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Abstract
Deep neural networks (DNNs) have made a huge impact in
the field of machine learning by providing unbeatable human-
like performance to solve real-world problems such as image
processing and natural language processing (NLP). Convo-
lutional neural network (CNN) and recurrent neural network
(RNN) are two typical architectures that are widely used to
solve such problems. Time sequence-dependent problems are
generally very challenging, and RNN architectures have made
an enormous improvement in a wide range of machine learn-
ing problems with sequential input involved. In this paper,
different types of RNN architectures are compared. Special
focus is put on two well-known gated-RNN’s Long Term
Short Memory (LSTM) and Gated Recurrent Unit (GRU).
We evaluated these models on the task of force estimation
system in pouring. In this study, four different models in-
cluding multi-layers LSTM, multi-layers GRU, single-layer
LSTM and single-layer GRU) were created and trained. The
result suggests that multi-layer GRU outperformed other three
models.

Keywords—Recurrent neural network, Long-term short
memory, Gated recurrent unit

1 Introduction

Nowadays, the recurrent neural network (RNN) has gained
a lot of attention due to its outstanding performance in solv-
ing real-world machine learning problems, especially when it
comes to dealing with sequential data and input-output data
having different lengths [1–12]. Alex Graves in “Supervised
Sequence Labelling with Recurrent Neural Networks” shows
that RNNs are very powerful sequential learners [13]. One
of the most popular areas where RNNs are usually used is
in modeling natural language processing such as machine
translation [14]. Other areas include handwriting recogni-
tion/generation [15], speech recognition [16], and human ac-
tivities modeling [17].

In the past two decades, robots have taken charge in many
areas such as medical centers [18], military [19] and indus-

try [20]. Scientists have been trying to design and build robots
that are capable of smooth and natural movements to do the
tasks that are normally done by human beings. One of the
most activities that can be helpful in lots of situations is pour-
ing. We use pouring in our daily activities in an unconscious
way.

To properly calculate the amount of transferring during the
pouring process, humans use two factors: vision feedback and
force feedback. Y. Huang et al. introduce an approach RNN
model base on the LSTM to simulate the pouring activity [21].

In this work, the main focus is to compare different RNN
architectures for this problem. We used a number of trainable
parameters as a similarity factor to generate four different
models. Models include 3-layer LSTM, 3-layer GRU, 1-layer
LSTM and 1-layer GRU. The efficiency of LSTM and GRU
are compared under the same conditions. Based on the expe-
rience in a very similar environment with the same features
such as a number of epochs, loss function, optimizer and batch
size, GRU produces better results than LSTM.

This paper is organized as follows. Section II includes a
brief background on the recurrent neural network and elabo-
rates on the difference between LSTM and GRU. Section III
describes the dataset and dataset preprocessing. In section IV,
architectures and the training process are discussed. Section
V shows the evaluated results and concludes the paper.

2 Background

In this section, we describe two recurrent units LSTM and
GRU.

2.1 Long Term-Short Memory (LSTM)

LSTM was introduced in 1997 by Hochreiter & Schmidhuber
to mitigate the vanishing gradient problem which previously
recurrent networks would encounter [21] [22]. Instead of
vanishing or exploding backpropagated errors, in LSTM, they
will flow back through unlimited numbers of layers.
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Figure 1: Diagram of a one-unit Long Short-Term Memory
(LSTM)

LSTM uses a memory unit; that is why it can solve the
problems requires of memories of events that happened very
long-time steps ago. Figure 1, illustrates one unit of LSTM.

LSTM has a chance to choose among read, write or reset
the sell at each step. Equation 1 shows the complete updating
process in LSTM units [23].
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2.2 Gated Recurrent Unit (GRU)

GRU was introduced in 2014 by k. Cho el al. [24] as an
alternative solution to alleviate the complexity of LSTM units.
GRU has fewer trainable parameters because it does not have
the output layers that LSTM has. Figure 2 illustrates one unit
of GRU.

Equation 2 shows the complete updating process in GRU
units [23]. (
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Although LSTM and GRU are very similar to each other,
they have some key differences:
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Figure 2: Diagram of a one-unit Gated Recurrent Unit (GRU)

• GRU has two gates (reset and update), while LSTM
has three gates (Input, output and forget). Reset gate
in GRU handles how new inputs are combined with
previous memory, and update gate handles how much of
the previous state need to keep. The update gate does the
same work of that input and forget gates do in LSTM.

• Unlike LSTM gate, GRU gate does not have the ct mem-
ory in each unit.

So, it is obvious that GRU is very similar to LSTM, and
having less complexity and fewer parameters make it an in-
teresting architecture to compare its performance to LSTM in
the pouring scenario.

3 DATASET AND DATA PREPRATION

In this study, a dataset that includes 1307 motion sequences
and their corresponding weight measurements was used. The
data set has the shape of [# sequences, Max_length, # features].
The maximum length in this dataset is 1099, and any sequence
that has a length less than 1099 was padded with zero at the
end [25].

This dataset also has 10 features for each time steps:
[
θt rotation angle at time t(degree)
ft weight at time t(lb f )
finit weight before pouring (lbf)
fep weight while cup is empty (lbf)
f f in weight after pouring (lbf)
drc diameter of the receiving cup (mm)
hrc height of the receiving cup (mm)
dpc diameter of the pouring cup (mm)
hpc height of the pouring cup (mm)
ρ material density/water density (unitless)

]
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Figure 3: One-time sequence of the dataset

Figure 4 illustrates a sequence of the dataset. The only
rotation angle and weight change with time. Each feature
has a different range size. In this work, the goal of this work
is to predict the weight at time t (target/response) using 9
other features (predictors). The rest of this section talks about
preprocessing features for neural network input.

3.1 Standardization

The original dataset was split into train, validation and test
sets with ratios of 0.7, 0.2 and 0.1, respectively. The next step
is dividing each of these three datasets into input and target.
In this process, f_t is extracted from train_validation and test
dataset. The final shape for these datasets became:

Train_Validation_Input = (1176,1099,9)
Train_Validation_Out put = (1176,1099,1)
Test_Input = (131,1099,9)
Test_Out put = (131,1099,1)

Standardizing a dataset means to rescale the dataset. Stan-
dardization was done in order to bring all input features into
the same range. So, the mean of values becomes 0 and the
standard deviation becomes 1. In this paper, Standard scale
used to scale the dataset’s features. Figure 4 illustrates a time
sequence after applying the scaler function.
Test dataset scaled base on the data extracted from the training
scaled process output.

4 Model

My goal in this paper was not to compete with previous work
[21], instead I studied the performance of LSTM and GRU
Network on this dataset. So, I chose 4 different models to
compare their performance on this problem.

Figure 4: One-time sequence standardize of the dataset

4.1 Designing Model

The Number of parameters was chosen as a key factor of
similarity between models. So, all four models had the same
number of parameters to become more likely to each other.
The dataset includes zero paddings, and it is important to
ignore those values during the training process because they
are not real values and they only there to fix the maximum
length size.
Keras [26], introduced the “Masking” layer that can mask
those data from going through the training process. In this
paper, all of those models include one layer of Masking to
ignore padding values.
Between each layer, I put a dropout layer to help model trains
better.
Table 2 shows the parameter of these models.

4.1.1 Multi LSTM Model

This model includes a masking layer with a value of 0. (dataset
include zero paddings) and input shape of (None, 9). The first
layer should have input shape, and, in this case, nine features
are the input. First LSTM has 55 hidden layers. The second
has 27 and the third has 16. Between each layer, there is a
dropout layer with a value of 0.2. At the end model used 3
fully connected layers with the size of 64, 29 and 1 (our output
layer) with the activation function of relu.

4.1.2 Multi GRU Model

Like first model, this model also includes a masking layer
at the first and then three layers of GRU with 64, 32 and 16
hidden layers. Also, it has 3 fully connected layers with dense
of 64, 32 and 1 as the output with same activation function.
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Train Loss Validation Loss Test (1) Loss Test (2) Loss Time
Multi LSTM 0.0028 0.0010 0.0014 0.0329 65 min
Multi GRU 0.0024 0.0012 0.0013 0.0222 45 min
Single LSTM 0.0047 0.0020 0.0019 0.0310 28 min
Single GRU 0.0060 0.0033 0.0026 0.0227 18 min

Table 1: Results of training models for 20 epochs

No. trainable parameters No. Layer
Multi LSTM 29083 3LSTM+3FC1

Multi GRU 29073 3GRU+3FC
Single LSTM 28881 1LSTM+1FC
Single GRU 28831 1GRU+1FC

Table 2: Models architecture

4.1.3 Single LSTM Model

The difference between this model and multi layers LSTM
is this model only include one LSTM layer with 80 hidden
layers and one output with dense 1.

4.1.4 Single GRU Model

This model also includes one layer of GRU with 93 hidden
layers and output dense 1.

4.2 Train parameters
Loss function is one of two mandatory parameters that need
to compile model. Picking a good loss function can improve
the final result of the model. The Mean-Squared error (MSE)
loss function picked for this study. MSE is a measure of the
quality of a predictor. It’s a non-negative value and values
closer to the zero are better.
The other important parameters for training is optimizer. Op-
timizer also plays a huge part in training process. Adam [27]
chose for optimizer because Adam can generalize faster than
other optimizers, so it can learn better in small size epochs.
Optimizers have a learning rate parameters that can be help-
ful in learning process. All of the models used 0.01 as their
learning rate in this paper.

5 Results and Conclusion

This section will cover the result of training and test
evaluation. To be clear, 10% of the first dataset picked for
testing purpose and also, Model tested with a new unseen
dataset. So, we have two different test dataset, that the first
one is picked randomly from the same dataset used for
training.
The second test dataset which used in this study has different
shape than the first one. The maximum length of new one is

only 834.
New_Test_Input = (289, 834, 9)
To use the same scaler’s variables which used by
train_validation dataset, two datasets must have same
number of columns, which means maximum length must
become 1099. One way to fix this difference is to add zero
to the end of each sequence time. So, after padding zero the
shape becomes:
Padded_New_Test_Input = (289, 1099, 9)
StandardScaler function can now apply on the Input data and
prepare the input data for evaluating with models.
Two number of epochs chose for this study (20 and 45).
Purpose of this choosing was, estimate the performance of
different models with small amount of training steps. First
time models trained with the same train_validation dataset
for 20 epochs. Results showed in table 1.

Table 1 shows that Multi GRU network perform better than
the other models in small number of train steps. Increasing
the amount of train steps will lead a model to learn better and
produce a better result. So, for second part of test, the number
of epochs increased to 45 and all the other parameters kept as
the previous. Table 3 shows the results of the second test.

Table 3 shows that increasing the number of epochs mad
a huge change in the result of multi layers GRU. Both
GRU models (single and multi) predicted better results
when I increased the number of epochs. However, LSTMs
models made a less accurate prediction. Table ?? illustrate
the performance increase/decrease in these two test processes.

Figure 5 to 10 illustrates 6 different results of output and
prediction model for multi layers GRU. Figures 11-13
demonstrate how the other models performed after 45 epochs
of training steps.

In conclusion, this study showed that GRU worked
better than LSTM for this specific problems. Also, results
show that multi layers of GRU performed better than using
single layer. Also, the results show that GRU take less
amount of time to train.
In the future, a better architecture can be used to generate
a competitive result with existent architecture [21], and
calculate the improvement performance. I would suggest
creating the same architecture with GRU gates that introduce
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Train
Loss

Validation
Loss

Test (1)
Loss

Test
(2)

Loss
Time

Multi LSTM 0.0013 0.0012 0.0021 0.0411 146 min
Multi GRU 0.0014 0.0009 0.0010 0.0007 101 min
Single LSTM 0.0006 0.0009 0.0027 0.0343 62 min
Single GRU 0.0008 0.0015 0.0018 0.0187 41 min

Table 3: Results of training models for 45 epochs

Figure 5: Prediction and True data of sequence 286

Figure 6: Prediction and True data of sequence 18

Figure 7: Prediction and True data of sequence 10

Figure 8: Prediction and True data of sequence 171
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Figure 9: Prediction and True data of sequence 267

Figure 10: Prediction and True data of sequence 203

in the “Learning to pour” paper and use same environment to
produce a better performance on this problem.
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