN model by infusing deformable convolution 

layers into the feature pyramid network (FPN) to improve scalability. Furthermore, we introduced 

a global contextual aware module alongside the Region Proposal Network (RPN) to enhance the 

spatial correlation between the background and the foreground. Extensive experimentations with 

the proposed deformable and global context aware (DGCA) RCNN were carried out using the 

cervical image dataset of “Digital Human Body" Vision Challenge from the Alibaba Cloud TianChi 

Company. Performance evaluation based on the mean average precision (mAP) and receiver op-

erating characteristic (ROC) curve has demonstrated considerable advantages of the proposed 

framework. Particularly, when combined with tagging of the negative image samples using tradi-

tional computer-vision techniques, 6-9% increase in mAP has been achieved. The proposed 

DGCA-RCNN model has potential to become a clinically useful AI tool for automated detection 

of cervical cancer cells in whole slide images of Pap smear. 

Keywords: Cervical cancer; Pap smear test; whole slide image (WSI); feature pyramid network 

(FPN); global context aware (GCA); region based convolutional neural networks (R-CNN); Region 

Proposal Network (RPN). 
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1. Introduction 

Cervical cancer is the second most common malignancy among women with 

more than half a million new cases reported annually. It can be detected and prevented 

at its early stage by cytology screening test. Over the last 6 decades cervical smear of 

Pap strains has played an important role in controlling cervical cancer epidemic by de-

tecting pre-cancerous changes and providing guidance for early treatments. It was esti-

mated that Pap smear test can reduce mortality rate by 70% or more[1]. Cytological 

slides of vaginal smear of Pap strains are microscopically examined at 400× magnifica-

tion. With such magnification, cytologists must examine thousands of field-of-views 

(FOVs) per slide and, thereby, are limited to investigate a limited number of samples 

per day. Despite the seemingly simplicity in detection of abnormal cervical cells, experi-

enced physicians are required for an accurate diagnosis and there is a lack of such 

healthcare resource in many developing countries. Moreover, even with experienced 

pathologists, it is a tedious task to examine the pap smear slides through microscope 

and the detection of cervical cancer cells can often be missed, due to the small size of 

the cervical intraepithelial neoplasia, overlapping clump of cells or masking by blood 

mucus and artifacts.  

      In the light of these challenges, different computer‐aided diagnosis technologies 

have been proposed [2-5] to reduce the workload of pathologists and improve the effi-

ciency and accuracy of cervical cancer detection. The computer‐assisted screening for 

cervical cancer cells involves typically into two steps: segmentation [6] of cytoplasm 

and nucleus, and classification[7]. After the entire image is segmented into nuclei and 

cytoplasm, these small pieces are classified into abnormal and normal ones, and finally 

used for the diagnosis of cervical cancer. The segmentation quality is, therefore, vital 

for the extraction of cell features and the consequential classification results. This has 

been a subject of extensively investigation[6,8-15] in the last 2 decades. Cell overlap-

ping is one of the difficulty issues for accurate cell segmentation and effective methods 

to separate overlapping cells have been proposed[11,16-18]. After successful segmenta-

tion into individual cells, the performance for cell classification relies on the extraction 

of morphological, structural, and contextual features and optimal selection of classifi-

ers [19]. Due to the complicated characteristics of cervical cells and pathological subtle-

ties associated with cervical cancer development, traditional computer vision methods 

can only provide limited generality and efficiency for segmentation and feature extrac-

tion.  

With the advent of deep learning based artificial intelligence (AI) technology in 

recent years, particularly, the development of convolutional neural networks (CNNs) 

has demonstrated its potential for improving automated cervical cancer screening and 

diagnosis. Deep learning excels at recognizing patterns and high-level sematic features 

in large volumes of data, extracting relationships between complex features in the im-

ages, and identifying characteristics that is difficult be perceived by the human brain. 

AI software can process vast number of images rapidly and has already been used to 

assist clinicians in level classification of skin cancer[20], breast cancer detection[21,22], 

end-to-end lung cancer screening [23] and prediction of colorectal cancer outcomes[24]. 

Significant progress has also been made in automated cervical cancer classification. 

With these classification methods we leverage the deep CNNs for effective extraction 

of deep and high-level features [3,7,25-31] of the cells to achieve more accurate cancer 

screening.  

      Deep learning technology has also led to breakthroughs in object detection, 

which refers to the task of both identifying the locations and categorizing object in-

stances in images. Object detection is a key ability required by most computer and ro-

bot vision systems. The cutting-edge research in the field has been making amazing 
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progress in many directions, such as automatic car-driving and object tracking. Current 

object detection models can be divided into two main categories, proposal‐driven two‐

stage detectors, and proposal‐free single stage detectors. For the two‐stage detectors, 

such as faster region-based CNN (FRCNN) series[32-35], region-based fully convolu-

tion network (R-FCN)[36], and feature pyramid network (FPN) [33], the detection pro-

cess is completed in two steps. First the algorithms produce sparse candidate pro-

posals, and then further refine the coordinates and classify these candidate proposals. 

The two-stage methods generally have higher accuracy at the cost of speed. In contrast, 

the one-stage detectors generate the object’s category labels and locations directly and 

have advantage in speed, such as YOLO [37] for real-time object detection, single shot 

multibox detector (SSD) series [38] and RetinaNet[39]. More recently, a new category of 

anchor‐free single‐stage detectors has emerged[40], which has completely abandoned 

the anchor mechanism. 

The object detection methods have also begun to find applications for cervical 

cancer detection in cervical cytology images. At present, there are few network archi-

tectures designed specifically for the specific task of cervical cancer detection [41-46]. 

Xu et al. [45] used the generic Faster RCNN for the detection of abnormal cells in cervi-

cal smear images scanned at 20× and showed that detection of various abnormal cells 

was feasible. Zhang et al.[46] tested a R‐FCN model for cervical cancer screening of 

liquid based cytology (LBC) images. Their performance evaluation was based on an 

interesting concept called hit degree which ignores the precise IOU threshold, and a hit 

recall was counted if the ground truth boxes hit by any detection result box. Accord-

ingly, the precise positions of the cell nuclei are less important because the cells tend to 

form clumps in the Pap smear slides. Tan et al.[44] used also Faster RCNN architecture 

for cervical cancer cell detection in ThinPrep cytologic test (TCT) images scanned with 

a seamless slider at up to 400× and achieved AUC of 0.67. More recently, Ma et al.[42] 

proposed an improved Faster RCNN-FPN architecture for cervical cancer detection in 

cropped patches out of positive Pap smear images. They designed a lightweight 

booster consisting of a refinement and spatial‐aware module, aimed to enhance feature 

details and spatial context information.  

As discussed above, the automated detection of cervical cancer cells in the cytol-

ogy images is a multi-task process involving feature extraction, cell localization, and 

classification. Although extensive research efforts in the past have made significant 

progress in automated classification and detection of the abnormal cervical cells, some 

bottle neck issues remain still open. Particularly relevant concerns include the follow-

ing: (1) the abnormalities in the cancerous cells are subtle and complex; (2) Cells in the 

cervical Pap smear images exist in different sizes and their geometric shapes can be 

obscured due to clump formation and overlapping with artifacts; (3) The ROI pool-

ing/aligning processes in the object detection algorithms tend to enhance the local re-

ceptive fields and lose global context information.  

Aimed at mitigating these potential limiting factors for more accurate detection of 

abnormal cells in cervical cytology images, in this study, we introduce two functional 

extensions for one of the top-performing object detectors, the Faster RCNN-FPN frame-

work: One is the infusion of deformable convolution network (DCN)[47-51]  in the last 

3 stages of the bottom-up pathway of the FPN and the other is adding global context 

aware (GCA) module[52] alongside the RPN. A unique advantage of the Faster RCNN-

FPN architecture is its inherent multi‐scale nature in feature extraction and can facili‐

tate the cell detection of different sizes. Infusion of the deformable convolution layers 

into the later 3 stages of the FPN structure can explicitly learn the geometric offset in-

formation of the objects associated with shape transformations. we added GCA mod-

ule into the Faster RCNN-FPN to strengthen the spatial correlation between the back-

ground and foreground. In the GCA module, the feature pyramid and attention 
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strategies are used for global feature extraction and feature refinement, respectively. 

We leverage the extracted global features as attention maps for contextual modulation 

to improve the cell detection performance.  Moreover, we utilize various conventional 

computer-vision techniques for imaging process to preprocess the negative image sam-

ples and tag some of the representative cells aimed to enhance the subtle feature differ-

ences between the negative and positive cancerous cells. We conducted extensive ex-

periments using the dataset from the "Digital Human Body" (DHB) Vision Challenge 

(tianchi.aliyun.com/competition/entrance/231757/information) with the proposed de-

formable and global context aware (DGCA) Faster RCNN-FPN architecture (hereon 

abbreviated as DGCA-RCNN). Besides exhaustive test, we evaluated the performance 

of the proposed DGCA-RCNN framework and conducted systematic performance 

comparison with five other state-of-the-art object detectors including ATSS[53], Reti-

naNet[39], Faster RCNN-FPN[34], double-head[54], and Cascade RCNN[32]. We car-

ried out also abolition analysis of the extensions in the DGCA-RCNN framework to 

access their functional importance for the detector’s performance. 

2. Materials and Methods 

2.1. The proposed framework for cervical cancer cell detection 

Figure 1 depicts the architecture details of the proposed DGCA-RCNN framework. 

It is based on the faster RCNN-FPN architecture consisting of image input, feature pyr-

amid network (FPN) for feature extraction, feature map generation with region proposal 

network (RPN), classifier, and bonding box regressor. As shown in Figure 1, the FPN 

consists of a bottom-up and top-down pathways. The bottom-up pathway is a deep con-

volutional network hierarchy for feature extraction with successively decreasing spatial 

dimension. As more high-level features are extracted, the semantic value for each layer 

increases. The bottom layers (C1) are not included for object detection because of their 

limited semantic value and large dimension. They are in high resolution, require too 

much memory and can result in significant slowdown. The framework only uses the 

upper layers for detection and, therefore, performs much worse for smaller objects. 

However, FPN also provides a top-down pathway to construct higher resolution layers 

from a semantic rich layer using up-samplings. While the reconstructed layers are se-

mantically strong, locations are not precise after all the down- and up-samplings. There-

fore, lateral connections between the reconstructed layers and the corresponding feature 

maps are utilized to generate pixelwise addition to improve the localization precision. 

They also act as skip connections to facilitate training. 

     In this study, we used ResNet-50 to construct the bottom-up pathway. It com-

poses of 5 convolution modules (C1-C5) and each has multiple convolution layers. From 

C1 to C5 the spatial dimension is reduced by ½ at each stage. We apply a 1×1 convolution 

filter to reduce the C5 channel depth to 256-d (P5). This becomes the first feature map 

layer used for object prediction. Along the top-down route, the previous layer is up-

sampled by a factor of 2 using the nearest neighbor up-sampling method. The up-sam-

pled P5 was added with the 1x1 filtered C4 pixel-wise to generate P4. The same process 

is repeated to generate P3 and P2. In this way, the FPN network utilizes its inherent 

multi-scale pyramidal hierarchy of deep convolutional networks to construct feature 

pyramids and make independent predictions at different levels (P2, P3, P4, P5 and P6) 

for multi-scale object detection. The RPN network loops through the different prediction 

levels and makes full use of the feature maps of different scales at 32×32, 64×64, 128×128, 

256×256, and 512×512, respectively. Furthermore, three aspect ratios of 1:1, 1:2 and 2:1 

are utilized at each level. The RPN is trainable from end-to-end to generate simultane-

ously bounding-box proposals and objectness scores at each position. These regions may 

contain target objects and are sent to the subsequent classifier network to produce the 

final classification and refined anchor positions. Since the same classifier/regressor 

model is shared among the region proposals from the feature map pyramid of different 
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levels, the region of interest (ROI) pooling layer uses max pooling to convert each ROI 

from the RPN into a feature map of fixed size at 7×7.      

                     

Figure 1. A schematic illustration of the proposed DGCA-RCNN architecture. 

2.2. Extensions to the Faster RCNN-FPN architecture 

The regular grids are used in the input feature maps for the convolution operations 

and CNNs are limited in modeling geometric transformations. Introducing deformable 

convolutional layers can add 2D offsets to the regular grid sampling locations in the 

standard convolution and can facilitate the detection of the geometrically transformed 

objects without additional supervision[55].  Considering the geometrical variations of 

diploids in the cervical smear images, we replaced the last convolution layers in C3, C4, 

and C5 of the ResNet-50[56] backbone by deformable convolutional layers in the pro-

posed framework. With the extension we can obtain the field offsets to model the various 

geometrical deformations of the cells on top of their ordinary feature maps. During train-

ing, both the convolutional kernels for generating the output features and the field off-

sets can be learned simultaneously. Therefore, we expect to improve the generality of 

the model in the aspects of scalability, geometry transformation and cell deformation.  

As discussed above, ROI Pooling/Aligning is an indispensable process for the 

Faster RCNN-FPN architecture. It is used to rescale the object proposals cropped from 

the feature pyramid to generate a fixed-size feature map. However, these cropped fea-

ture maps of dominant local receptive fields possess very weak global context infor-

mation. To alleviate this, we infuse an off-the-shelf Global Context Aware (GCA) module 

to strengthen the spatial correlation between the background and foreground by fusing 

the global context information through attention mechanism. We leverage the extracted 

global features as attention maps for contextual modulation to improve the cell detec-

tion. In the end, the GCA module also utilizes a max pooling to convert the global context 

features at different stages in the top-down route of FPN into the fixed size of 7×7 and 

merges them pixel-wise with the ROIs from ROI pooling layer. The reference infor-

mation from the background may help decide the spatial and category relationship be-

tween the targets and global contexts. 

2.3. the loss functions 
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The loss function of the detection algorithm can be divided into two parts, one is 

the RPN loss, and the other is the loss of the detection network. To evaluate the RPN 

loss, we used the intersection-over-union (IOU) metric which is defined as the ratio be-

tween the area of overlap and the area encompassed jointly by both the predicted bound-

ing box and the ground-truth bounding box. Depending on the associated IOU each an-

chor is assigned a binary class label. If the IOU for a given anchor is >0.7 or <0.3, positive 

or negative label will be signed to the anchor, respectively. The detection model is opti-

mized for a loss combining the two tasks: classification and localization. Therefore, the 

loss (L) function sums up the cost of classification (Lcls) and bounding box prediction 

(Lbox):  

                          𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥                 (1) 

         𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠𝑖 (𝑝𝑖 , 𝑝𝑖

∗) +
𝜆

𝑁𝑏𝑜𝑥
∑ 𝑝𝑖

∗ • 𝐿1
𝑠𝑚𝑜𝑜𝑡ℎ

𝑖 (𝑡𝑖 − 𝑡𝑖
∗)    (2) 

where Lcls is the log loss function over two classes (positive and negative), as we can 

easily translate a multi-class classification into a binary classification by predicting a 

sample being a target object versus not.  

        𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) = −𝑝𝑖

∗log 𝑝𝑖 - (1-𝑝𝑖
∗)log(1-𝑝𝑖)            (3) 

The bounding box loss Lbox should measure the difference between 𝑡𝑖 and 𝑡𝑖
∗using a 

robust loss function. The smooth L1 loss is adopted here as usual, and it is claimed to be 

less sensitive to outliers. 

                      𝐿1
𝑠𝑚𝑜𝑜𝑡ℎ(𝑥)={

0.5𝑥2             𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (4) 

Other symbols’ definitions in the above equations are provided in Table 1. 

 

Table 1. Definitions of the symbols used in the loss functions. 

Symbol Explanation 

i The index of anchors in a mini batch. 

pi Predicted probability of anchor i being an object. 

𝑝𝑖
∗ Ground truth label (binary) of whether anchor i is an object. 

ti Predicted four-parameter coordinates for anchor i. 

𝑡𝑖
∗ Ground truth coordinates. 

Ncls Normalization term, set to be mini-batch size (~256). 

Nbox Normalization term, set to the number of anchor locations, 

 A balancing parameter, set to be ~10, so that both Lcls and Lbox terms 

are roughly equally weighted. 

2.4. The Dataset and Preprocessing pipeline 

For the study we used the cervical cytology image dataset from “Digital Human 

Body" (DHB) Vision Challenge-Intelligent Diagnosis of Cervical Cancer Risk provided 

by the Alibaba Cloud TianChi Company (https://tianchi.aliyun.com/competition/ en-

trance/231757/ information?scm=20140722.184.2.173). The original images were in KFB 

format and acquired with digital scanning under 20x magnification. Typical file size is 

in the range of 300-400MB. The dataset contains 500 positive and 300 negative whole 

slide images (WSI) of 40,000x40,000. The positive WSIs have marked ROIs where the 

positions of 5414 lesions with abnormal squamous epithelial cells were labeled. The co-

ordinate and size information for the ROIs were provided in an associated list document 

in json format. The abnormal squamous epithelial cells include mainly four types: atyp-

ical squamous cells (ASC-US) which cannot be clearly defined, low-grade intraepithelial 

lesions (LSIL), atypical squamous cells (ASC-H) which tend to have high intraepithelial 

cells, and high intraepithelial lesions (HIS). It is notable that there is no guarantee that 

there is no abnormal squamous epithelial cell outside the marked ROIs for the positive 

WSIs.  
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We utilized a library package provided by Ningbo Jiangfeng Konfoong Bioinfor-

mation Tech Co.,Ltd (https://www.exporthub.com/eh-ningbo-konfoong-bioinfor-

mation-tech-co-ltd/) to convert from KFB to PNG format which has 3-channel RGB and 

8-bit depth in each channel. Due to the limited GPU memory, the WSIs cannot be fed 

into the model directly and were cropped into smaller patches. As illustrated in Figure 

2, for the training dataset we cropped all the marked ROIs in each positive WSI using a 

sliding window method to extract systematically patches of 2000×2000 out of each ROI. 

The overlap of the sliding window was 50% in both directions., On average, about 20 

patches were generated per positive sample.  reference information from the back-

ground may help decide the spatial and category relationship between the targets and 

global contexts. 

 
Figure 2. The preparation procedure for the positive WSIs to extract image patches of 

2000 × 2000 out of the labeled ROIs using a sliding window with 50% overlap.  

For the negative samples without any specified ROI and the test dataset of the pos-

itive samples, we used the same sliding window method to crop the entire region within 

the radius of 20,000 voxels from the center of each WSI, because a statistical analysis of 

the marked ROIs for the positive samples showed that all positively labeled cells were 

within this range. There are rarely any cells at the edge of the images.  

To enhance the features in the negative image samples, we applied computer-vi-

sion techniques to label some of the negative cells. The negative tagging can improve the 

performance of the model and further reduce the false positive rate. As schematically 

illustrated in Figure 3, the procedure to label the negative cells included the following 

steps: Firstly, the RGB images were color averaged to generate grayscale images which 

were denoised using a series of filters. Then corrosion and dilation operations were ap-

plied to the binarized images before edge detection using the canny algorithm. Finally, 

for each of the preprocessed image patch a few cells of appropriate sizes were selected in 

a pseudo-random fashion and labeled as negative cells. The selection of the negative cells 

was carried by using a random number generator after ranking the edge-detected nega-

tive cells according to their areas. The total number of the extracted image patches with 

negatively labeled cells was controlled to be the same as that for the positively labeled 

image patches (see Table 2).  
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Figure 3. Summary of the traditional image preprocessing procedure used to select and 

label some of the cells in the negative image samples.  

To assess the performance of the trained model, we picked 80 positive and negative 

samples as the test dataset in a pseudo-random fashion. The rest of dataset including 

both the positive and negative cases were used to train the proposed DGCA-RCNN 

model. The test dataset was also cropped by using the same sliding window described 

above to crop systematically each WSI within the radius of 20,000 voxels. The details of 

training and test datasets are summarized in Table 2.   

Table 2. The number of WSIs and cropped patches for the training and test datasets. 

Category Positive            Negative 

WSI patch WSI patch 

Training set 420 7801 220 7801 

Test set 80 104972 80 122560 

we performed the standard data augmentation procedure by adding image rota-

tions and adjustment of the overall brightness. Rotations were performed three times on 

each image with a step size of 90°. Rotation may slightly alter the image quality but 

should not change the abnormality or normality of the cells. The overall image bright-

ness was changed by about ±20%. The slightly darkening or brightening the entire FOV 

should not affect the detection results. Changing the brightness of the images can repli-

cate the clinical conditions of different image qualities and stain settings in preparing 

the slides. Zero-mean normalization to attain centralization of the input data was also 

implemented for each RGB channel. This can improve the generality of the model by 

reducing the interference from settings, such as the staining conditions and imaging 

equipment. 

2.6 The implementation and training procedure of the models 

We implement the DGCA-RCNN model using PyTorch (version 1.8.1). for the 

Python environment (version 3.5). The training and test of the model were carried out 

on a GPU server equipped with 4 NVIDIA TITAN X (Pascal) with 12GB GPU memory. 

For comparison, based on the same backbone of ResNet50, we also implemented other 

five closely related the state-of-the-art object detection models developed in recent 

years including ATSS[53], RetinaNet[39], Cascade RCNN[32], Double head[54], and 

Faster RCNN-FPN[57]. We compared these models by strictly ruling out all the 

implementation inconsistencies between them.  

We used the alternating training strategy to train the model, the RPN was first 

trained to generate the initial region proposals. The weights of the shared convolutional 

layers were initialized based on the pre-trained model using ImageNet. The other 

weights of the RPN were initialized randomly. The generated region proposals by the 

RPN were then used to train the Faster RCNN model. The weights of the shared 

convolutional layers are then initialized with the tuned weights by the RPN. The other 

Faster R-CNN weights were initialized randomly. When the weights for Faster RCNN 

and the shared layers were tuned, the tuned weights in the shared layers were again 

used to train the RPN, and the process repeats iteratively until convergency. In the 

initial stage, we used a warm-up strategy to attain learning stability and in the final 

stage we adopted a scheme of multi-step decay to improve convergency. The entire 

scheme of learning rate adjustment to train the model is depicted in Figure 4. In the first 

500 iterations, the learning rate was linearly increased to 0.005. Then, the learning rate 
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was kept flat in the next 7500 iterations. The ramp-down epochs were completed in 3-

steps by reducing the learning rate by a factor of 10 in each step. 

 

Figure 4. The scheme of learning-rate control used to train the proposed DGCA-RCNN 

model. 

We also conducted abolition experiments with the proposed model to analyze the 

performance contributions from the different components, particularly the deformable 

convolution layers, GCA model and labeling of the negative samples.  

2.6 Evaluation Metrics to assess the performance of the models 

When the IOU between the predicted and the ground truth bounding box exceeds a 

specified threshold value, it is considered as a correct detection. Depending on the 

specified confidence threshold, the detection results can have 4 possible types of 

outcomes: true positive (TP), false positive (FP), true negative (TN) and false negative 

(FN). Based on the detection results, the performances of the tested models are assessed 

using the following metrics:  

Precision (P)   is the model's ability to identify only the relevant objects and is defined 

as the percentage of correct positive predictions among all positive detections: 

                                     𝑃 =
𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
=

𝑇𝑃

(𝑇𝑃+𝐹𝑃)
       (5) 

Recall (R) is the model's ability to detect all the relevant cases and defined as the 

percentage of the true positives among all positive ground truth cases:  

                                    𝑅 =
𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝑝𝑐𝑎𝑛𝑐𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
=

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
       (6) 

Both precision and recall metrics are important for object detection, it is, therefore, 

necessary to determine the precision-recall curve that shows the tradeoff between the 

precision and recall values for different thresholds. Furthermore, with the precision-

recall curve the average precision (AP) can be estimated, which is a widely used metric 

to access the accuracy of an object detector. AP computes the average precision value for 

recall value over 0 to 1. The general definition for AP is to estimate the area under the 

precision-recall curve. That is 

                                            𝐴𝑃 = ∫ 𝑃(𝑅)
1

0
𝑑𝑅                                (7) 
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In practical calculation of AP, the precision-recall curve, P(R), is usually interpolated into 

multiple discrete points. For a set of queries (n), the mean average precision (mAP) is 

computed as follows: 

                                     𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1                           (8) 

where k is the query index in the set and APk is the average precision for a given query 

k. In this study, we adopted the latest MS Common Objects in Context (COCO) method 

and a 101-point interpolated AP definition was used in the calculation for three 

different IOU thresholds. Besides the metrics outlined above, other metrics, such as 

specificity, sensitivity, and area under curve (AUC) of the receiver operating 

characteristics (ROC) are also commonly used along for evaluating detection models. 

The ROC is a graph of the relationship between the true-positive rate (sensitivity) and 

the false-positive rate (1-specificity), which measures the effects of varying decision 

thresholds and accounts for all possible combinations of various correct and incorrect 

detections. Both mAP and AUC for the test set were computed for the following three 

IOU thresholds: 0.1, 0.3 and 0.5. 

 

3. Results 

The number of parameters and frame per second (FPS) for the different models are 

summarized in Table 3.  

Table 3. The number of parameters and FPS for the different models. 

Model Parameters FPS 

ATSS [53]  31.89MB 3,5 

RetinaNet [39]  36.6MB 3,7 

Cascade RCNN [32] 68.93MB 3.1 

Double head [54]  47.3MB 2.1 

Faster RCNN-FPN [57] 41.53MB 3,6 

DGCA-RCNN 42.11MB 3.3 

Compared with the closely related model Faster RCNN-FPN, the proposed 

DGCA-RCNN model does non introduce significant overhead in terms of model 

complexity and computation burden. The number of parameters and time efficiency as 

indicated by FPS are quite comparable. 

The results for the test dataset indicate that the proposed DGCA-RCNN framework 

can improve the detection performance for cervical abnormal cells at all tested 3 IOU 

thresholds compared with the other state-of-the-art models based on the same backbone 

ResNet50. As shown in Tables 4 and 5, the DGCA-RCNN model achieved the highest 

mAP and AUC at all IOU thresholds. Faster RCNN-FPN has the next best performance. 

Compared with the closely related model, Faster RCNN-FPN, the mAP for the DGCA-

RCNN model is boosted by 7-9% depending on the IOU threshold, while AUC is 

increased by 1-2%. As expected, the performance degrades with the increasing IOU 

thresholds and the corresponding mAP values are systematically reduced (see Table 4). 

A similar trend has also been observed for the AUC results (Table 5).  
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Table 4. Comparison of the mAP at three different IOU levels for the proposed DGCA-

RCNN framework with other state-of the-art methods for object detection. 

  Model mAP@0.1   mAP@0.3 mAP@0.5 

ATSS [53] 0.362 0.354 0.329 

RetinaNet [39] 0.374 0.363 0.341 

Cascade R-CNN [32] 0.385 0.38 0.355 

Double head [54] 0.388 0.382 0.355 

Faster RCNN-FPN [34] 0.415 0.394 0.371 

DGCA-RCNN 0.505 0.486 0.445 

Table 5. The AUC results for the ROC curves at three different IOU thresholds. 

Model ROC @0.1 ROC @0.3 ROC @0.5 

ATSS [53] 0.603 0.562 0.503 

RetinaNet [39]  0.633 0.584 0.526 

Cascade RCNN [32] 0.653 0.609 0.548 

Double head [54] 0.522 0.489 0.446 

Faster RCNN-FPN [34] 0.652 0.610 0.557 

DGCA-RCNN* 0.670 0.625 0.569 

Table 6 shows the abolition results for the proposed model assessed at patch level 

for 3 different IOU thresholds. The mAP has been steadily boosted by proposed 

extensions. Introducing deformable convolution layers improved mAP by 2.8-4.5%. The 

effect of introducing GCA module is quite inconsequential for mAP (0.1-0.6%), but 

nevertheless the effect is positive. The tagging of the negative image samples with 

computer vision techniques made significant improvement in mAP by 2.1-4.9%. To better 

understand this effect, we carefully compared the detection results with and without the 

tagging of the negative samples.  

Table 6. The abolition results for the proposed DGCA-RCNN model at 3 different IOU 

thresholds. The contributions associated with DCN, GCA and tagging of negative 

samples were analyzed. 

Scale DCN GCA Negative mAP0.1 mAP0.3 mAP0.5 

Patch 

   0.415 0.394 0.371 

√   0.461 0.439 0.399 

√ √  0.467 0.445 0.396 

√ √ √ 0.505 0.486 0.445 

A clear observation is that the negative tagging reduces false positive detections. 

Figure 5 shows such an example without (Figure 5A) and with (Figure 5B) the use of 

tagging the negative image samples. With the additional labeling information from the 

negative images, some subtle features of the negative cells appear to be enhanced and 

lead to reduced false positive detections, particularly in regions with clusters of nuclei. 
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Figure 5. A zoomed display for the detection results without (A) and with (B) tagging of 

the negative image samples. The red colored box indicates the positively labeled ground 

truth region, while the green colored regions are detection results of the DGCA-RCNN 

framework. 

4. Discussion  

4.1. The main findings of the study 

The most important findings of our study are as follows: (1). There are currently 

few network architectures designed specifically for cervical cancer cell detection in Pap 

smear images[42,44-46]. Based on one of the currently top-performing detectors faster 

RCCN-FPN[57] and the characteristics of the cervical smear images, we proposed a novel 

DGCA-RCNN framework. Experimental results based on an openly accessible contest 

dataset of WSIs have demonstrated that the proposed architecture outperforms all other 

state-of-the-art models; (2) Tagging the negative samples with traditional computer-

vision imaging techniques can reinforce the subtle and complex contrasts between the 

normal and abnormal cervical cells and reduce false positive detections; (3) Introducing 

deformable convolutional layers into the feature extraction pyramid network can 

improve scalability of the model and detection of deformed cells of various sizes; (4) 

Besides morphological and textural features, spatial context information can also be 

relevant for the detection of abnormal cells. Infusing context aware module into the 

detector can contribute positively to the performance of the framework. 

4.2 Image magnification and IOU threshold 

Detection of small cells in images is a challenging task due to the relatively small 

area with limited information. The Faster RCNN-FPN based architecture leverages the 

multiscale feature hierarchy to detect objects of various sizes[57]. For small objects there 

is little information left on the top-most feature map, which may compromise the 

detection of the small cells. FPN makes full use of the pyramidal feature maps by building 

a top-down pathway with lateral connections to the corresponding bottom-up feature 

maps, which significantly improves its detection accuracy compared with conventional 

detectors. Nevertheless, the features from the bottom levels have weak semantic 

information and could harm their representational capacity for small object recognition. 

As the system progressively reduces the input images to smaller feature maps at top 

levels, it retains little spatial information of small objects. Therefore, it is difficult to 

restore the lost details of small objects by up-sampling in the top-down route. Moreover, 

the combination of the low- and high-level features plays an important role in object 

detection. In the Faster RCNN-FPN based architectures feature maps of the 2 pathways 
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are added in a simple fashion. Such direct feature combination may result in background 

clutter and semantic ambiguity.  

In this study we used WSIs of 20x and the cells are relatively small. As discussed 

above, Images with higher magnification are strongly favorable for the detection of 

cervical cancerous cells. A recent study[44] based on the Faster RCNN model used TCT 

images of 400x and achieved AUC=0.67 with IOU threshold=0.5. which is about 12% 

higher than the result obtained in this study for the similar model (Faster RCNN-FPN) 

and IOU. It is reasonable to attribute the difference to the magnification difference of the 

input WSIs. The basal diploids in cervical Pap smear images have large variations in size 

and tend to form clumps. Microscopic examinations are usually conducted at 200x to 

magnify the subtle feature differences between cells. Under low magnification as the 

dataset used in this study, the occupancy of the cells in an image patch is relatively small. 

The precise localization of the cells becomes quite challenging. A previous study 

suggested an interesting concept to alleviate this by counting any overlap between a 

ground truth box and the detection result as a true hit irrespective of the IOU threshold. 

In this study, we assessed the performance of the detector at 3 different IOU thresholds 

(0.1, 0.3 and 0.5). It is notable that mAP decreased from 0.505 to 0.445 on when IOU was 

increased from 0.1 to 0.5. To facilitate accurate detection of cancerous cells, it is desirable 

to acquire sufficiently magnified image patches where the targeted cells occupy a 

significant fraction of the image, because details are required for the detector to 

automatically learn the subtle features and use them to detect the targeted cells. Partially 

obscured cells can be also identified if sufficient pixels are present. If the cells in the image 

patches appear too small, the detector’s performance may degrade to a point that the cells 

are miss-classified or missed entirely. Very little research has been done to determine the 

performance limits for object detection algorithms when the object size is reduced[58,59]. 

Other limitations in image qualities[59], such as blurring, noise, contrast, and lossy 

compression are even less known. 

4.3. Limited train dataset and unlabeled cells 

The lack of train dataset is one of the main obstacles to develop machine learning 

methods for automated cervical cancer cell detection in cytology images because of pri-

vacy integrity and labeling cost issues[60]. A collection of at least hundreds of high-qual-

ity, well-curated digitized images of Pap smears and associated cell annotation results 

are required to train a machine learning model. The openly accessible Pap smears image 

database is currently quite limited and without balanced representation for cell types of 

pre-neoplastic alteration. As summarized in Table 7, the currently available datasets are 

mostly composed of cut-out cell images.  

Table 7. Summary of the openly accessible Pap smear image datasets in the literature. 

Property CRIC Cervix [60] Herlev [27] SIPakMed [61] DHB 

Images (n) 400   917  966 500/300 

Cells per image multiple  1  multiple many 

Image type Cut-out cluster Single cell Isolated cells WSI 

Image size 1,376 × 1,020 variable 2,048 × 1,536 40,000x40,000 

Resolution 0.228 μm/pixel 0.201μm/pixel unknown 20x 

Classified Cells 11,534 917 4,049 5414 
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Validation 3 cytologists  2 cytologists  cytologists Cytologists 

source database.cric.com.br mde-lab.aegean.gr cs.uoi.gr   * 

* tianchi.aliyun.com/competition/entrance/231757/information. 

The Herlev dataset [27] is a widely used dataset for classification of cervical cancer 

cells. It consists of 917 single cell images, which have been categorized into 7 pre-neo-

plastic lesions by cervical cytology professionals. Other dataset used for Pap smear im-

age classification studies includes the SIPaKMeD database[61] consisting of 4,049 anno-

tated cells in 966 cut-out images. The cells have been manually classified into five cell 

types without pre-neoplastic alteration by expert cytopathologists. Some previous stud-

ies have relied on image collections of cut-out images[41,43] of clean images or positive 

samples[42]. Despite of the seemingly good performance, these results are not so realistic 

and clinically relevant.  

The classification of single cell images and detection of cervical cancerous cells in 

WSIs are quite different tasks. The latter is more challenging because it requires not only 

classification of the recognized abnormal lesions but also the identification and 

localization of the abnormal cervical cells in WSIs. Unlike the cut-out singe cell images, 

WSIs from cervical cancer screening tests have a broad diversity of neoplastic lesions and 

many other challenges, including image quality issues discussed above, overlapping cells 

and inflammatory cells. Moreover, the datasets to train a detection model need to provide 

the ground-truth locations and size of the cancerous lesions and such datasets are rarely 

available. To the best of our knowledge, the DHB dataset used in the current study is the 

only cervical Pap smear WSI dataset labeled for cancer cell detection. Besides the 

relatively low magnification issued discussed above, there are number of important 

limitation factors associated with the dataset, which can significantly influence the 

detection performance. Firstly, the lesions were not exhaustively labeled and there is no 

guarantee that the cells outside the tagged regions are all normal. This means that false 

positive detections outside the tagged regions can be true positive, and the detection 

performance can, therefore, be underestimated. Secondly, the occupancy of the labeled 

regions was only a small fraction (<1ppm) of the WSI images. This implies that the 

relative populations between the abnormal and normal cells are substantially out of 

balance (in the order of 104) and the clinical relevance of the detection algorithm should 

focus on reducing false negative detections. During model training, we attempted to 

balance the positive and negative labeled samples (see Table 2). Therefore, there are 

substantial fraction of cells are unlabeled both in the negative and positive samples. 

Considering the potentially large number and wide diversity of object instances in Pap 

Smear WSIs, it is inherently a challenging task to constitute complete exhaustive 

annotations. The missing annotations can be problematic, as the standard cross-entropy 

loss employed to train the model implicitly treats the unlabeled regions as background. 

Any unlabeled object (without a bounding box) can result in a confusing learning 

signal[62]. This can be addressed by removing the assumption that unlabeled regions 

must be background. 

5. Conclusions 

In this study, we proposed a novel DGCA-RCNN framework for the detection of 

abnormal cervical cells in Pap smear images. We extended the Faster RCNN-FPN model 

by introducing deformable convolution layers into FPN to improve scalability and 
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adding a GCA module alongside RPN to enhance the spatial context information. The 

results from extensive experiments have demonstrated that the proposed model has 

significant improved mAP and AUC for the detection of abnormal cells in Pap smear 

WSIs and outperform other state-of-art detectors. When combined with tagging of the 

negative image samples using computer-vision techniques, 6-9% increase in mAP has 

been achieved. The main limiting factors include WSI magnification and adequate 

labeling. The proposed DGCA-RCNN model has great potential to become a clinically 

useful AI tool for automated detection of cervical cancer cells in Pap smear images. 
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