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Abstract:   Globally, groundwater is the largest distributed storage of freshwater that plays an important 
role in an ecosystem’s sustainability in addition to aiding human adaptation to both climatic change and 
variability.  However, this resource is not unlimited and its sustainability is highly dependent on its 
prudent use. Thus, efficient management of groundwater resources to prevent overexploitation, scarcity 
and drought has become a major challenge for researchers as well as water managers. To solve these 
challenges, many solutions such as simulation and optimisation models have been proffered through the 
use of historical data. Therefore, this has made efficient data gathering essential to maintain data-driven 
groundwater level resource management models from the observation site. The global evolution of the 
Internet of Things (IoTs), has increased the nature of data gathering for the management of groundwater 
resources. Recently, a number of research challenges such as the lack of computational efficiency and 
scalability due to uncertainties from input parameters to the groundwater level resource model have been 
revealed in the management of groundwater level resources. In addition, efficient data-driven 
groundwater level resource management relies hugely on information relating to changes in groundwater 
resource levels as well as its availability. At the moment, the groundwater managers lack an efficient and 
scalable groundwater management system to gather the required data. The literature revealed that the 
existing methods of collecting data lack efficiency to meet computational model requirements and meet 
management objectives. Although the IoTs enabled automated data processing systems are in existence by 
transmitting the generated data from IoT enabled devices into the cloud through the Internet. However, 
traditional IoT Internet is not scalable and efficient enough to process the generated vast IoT data. Thus, it 
is necessary to have an efficient and scalable IoT system to extract valuable information in real-time for 
groundwater level resource management. Unlike previous surveys which solely focussed on particular 
groundwater issues related to simulation and optimisation management models, nonetheless, this paper 
seeks to highlight the current groundwater level resources management models as well as the IoT 
contributions. 

Keywords: Internet of Things (IoTs), Groundwater Level Resource, Groundwater Management Model, Groundwater 
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1. Introduction 

About approximately one-third of the global freshwater consumption depends on groundwater 
resources thus, it has become an important source of freshwater globally [1]. It is also one of the most 
valuable unlimited natural resources in the world. Statistically, the freshwater resource is approximately 
about 4 % of the total water available on earth out of which the remaining 96 % is salty, in the seas and 
oceans [2]. Meanwhile, only about 0.001 % is available as a groundwater resource that is hidden 
underground, while 75 % is ice and about 25 %  is liquid water [3]. Therefore, groundwater resources 
constitute approximately 98 % of all fresh liquid water available on the earth [4].  Consequently, 
groundwater resources are often ignored and easily forgotten in the water cycle. Since both plants and 
animals depend on water, therefore, the interaction between surface water systems and groundwater 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2021                   doi:10.20944/preprints202107.0227.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202107.0227.v1
http://creativecommons.org/licenses/by/4.0/


resources is essential for basic life on the earth. This makes groundwater the largest distributed storage of 
freshwater which plays an important role in an ecosystem’s sustainability as well as in aiding human 
adaptation to both climatic change and variability [5]. Human beings largely depend on groundwater 
resources as a major supply of their drinking water. Thus, efficient measurement and estimation of 
groundwater levels are crucial to ensure its future sustainability. Nonetheless, human activities and lack of 
planning on these activities has led to groundwater quantity shortage in the aquifer, land subsidence, 
saltwater intrusion, high cost of water production, overexploitation, unhygienic and quality contamination 
(Erban et al., 2013, Yang et al., 2015, Yeh, 2015, Castellazzi et al., Conway, 2016, Mani et al., 2016, Raju and 
Varma, 2017, Montevalli et al., 2018, Yin and Tsai, 2018, Liu et al., Yin and Tsai, 2019) 

Also, the management and sustainability of groundwater resources is a global critical issue. This is in 
line with Goal 6 of the Sustainable Development Goals (SDGs) adopted by the United Nations General 
Assembly which seeks to achieve a universal reduction in water scarcity, sustainable water management, 
and to substantially increase the efficiency of water usage by 2030 [6]. Thus, understanding groundwater 
resource’s potential is decisive in order to ensure its sustainable usage. Therefore, groundwater models are 
crucial to ensure a sustainable future without water scarcity, overexploitation, and to improve water 
efficiency usage. This has made groundwater level measurement very important because it is the principal 
source of information for groundwater resources management modelling. Depending on a region, 
replenishing a pumped-out groundwater resource is typically low, thus leading to a reduction in the level 
of resources. In addition to usage, as a result of high non-linear and non-stationary natures of groundwater 
resources in time series, its efficient management depends on various complex factors such as precipitation, 
groundwater aquifers, and other environmental factors [7]. Consequently, it is of vital importance that an 
effective management model for accurate groundwater level management model be developed [8, 9]  

Measurement of groundwater level is important to avoid depletion of the groundwater resource as 
earlier stated [2]. Groundwater level measurement assists in determining the hydrological stress acting in 
an aquifer and provide data for efficient management. For a long-time forecast, and management, 
groundwater level measurement supplies data to develop a groundwater model [10].  Therefore, this has 
made groundwater level management models become a standard instrument used by water managers and 
professionals to solve most groundwater-related problems. These have been achieved by utilizing a wide-
ranging number of simulation and optimization modelling methods separately. Likewise, many 
researchers have combined both simulation and optimization modelling methods to manage groundwater 
levels [11]. However, it is important to understand the nature and characteristics of groundwater levels to 
be able to efficiently measure or model groundwater. Additionally, the nature of groundwater level 
measurement in time series was described to be non-stationary and non-linear which depends on various 
complex surrounding agents such as precipitation, intervening aquitards, groundwater aquifers, and other 
hydrogeological characteristics of the aquifers involved [12]. Also, the groundwater aquifers systems’ 
interaction with groundwater-surface at different temporal-spatial scales was described as intrinsic 
heterogeneous systems that are strained by a knotty hydrogeological state [13, 14]. Thus, the processes and 
the physical attributes that form groundwater flow within an aquifer are very heterogeneous [15]. To 
effectively take into consideration all these properties of groundwater resources, various groundwater 
management models warrant complex and highly distributed models in time series. Previously, the 
tendency in groundwater resources management through distributed modelling was to increase the 
numerical resolution, include many physical attributes, as well as to enlarge the model’s domain using 
either a finite difference approximation or a finite element method [16-19]. Although the application of 
either the finite element or finite difference methods to groundwater resources management have enabled 
real-world and complex systems to be modelled, this has led to an increase in model runtimes and the 
number of factors.  

Due to the depletion of groundwater resources globally as a result of an increase in usage, groundwater 
resources measurement has become important. Thus, there are many solutions to groundwater quantity 
management challenges. Thus, measurement and data gathering from an observation well, are the 
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principal source of data for groundwater resource management modelling. Hence, data gathering is 
essential to maintain a data-driven groundwater resources management modelling and to perform crucial 
water-related functions [20]. Besides, efficient data-driven groundwater resources management modelling 
relies hugely on data measurements relating to changes in groundwater levels as well as their availability. 
In many instances, groundwater levels are manually measured using a data logger coupled with a pressure 
transducer, electrical probes or a graduated steel tape dipper [2, 20]. Although these techniques are simple 
and easy to use, they are prone to human errors, are unreliable, and inefficient. Furthermore, depending 
on a region, replenishing a pumped-out groundwater resource is typically low, thus leading to a reduction 
in the levels. In addition to usage, as a result of high non-linear and non-stationary natures of groundwater 
resources in time series, its efficient management depends on various complex factors such as precipitation, 
groundwater aquifers, and other environmental factors [7].  

Likewise, many researchers have combined both simulation and optimization modelling methods to 
manage groundwater resources [11, 21-27]. In the past decades, researchers in the field of water engineering 
have developed various management models using numerical simulation and optimisation methods to 
help in evaluating groundwater resources. Also, different groundwater resource management models have 
been developed to minimize groundwater resources scarcity [7, 12-14, 28-46]. Also, there are many models, 
for example, data-driven models, numerical models as well as nonlinear models that are used for 
groundwater resources management [47-49]. Chang et al developed a numerical groundwater resource 
model from a conceptual model but failed to capture the computational complexities nature of the 
groundwater aquifer system while focusing only on the fundamental as well as the main principles [13]. 
This is because it is difficult to formulate both groundwater flow equations and prove the hydrogeological 
parameters for conceptual models due to computation complexity. Additionally, there are uncertainties 
and difficulties in obtaining long time series data for groundwater levels using numerical modelling 
processes [12, 31, 50]. Thus, making long time series models time-consuming, laborious, unscalable, and 
costly [35]. However, it is important to achieve an acceptable groundwater resources model performance 
efficiency. But, previous information was not often available because most government agencies in charge 
of water often collect these data just once or twice a year during the agricultural season [45].  Also, the 
majority of traditional groundwater models are process-based [34]. This means much supplementary 
spatial data on the aquifer's hydrological and geological properties is mandatory. Further challenges occur 
in groundwater level management due to the complexity of hydrogeology subsurface as well as 
spatiotemporally variable in societal pumping activities [46].  

Furthermore, as identified in most literature, there are many efforts developed previously to profer 
solutions to groundwater level management. Some of these solutions are through linear and nonlinear 
programming of simulation and optimisation techniques which are driven solely by a data acquisition [21, 
23, 26, 27, 35-37, 51-54].  Data-driven classification models such as Genetic Programming (GP), Artificial 
Neutral Networks (ANNs), Fuzzy Logic, as well as Support Vector Machines (SVMs), and time-series 
techniques such as Autoregressive Integrated Moving Average (ARIMA) and Autoregressive Moving 
Average (ARMA) are proven alternatives to conceptual models [7, 28, 31, 32]. However, they are not 
scalable enough when there is a change in dynamic groundwater level with time as well as when available 
data is insufficient to give accurate results [34]. Furthermore, Husna et al and Kenda et al observed that the 
majority of groundwater level resource management models have failed to capture computation efficiency 
and scalability [33, 34]. Despite the huge improvements in the existing groundwater resource management 
models, researchers pointed out lack of efficiency and scalability as a result of considerable uncertainty, 
over-dependent on unavailable additional datasheets and potential substantial errors [55-59]. 

Over the years, the concept of the Internet of Things (IoT) has been embraced in areas including smart 
water, smart healthcare, smart agriculture, smart climate, and so on [60, 61]. This concept of the IoT refers 
to a phenomenon in which there is a connection of many smart things such, sensors, mobile phones, utility 
and industrial components through networks and possess data analytics capabilities. Thus, smart sensors 
and pressure transducers have found their usage in groundwater level management using the traditional 
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IoT architecture for data acquisition and processing. In a traditional IoT architecture, the IoT data generated 
by the smart devices are transmitted into the remote cloud through the internet [62]. As a result of huge 
data transferring from IoT devices into the cloud, the traditional IoT internet architecture has become 
inefficient for analysing and processing the collected data [61]. This is because this computation process 
exerts pressure on the cloud computing linked network, hereby, causing untold stress. Furthermore as 
identified in most literature, the cloud is not efficient and scalable entirely to sustain IoT big data in real-
time due to its communication latency and network bandwidth  [60-64].  

Furthermore, the use of IoT in the management of groundwater levels as well as in the development of 
groundwater data-driven models has been instrumental in detecting areas of groundwater resources 
quantity reduction. However, the sensing instruments deployed into the observation wells have too low 
resolution and too indirect to be of use for local regional assessments in geodetic methods [55, 58, 59, 65]. 
Consequently, improvements in IoT technology in combination with improved geophysical modelling and 
data-assimilation are needed to meet computation efficient and scalable IoT architecture needs for 
groundwater resources management models. 

While previous surveys have solely focussed on particular groundwater issues related to mathematical 
modelling and simulation models, this current review seeks to provide an IoT based inclusion perspective 
as it relates to groundwater resources management. Therefore, this paper aims to present a review of 
groundwater existing models, their limitations and the current challenges as well as  IoT (remote sensing 
and geographic information system) inclusion. 

The arrangement of this paper is as follows; section 2 discusses the overview and organisation of 
groundwater level management models. The groundwater management and IoT are presented in section 
3, while section 4  contains the conclusion and thereafter references and acknowledgement. 

2. Overview and Organisation of Groundwater Level Management Models  

This section aims to provide an overview and organisation of the groundwater level management model 
hierarchy. 

2.1. Overview of Groundwater Management Models 

A groundwater management model is a powerful mathematical aquifer management tool that utilises 
optimisation and simulation methods such as linear and quadratic programming with a combination of 
groundwater governing flow and transport equations to solve groundwater management problems [66-
74]. Therefore, a traditional simulation model is utilized to answer “what if” related questions while an 
optimisation model provides a solution to “what is the best” under given limiting boundaries [11]. Over 
the years, groundwater hydrogeologists have attempted to evaluate groundwater resources using 
numerical simulation models. The application of numerical simulation models by the researchers in the 
field of groundwater hydrology has assisted them to increase their understanding of regional aquifers 
functions about a particular facet of groundwater systems as well as testing of the hypotheses [11, 15, 21, 
23, 40, 41, 55, 75, 76], Therefore, modelling of real and complex groundwater systems have been made 
possible via the use of finite difference and finite element simulation models. Furthermore, this has enabled 
the idea for evaluation and conception framework towards effective management of groundwater 
resources, including impacts of chemical contaminants, surface water interaction, and its withdrawal. In a 
real-world groundwater resources management scenario, the groundwater management problems are 
multi-dimensional and hence single objective simulation management methods are not adequate. 

Although simulation as a tool is often utilised by groundwater managers, nonetheless, it fails to capture 
critical functional and physical restrictions while also sideling the management goals. Therefore, the use of 
the simulation method only will not be able to provide the optimal management objective because 
determining the proper objective function of a groundwater system is very challenging, but can not be 
ignored. Consequently, a combination of simulation and optimisation management models is needed.  An 
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optimisation-based groundwater management model aims to provide a solution to a specified goal in the 
best possible manner within the various limiting boundaries. These limiting boundaries emanate from both 
the physical patterns of the groundwater system and the manager’s requirements. In addition, optimisation 
as a simple tool employs the capabilities of both nonlinear and linear formulations in order to solve a given 
complex mathematical problem. Therefore,  simulation-optimisation groundwater management models in 
optimisation formulation merge aquifer simulation models in exchange for constraints. Thus, optimisation 
and simulation groundwater models have been developed for various utilisation like management of 
groundwater resource policies, restoration of surface and groundwater resources, control of aquifer flows 
and aquifer simulation simultaneously [11, 77-81]. 

2.2. The organisation of groundwater management models 

 The groundwater management models can be classified into two main groups. These are the physical 
classification models and data-driven classification models [45], Furthermore, studies have shown that the 
combination of optimisation and simulation management techniques which are data-driven models that 
could be organised into two groups; groundwater hydraulic management models and groundwater policy 
evaluation and allocation models [11, 12, 75, 78, 82]. Figure 1 shows the organisation of groundwater 
management models into groups. 

 

Figure 1. The organisation of groundwater level resource management models adapted from [75] 

The physical classification models are based on the use of physical parameters of the groundwater bed 
to determine any changes in the water level. However, these models are difficult to execute, expensive, and 
need to be partitioned to obtain numerical information [43]. Furthermore, although groundwater 
management models are essential tools to examine the negative effects of human activities on the dynamic 
nature of groundwater resources, be as it may, the physical and the hydrogeological surroundings require 
reliable data [83, 84]. The aquifer of the physical groundwater management models aquifer’s surrounding 
includes the topography, soil, climate, land use, agricultural practise, demand for groundwater usage, 
drainage and canals ditches. Whereas, the hydrogeological surrounding refer to the groundwater 
dynamism, the hydraulic parameters for each of the aquifer layers, aquifer system parameters, as well as 
aquifer boundary conditions. This hydrogeological surrounding varies in time and space [30, 85]. Above 
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all, to achieve accurate modelling results from a physical model, it is essential to have a calibration of the 
model using accurate data. To achieve an efficient computation is open research that must be explored. 

Data-driven models' groups are differentiated on the objective function where the decision is based 
solely on groundwater hydraulics functions and the other whose management decision is based on 
evaluation of policy as well as an allocation of groundwater economy. Thus, the former is aimed at the 
management of groundwater stresses like rechargings as well as dischargings, well costs, and aquifer 
hydraulics. These groundwater hydraulic management models groups treat both the hydraulic heads and 
stresses as direct management objective function decision variables. On the other hand, the groundwater 
policy evaluation and allocation models group are aimed to solve groundwater management problems by 
examining the complex relationship between groundwater as well as surface water and their economic 
interactions. These evaluations form the base of regional groundwater policy [65, 77, 78]. The data-driven 
groundwater model in its primitive structure possess four basic components: it is nonlinear concerning its 
decision variables; requires the solution of nonlinear partial differential equations to describe the transport 
as well as the flow of groundwater; it is stochastic as its primary uncertain source is associated with the 
aquifer simulation mode, and; it is a mixed-integer programming decision because it contains discrete and 
continuous objective functions [54, 86]. Therefore, generally, these models are identified by their multiple 
objectives optimisation characteristics and possess robust economic management units. 

In all these groups of optimisation and simulation groundwater management models, a set of different 
differential mathematical equations are used to describe the groundwater flow. Thus, a mathematical 
model is formed as a result of the combination of these different differential equations with their 
boundaries as well as initial conditions. The basis of groundwater modelling is governed by the 
combination of Darcy’s law and conservation of mass law through an anisotropic nonhomogeneous porous 
medium [87-89]. The combine flow equation is represented by equation (1); 

 

                          T + T + W =  S                                                                               (1) 

where ℎ is the hydraulic potential (L), 𝑥, 𝑎𝑛𝑑 𝑦 are cartesian coordinates (L), 𝑇  𝑎𝑛𝑑 𝑇  are the 
components of the transmissivity tensor (L2T-1), W is a general source/sink term (LT-1), while S is the storage 
coefficient, and t is time (T). The efficient measurement of groundwater level (head) is important to improve 
the model usage. Hence, various non-linear time-series mathematical models have been proposed to 
measure groundwater levels in one as well as two-dimensional flow. However, many physical 
management model parameters should be treated in three dimensions. Consequently, the three-
dimensional management application method is an open research management method for groundwater 
resources management discussion.  

2.3. Data-Driven Classification Models 

The latest data-driven classification models such as Artificial Neural Network (ANN) technique, 
Genetic programming (GP), Adaptive Neuro-Fuzzy Inference System (ANFIS), and support vector 
machine (SVM) as well as time series methods such as Autoregressive Integrated Moving Average 
(ARIMA), Multiobjective Function Approach, and Autoregressive Moving Average (ARMA) are proven 
alternatives to physical models. They are treated as nonlinear standard estimators that can overcome 
difficulties associated with physical models and are less costly. However, they are less accurate with 
insufficient data availability and when the focus of research is not based on a physical mechanism [32]. 
Furthermore, there are numerical groundwater models developed from a conceptual model. However, 
these models often neglect the complexities while focusing only on the main fundamental principles of the 
groundwater systems  [13]. Meanwhile, finding long time-series data for a numerical model is exceedingly 
difficult and challenging during the modelling processes.  
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2.4. Data-Driven Mathematical Models for Groundwater Resources Management 

The groundwater level resources prediction model is described as a regression problem  [34, 90, 91]. 
This means the goal is to forecast, predict and manage any changes in the groundwater level resources on 
any particular day according to the available data. Thus, data-driven mathematical models use previous 
data based on the underlying process behind particular phenomena to learn the best forecast result. Thus, 
the goal of this section is to provide insight into the mathematically formulated for managements of 
groundwater level resource 

2.4.1. Sequential Gradient Restoration Algorithm (SGRA) Model 

The Sequential Gradient Restoration Algorithm (SGRA) is a dual-phase path to solve non-linear 
programming (NLP) problems. Beginning from a feasible design point of view, the gradient phase 
decreases the value of the objective function while at the same time fulfilling the obligation of the linearized 
active constraints. This will lead to constraints violation of the nonlinear active constraints. Consequently, 
the restoration phase catalyses the design to feasibility which may produce a new as well as a distinct set 
of constraints. This process of two phases cycle is repeated until the optimum is achieved [92]. This 
technique incorporates a decent property with each cycle. The SGRA uses an active constraint strategy just 
like other algorithms. This method has been favourably compared to the generalized reduced gradient 
(GRG) and the gradient projection method. However, in comparison, the SGRA combines the two phases 
[92, 93]. 

The SGRA assumes the inequality constraints of the form by equation (2); 

 𝑔 (𝑋) ≥ 0;   𝑗 = 1,2, . . . , 𝑚                                                       (2) 

The general problem is defined as 

             Minimize  𝑓(𝑋),   [𝑋]                                                                                                        (3) 

Subject to: 

[ℎ(𝑋)] = 0                                                         (4) 

[𝑔(𝑋)] ≤ 0                                                          (5) 

 𝑋 ≤  𝑋 ≤  𝑋                                                       (6) 

Only active inequality constraints are of interest in the SGRA. Although equality constraints are always 
active. Active inequality constraints also include violated constraints. If ‘v’ indicates the set of active 
constraints, equation (4) and equation (5) can be combined into a vector of active constraints (Φ); 

Φ(𝑋)  =   
ℎ(𝑋)

𝑔(𝑋) ≥ 0
                                                      (7) 

The number of active inequality is v-l. The Lagrangian for the problem can be expressed in terms of the 
active constraints alone (since the multipliers for the 𝑔 (𝑋)  <  0 will be set to zero as part of KT conditions]. 
The KT conditions are then expressed by equations 8a to 8c.  

∇  𝐹(𝑋, 𝜆 ) =  ∇ 𝑓(𝑋) + [∇ Φ]𝜆                                                      (8a) 

 Φ(𝑋) = 0                                                       (8b) 

𝜆 ≥  0                                                           (8c) 

where [∇ Φ] = [∇ Φ   ∇ Φ . . . ∇ Φ ];    𝜆 =  [𝜆    𝜆  . . .   𝜆 ]  

Gradient phase: Given a feasible design 𝑋 , the neighbouring gradient point can be expressed as 

𝑋 = 𝑋 + ∆𝑋                                                       (9) 
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where δf < 0 and δΦ = 0. By imposing a quadratic constraint on the displacement ΔΚ in equation (9), the 
problem can be set up as an optimization subproblem whose ΚΤ conditions are determined as given in 
eqaution (10) 

∆𝑋 = −𝑎∇𝐹 (𝑋 , 𝜆 )  = 𝑎𝑆                                                      (10) 

In this model, the search direction is directly proportioning to the gradient of the Lagrangian, which is 
an improved and model feature. To solve the Lagrangian, the Lagrange multipliers must be computed. 
This is solved by solving a system of ʋ linear equations given in equation (11); 

 [∇ Φ(𝑋𝔦)] ∇ 𝑓(𝑋 ) + [∇ Φ(𝑋𝔦)] [∇ Φ(𝑋 )]𝜆 = 0                                              (11) 

Stepsize for gradient phase: The stepsize calculation is based on driving the optimality conditions in 
(8a) to zero. Therefore, if the  

𝑋 = 𝑋 − 𝛼∇𝐹 (𝑋 , 𝜆 )∇  𝐹(𝑋, 𝜆 ) =  ∇ 𝑓(𝑋) + [∇ Φ]𝜆                              (12) 

thus, the optimum  α^* is solved by cubic interpolation while trying to satisfy the condition in (13) 

∇ 𝐹 𝑋 , 𝜆 ∇ 𝐹(𝑋 , 𝜆 ) = 0                                                     (13) 

However, an adequate step must be taken that this stepsize does not cause significant constraint 
violation. This is can be ensured by capping the squared error in the constraints by a suitable upper bound 
which is set up as 

Φ 𝑋 Φ𝑋 ≤ 𝑃                                                       (14) 

Furthermore, the Pmax is related to another performance index Q, which is the error in the optimality 
conditions [82]. Thus, 

𝑄 = ∇𝐹 𝑋 , 𝜆 ∇𝐹 (𝑋 , 𝜆 )                                                     (15) 

Restoration Phase: After the end of the gradient phase, it is assumed the function will have decreased 
but there would be some infeasible constraints (supposing at the initial stage of the gradient phase,  there 
were at least more than one nonlinear active constraint). In the restoration phase, a feasible solution within 
the neighbour would be established. This is achieved by making sure that the linearized constraints are 
feasible. However, before this, the active constraint set has to be updated (v ̅) since the initial feasible 
constraints could have become infeasible (and previously infeasible constraints could have become 
feasible) as a result of the change in design caused by the gradient phase. Thus, the design vector and the 
changes in design for this restoration phase can be written as 

𝑋 = 𝑋 + ∆𝑋                                                       (16) 

The change in design for this restoration phase ∆X ̃_r can be obtained as a least square error in the design 
changes subject to the satisfaction of the linear constraints. Thus,  equation (17) is used to calculate this 
change in the design using NLP  

∆𝑋 = −∇ Φ(𝑋 )𝜎                                                      (17) 

where σ^(-v) is the V ̅ vector Lagrange multiplier of the quadrantic subproblem. Furthermore, the values 
for the multipliers are established through the linear equation in equation (18) 

𝜇Φ 𝑋 −  ∇ Φ 𝑋 ∇ Φ(𝑋 )𝜎 = 0                                                   (18) 

where factor µ is a user-controlled parameter to discourage large design changes. The Restoration phase 
is iteratively applied until equation (19) is feasible 

Φ 𝑋 Φ(𝑋 ) ≤ 𝜀                                                        (19) 

where ε_1 represent a small number. 
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After the restoration phase, the constraints are feasible and the next cycle of the Gradient-Restoration 
phase can be applied again. 

2.4.2. Linear Regression 

Linear Regression (LR) is one of the oldest and most widely used groundwater management models. 
Therefore, LR can be defined by equation (20)  [94, 95].  

𝑦 = 𝑋𝛽 +  𝜀,                                                       (20) 

Where y is the vector of the groundwater level changes values from the observation well, X is the 
aquifer’s independent parameters such as the historic weather data, in a two rows matrix, 𝛽 is the 
parameter of forecasting vector that is under the investigation, while 𝜀 is the errors’ vector. In LR, the goal 
of applying this model technique is to minimise the validation set errors as well as to learn the vector 
parameter 𝛽. Many parameter estimation model techniques are available, however, the least-squares 
estimation techniques are most popular [34]. 

2.4.3. Regression Tree and Gradient Boosting 

Decision making is an important aspect of the linear regression groundwater management model  [96-
98]. Therefore, decision trees based algorithm known as Regression Trees (RTs) was developed. RTs operate 
by diving each groundwater resource value into smaller subspaces that are represented by a tree leaf. Thus, 
the learning samples are obtainable by averaging all the samples as well as by introducing another LR 
model at the node. The accuracy of this model is a function of introduction ensembles of regression. In 
environmental data-driven modelling applications, the RTs algorithm is very important as it is easy, fast, 
and successfully deployed. Gradient Boosting (GB) is the most used method in various fields. This is 
because the GB  make practical and effective use of ensemble weaker trees from the learning set to provide 
final predictable results, nonetheless, it stacks them additively [99, 100]. Thus, the loss function differentials 
are approximated in each succeeding stage. Equation (21) is an example of a loss function 

𝐿(𝑦, 𝐹 (𝑥)) = (𝑦 − 𝐹 (𝑥) )                                                   (21) 

From (21), the true value is represented by y. 𝐹 (𝑥) is the model’s prediction after the m-th stage. As 
stated earlier, The RTs model prediction 𝐹 (𝑥) combines all the weaker tree’s results.  

2.4.4.  Artificial Neural Network (ANN) Model 

An artificial neural network (ANN) is a black box tool with a resemblance of a human brain's biological 
neural networks in certain performance characteristics which consist of an enormous equidistant 
distribution processing system [8, 101, 102]. However, Feed-forward neural networks (FFNN) model are 
the most commonly used and employed in modelling [12, 103, 104]. A normal ANN model is made up of 
a three-layer FFNN model of an input layer, hidden layer, and output layer as well as artificial neurons 
with each layer interwoven with those in the next layer known as Multilayer Perception Network (MLPN). 
As such, the output of a node layer determined the weight, as well as the type of transform of the sole 
function of the input it received from the former layer. Therefore, previous research trained the ANN with 
the Bayesian regularization algorithm and tan-sigmoid transfer function [12, 28, 32, 34]. This is 
mathematically expressed by equation (22). 

                              𝑦 = 𝑓 ∑ 𝑤 𝑥 + 𝑏                                                        (22) 

where the input vector is 𝑥 , the output is 𝑦 , the bias is 𝑏 , the weight connecting 𝑥  and 𝑥  is 𝑥  the number 
of nodes is represented by N, while the activation function is f within the presentation layer. The application 
of ANN by many researchers has proved to be a success. The ANN time series data trained model was 
used successfully to predict the principal factors affecting algal blooms in a man-made Lake Juam reservoir  
[105]. Furthermore, ANN models have been applied in various scenarios such as estimation of regional 
index flood, in an ungauged catchment of the Chindwin River in Myanmar, to evaluate an extreme daily 
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precipitation’s potential in Athens, Greece, for river flow rate and sediment load from Rantau Panjang 
Station on Johor River [106, 107]. The results showed that ANN models are superior to the conventional 
regression method. 

 
2.4.5. Adaptive Neuro-Fuzzy Inference System (ANFIS) Model 

An adaptive neuro-fuzzy inference system (ANFIS) model can be described as an adaptive neural 
hybrid algorithm that is based on a fuzzy inference system. This model was first inaugurated in 1993 by 
Jang et al  [108, 109]. Furthermore, ANFIS has been found to be capable of approximating any continuous 
and real function in a compact set to an acceptable degree of accuracy universally (Hipni et al., 2013, Awan 
and Bae, 2014). In the ANFIS model, it is assumed that the fuzzy inference system has two inputs x and y 
as well as one output f. Thus, it can be expressed by the set of rules in equation (23) and equation (24). 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴  𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 ; 𝑡ℎ𝑒𝑛 𝑓 =  𝑝 𝑥 + 𝑞 𝑦 +  𝑟                                     (23)     
𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴  𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 ; 𝑡ℎ𝑒𝑛 𝑓 =  𝑝 𝑥 +  𝑞 𝑦 + 𝑟                                     (24) 

where x and y are the crisp inputs to the node 𝑖, the low, medium or high characterized linguistic labels 
by the convenient membership functions are represented by 𝐴  and 𝐵 . Parameters of the first-order fuzzy 
model are represented by 𝑝 , 𝑞 , and 𝑟  (𝑖 = 1,2). The ANFIS models have a higher capability for modelling 
non-linear dynamic hydrology and diverse water resources among all the models, for effective water 
management. In terms of efficiency and accuracy, the ANFIS was utilised with machine learning for 
estimation of pan evaporation daily as well as long-term dam inflow water [110-112]. The result showed 
that the ANFIS model performed better than any traditional empirical techniques. The ANFIS model has 
been used for rainfall-runoff modelling, groundwater modelling as well as evaporation modelling [12, 113-
115]. 

2.4.6. Support Vector Machine (SVM) Model 

The support vector machine (SVM) is a machine learning approach characterized by the statistical 
learning principle [116, 117]. Therefore, its solution is obtainable via an optimization algorithm using a 
regression hyperplane. Although, in a regression SVM model, an insensitivity loss function, as well as a 
regression hyperplane, is a convex dual optimization problem. In addition, the Sequential Minimal 
Optimisation (SMO) algorithm is often used to provide a solution to problems involving dual optimisation 
of the SVM. Mathematically, the SVM deterministic function is expressed as shown in equation (25). 

𝑓(𝑥) = 𝑤 ∙ 𝜙(𝑥)  + 𝑏                                                                   (25) 

where 𝑤  is a weight vector, while b is a bias, the high-dimensional feature space x is mapped by a non-
linear transfer function 𝜙. This SVM model has been deployed by many researchers in the field of 
engineering to solve hydrogeology and hydrology drawbacks. The results showed that the SVM model 
performed better than the ANN model. Limited climatic data were used to evaluate daily 
evapotranspiration using the SVM model in an extremely arid region  [118]. Of the four models used, the 
SVM model proved to be the best. Also, the SVM model assembled with quantum behaved particles warm 
optimisation SVM-QPSO model was used to forecast streamflow every month  [119]. The result showed 
that the SVM model ensures a high prediction degree of streamflow reliability and accuracy. In addition, 
several researchers applied the SVM model to predict, estimate, and evaluate the streamflow as well as, 
water level of Lake Van in Turkey  [50, 120-122]. The results showed that the SVM model  outperformed 
the regression and ANN models. 

2.4.7. Empirical Mode Decomposition (EMD) 

Empirical mode decomposition (EMD) is a data-adaptive full algorithm technique used for analysing 
signals that are non-linear as well as non-stationary [123]. Thus, for EMD to perform its basic function of 
decomposing an original signal to a various number of intrinsic mode functions (IMFs), two conditions 
must be met: (a) number of extrema and zero crossings must be equal or differ at most by one, and ; (b) 
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functions are symmetric and the mean value of the upper, as well as lower envelopes, should be zero. 
However, mode mixing has been identified as the major shortcoming of EMD implementation [124]. 
Mathematically, the EMD can be obtained using equation (26). 

𝑥[𝑥] = ∑ 𝐼𝑀𝐹 [𝑛] + 𝑅[𝑛],                                                           (26) 

where the corresponding residue to the signal approximation at the lowest resolution is represented by 
𝑅[𝑛] = 𝑚 [𝑛] 𝑎𝑛𝑑  𝐼𝑀𝐹 [𝑛] is the k-th IMF. It is however widely claimed that the EMD, as well as the 
Ensemble EMD (EEMD), are computationally intensive to run. Over the past years, both the EMD and 
EEMD have demonstrated higher effectiveness in comparison to the Fourier techniques. Thus, it has been 
extensively deployed in various disciplines such as image analysis, the health sector for diagnosis, 
biomedicine and big data logging. 

Table 1 shows a summary of the latest data-driven groundwater resources management methods of 
modelling. 

Table 1: Summary of data-driven groundwater resource management modelling methods 

Authors Methods Objectives Shortcoming 
Valipour et al [44, 125] Improved Random Forest 

Regression With A 
Combination Of Random 

Features 
 

These authors 
provide the 

application of 
simulation modelling 

methods in 
groundwater 

resource 
management. 

The effectiveness of 
these methods and 
solutions could not 
be established by 

these authors with a 
field experiment. 

This is due to costs 
and time constraints, 

increase in 
computational 

complexity as well 
as needs partitioning 

Xuanhui et al[37, 45] Canonical correlation forest 
algorithm with a 

combination of the random 
features simulation model 
and neuro-particle swarm 
optimisation and neuro-

differential evolution 
methods 

These authors 
proposed this method 
to solve the problem 
of data scarcity on a 

site and low-
dimensional data  

The accuracy of this 
method is 

instantaneous. 
Hence, this makes it 

unsuitable for 
groundwater level 
resource prediction 
over a long period. 

Emamgholizadeh et al 
[28, 31-33, 42]  

Artificial Neural Network 
(ANN) based 

The objective of this 
method was to 

provide accurate 
predictions without 
an increase in costly 
computational time. 

ANN models are 
prone to incur the 
problems of local 

minima and 
overfitting. 

Yoon et al [35, 42, 45, 50, 
126, 127]  

Super Vector Machine 
Method (SVM) 

The objective of this 
method is to 
overcome the 
variation in 

groundwater level 
prediction 

Although SVM is 
robust for 

groundwater 
resource prediction 
as highlighted by 
these authors, it is 
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sensitive to 
redundant and 

outlier data. Also, it 
is not scalable 

enough and requires 
more time because 
of trials and errors. 
SVM also has high 

parametrization 
complexity. 

Mustafa et al [11, 38, 39, 
42, 46, 128] 

Groundwater flow model 
and multiobjective method 

The objective of this 
model was to 

evaluate the effects of 
human activities on 

groundwater 
dynamics 

This model is 
negatively 

hampered due to a 
lack of data in arid 

and semi-arid 
regions. 

Furthermore, this 
model requires a 
good quality of 

evidence-based data 
for it to be reliable 

 Kisi et al [29, 37, 38, 42, 
44, 115] 

Adaptive Neuro-Fuzzy 
Inference System (ANFIS) 

The objective of this 
model is to overcome 
challenges with both 

ANN and SVM 
models  

Although ANFIS has 
performance 

acceptability in 
modelling many 

environmental and 
hydrological 

phenomena, it has 
many weaknesses 
such as probable 

entrapment at local 
minima and slow 

convergence makes 
it ineffective in 

modelling. 
 

With the advancement in data mining for modelling, optimisation, and simulation techniques for 
groundwater resources management, the use of finite difference and finite element have increased 
exponentially. Although the use of the Finite Element Modelling Technique (FEMT) was first instigated by 
Lee and Cheng in 1974, for seawater encroachment in a coastal aquifer  [129]. Likewise, Tyson and Weber, 
in 1963 advocated the use of electronic computers in the simulation of the dynamic behaviour of 
groundwater basins using the Finite-Difference Model Technique (FDMT) [130]. Consequently, both the 
FEMT and FDMT have been used extensively for the Groundwater Flow Model (GWFM), Hydro-Economic 
Model (HEM), Calibration (C), Sensitivity Analysis, (SA), Water Balance Model (WBM), as well as 
Validation/Verification (V) [80]. However, the efficacy of these modelling solutions depends largely on 
their adequate verification. Table 2 is a summary of some of the relevant researchers that have applied 
these two modelling techniques in groundwater resources management [80].  
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Table 2 Summary of relevant application of FEMT and FDMT and their purposes  

Study Application Modelling 
Technique 

Scheme 

[131-134]  GWFM 
 SWAP 
 WOFOST 
 SEBAL 
 SLURP 
 SWAP-

SWATRE 
 SIMGRO 

 

 FEMT  Calibration 

 Validation/Verification 

 Simulation 

[135], [136]  MODFLOW 
 GFLOW 
 MODPATH 

 FDMT  Calibration 
 Simulation 

[137-141]  HYDRUS-1D 
 SWMS-2D 
 PLASM 
 MODFLOW 
 AQUIFEMM-1 
 ISOQUAD 
 SVAT 
 SIMGRO 

 FEMT 
 FDMT 

 Calibration 
 Validation/Verification 
 Simulation 

[142]  SGMP  FDMT  Calibration 
 Simulation 
 Sensitivity Analysis 

[138, 139, 143-
153] 

 MODFLOW 
 SVAT 
 SIMGRO 
 SEAWAT 
 UCODE 
 ISOQUAD 
 MT-3D 
 UPFLOW 
 HEM 
 WBM 
 MMA 
 GLUE 

 FDMT  Calibration 

 Simulation 

 Validation/Verification 

 

3. Groundwater Management and IoT 

This section aims to highlight the relationship and importance of the Internet of Things which comprises 
Remote Sensing (RS), and Geographic Information Systems (GIS), as it relates to the measurement, 
monitoring, management, forecasting, and modelling of groundwater resources. 
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3.1. Introduction 

Effective groundwater resource management, as well as modelling, is a function of the availability of 
good quality data pertaining to the information of the observation well. This is because the groundwater 
resource measurements are the most basis supporting existence for evaluating the information of the 
quantity of groundwater resources stored within the aquifer [10]. The information about the aquifer’s 
properties may include, and not limited to changes in groundwater level, storage, flow rate, recharge as 
well as discharge rates. But these data are not collected automatically. Furthermore, Calderwood et al stated 
that the negative impact of overexploitation, as well as reduction in recharge of groundwater resources, are 
often unknown, even after years have passed, due to data limitations  [20]. In addition, groundwater 
resources information is strenuous to collect and use due to lack of proper integration between the 
equipment deployed, irrelevant and inconsistent data as a result of lack of stationary large-scale flow rate 
hindrances, un-automated groundwater analysis process, and lack of interoperability in the previous 
systems [154-159]. Consequently, these limitations are causing untold strains in groundwater resources 
management. Additionally, most groundwater resources management models can not provide any reliable 
decision or support without the required data input. Hence, there is a need for a contemporary, scalable, 
and real-time IoT-based management system solution for groundwater resources management. 

There are various groundwater level monitoring systems. These systems vary in technology, monitoring 
and management tasks, scalability, the solution they render, and the cost implications. Historically, the 
traditional technique of measuring groundwater levels involves the use of a manual tape rule. Furthermore, 
there are emerging threats that the majority of groundwater level measuring networks are been regularly 
abandoned due to a decline in global groundwater monitoring [160].  Consequently, groundwater level 
resources are inadequately monitored often, despite the fact that they are needed for calibration and 
validation of groundwater resources models [161, 162]. These aforementioned challenges can be solved 
through the use of the Internet of Things (IoTs) techniques [154].  

3.2. IoT and Groundwater Level Measurement Techniques 

In recent years, the internet has changed the way human lives. Therefore, the Internet of Things (IoT) 
as a facet of the internet has become the ultimate layer on which several things such as smart gadgets are 
interconnected. This concept of the IoT has been embraced in many areas of human endeavours including 
smart water and groundwater level management. Thus, IoTs techniques are used to collect, transfer, and 
analysis the required groundwater level data.  The major advantage of IoT deployment is its ability to be 
able to combine with several technologies such as wireless sensors, cloud computing, ubiquitous 
computing, RFIP, and software [163]. Thus, the groundwater level data management in an IoT environment 
involves the combination of smart technologies such as sensors to collect data, over a network area, with a 
combination of software IDE  into the cloud server.  

Remote sensing (RS) is an example of a classical way of obtaining the much needed hydrological data 
for groundwater level measurements using the internet  [164]. However, this can only provide point data. 
Thus, the challenge remains on how to navigate from point data alone to regionally distributed data. 
Although the RS can be used to obtain certain groundwater resources parameters, these parameters are not 
often useful for groundwater management modelling. Consequently, another model will be required to 
manipulate the acquired data into usable or verifiable data as an input in spatially distributed models [165]. 
Furthermore, the data acquired via the RS are prone to noise. The substantial and most relevant data for 
groundwater resource management modelling are the recharge and discharge information. Of these two, 
recharge is very crucial for the sustainability of groundwater level management. Application of RS for 
groundwater level modelling was carried out by Dams et al, for mapping out impervious surface changes 
for hydrological modelling [166]. More researchers also applied the RS technique for the management of 
groundwater resources  [164, 167-169]. To solve these challenges, the IoTs and machine learning techniques 
can be employed. Apart from RS, groundwater level managements are using situ networks in many aquifer 
systems around the world. But the difference in each monitoring well depends on the technology used as 
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well as the frequency of the measuring data [170-172]. The situ technique assists in the management of 
groundwater level by estimating the changes in (groundwater) storage, provide the user’s information, 
flow model calibration, and general up to date system information [172-174]. 

The IoTs and machine learning techniques involve the acquisition, processing, transfer and analysis of 
groundwater level data interconnected using intelligent nodes. This combined with the evolution of web 
techniques has been used in many works of literature. The application of IoTs for monitoring the 
groundwater level daily variations and safety quality in the mining environment was carried out by Reddy 
et al, using sensor technologies [175]. Also, Neyens et al monitored groundwater quality and quantity from 
a desktop using the IoTs-enabled Environmental data Management Interface (EMI) technique [176]. This 
same technique was also applied to saltwater intrusion monitoring. A low cost IoT-based real-time 
groundwater level resource management system was built for monitoring a community-based network 
consisting of eleven wells sited in Nova Scotia, Canada [177]. Also, an automated low-cost sensor network 
for monitoring groundwater levels was designed at the South American Subbasin Groundwater 
Observatory (GWO), in a real-time scenario [20]. Botta et al presented the IoTs based sensor network review 
for both quality and quantity measurement of water in a smart city [178]. It should be noted that with big 
groundwater level data collected from many deployed sensors, there is a new challenge of how to process, 
store and deal with them. This is an open research bottleneck that needs to be unravelled. 

Starting from the evolution of the web technique in the year 1993, several database managers have 
started to develop web-based Geographic Information Systems (WebGIS) to store the collected real-time 
and fast data streams [179, 180]. The GIS as an example of Database Management Systems (DBMS) is 
embedded with the topography, geology, geometry, as well as coordinates data to assist in storage, 
explanation, location, and manipulation of input as well as the corresponding output data information 
[181]. Therefore, the WebGIS technique performs better in terms of user’ quality of service (QoS), can be 
used by multiple users, cost reduction, global reach, as well as cross-platform compatibility [182].  

There has been exponential growth in the development of groundwater level measurement IoT based 
management techniques with a combination of relevant WebGIS. The GIS software known as ARCVIEW 
and the groundwater model (MODFLOW) were combined for numerical modelling of groundwater 
resources by Chenini and Mammou [183]. This combination was used in the central region of Tunisia. 
Similarly, the Managed Aquifer Recharge (MAR) and International Groundwater Resources Assessment 
Centre’s Global Groundwater Information Service (IGRAC’s GGIS) combination was successfully 
implemented using an enhanced historical data from approximately 1200 site studies in about  62 nations 
[184]. The results showed an increase in groundwater resource storage, good recharging levels, and 
improved water distribution management. In Table 3, a few other existing groundwater level IoT-based 
management techniques are presented. Most of the highlighted studies combined both web browser and 
GIS software, and support multiple users as well as tasks. 

Table 3 Summary of relevant existing groundwater level WebGIS technique 

Technique Numerical Model  Spatial Interpolation Limitation 

Cloud-based 
MODFLOW ArcGIS 
[185, 186] 

None Several methods This is based on the 
simulation modules 
only. This limitation 
does not permit 
extensive interpolation 
due to the lack of a 
numerical model 

Collaborative 
Geographic 

Multi hydraulic Several methods It is based on the 
computer’s Random 
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Information Systems 
(CGIS) ([154, 187] 

Access Memory (RAM) 
size. This causes delays 
or freezing up during 
processing 

Delft-FEWS [188, 189] Multi hydraulic Several methods It is based on the 
computer’s Random 
Access Memory (RAM) 
size. As a result of this 
limitation, the model 
experiences low 
computation memory 
during operation 

FREEWAT developed 
as a plugging GIS 
desktop software QGIS 
(QGIS Development 
Team 2017) [190-192] 

Multi hydraulic QGIS The interpolation speed 
is based on the 
computer’s RAM. This 
causes a delay in 
operation 

HydroShare [193, 194] It is based on the user’s 
developed numerical 
model 

Based on the user’s 
upload 

It is based on the 
developed model and 
lack space and speed. 

Tethy [195] It is based on multi 
hydraulic models 

Several methods Based on a developed 
model 

MAGNET [196] It is based on multi 
hydraulic models 

Several methods It is limited to a 10000 
mesh number. Above 
this number is not 
possible. 

 

3.2.1. Overview of Groundwater Level IoTs Based System 

Generally, the groundwater level IoTs-based system architecture can be subdivided into three layers. 
These are the physical layers, the service layer as well as the presentation layer [197]. In the physical layer, 
the communication equipment, as well as various sensor nodes for basic data acquisition of relevant 
groundwater level and aquifer information, are built-in. The raw data measured and collected are deployed 
to the service layer. At the service layer, there are various tools for data analytics. This layer also stores the 
received data from the physical layer. Both the application and business logic implementation are 
implemented at this layer, thus making it an important part of the architecture. The presentation layer is 
the visualisation layer where the users are allowed to interact as well as view the displayed information on 
a screen monitor. 

Figure 2 shows the overview working representation of the workflow of groundwater level IoTs based 
system. This shows the interconnection of the sensors deployed into the well, the nodes, gateway and the 
end-user platform. The arrows indicate the direction of the flow of data. The solid line represents the 
direction of the data received, while the broken lines represent the request sent for data. In this system, the 
IoTs is combined with the GIS to ensure the real-time uploading of groundwater level data, improve the 
quality of the database, and provide geographical information about the system. The sensors deployed into 
the observation wells acquire and send the corresponding measurement of groundwater level parameter 
to their nodes over the Modbus protocol employed. From the nodes, the data is sent via the Long Range 
(LoRa) wireless network to the gateway. The data is saved into the Message Queuing Telemetry Transport 
server (MQTT) platform, which is connected to the No relational Structured Query Language (NoSQL) 
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database or any other Graphics Processing Unit (GPU) platform for real-time display. Examples of these 
web-based clients GPU are ArcGIS, API, Google Map API, ThingSpeak and WebGL [187, 198-201].  

 

 
Figure 2. Overview of Groundwater level resource IoTs based system. 

4. Conclusion and Future Directions 

This review presented and discussed the existing trend in groundwater resources management. In the 
past, most of the existing groundwater resource management models have been combined with 
optimisation and simulation techniques using appropriate mathematical programming to proffer solution 
to challenges within the aquifer. Consequently, the previous surveys have presented a narrow review 
involving simulation and optimisation management models, however, this review presented a much 
broader IoTs-enabled management perspective. This is because, for any of the management modelling of 
groundwater resources to be achieved, the measurement of resource data is important. However, part of 
the general limitations is the uncertainties from input parameters to the system modelling.  Furthermore, 
despite huge research attention towards solving such problems, little research evidence exists concerning 
achieving computationally efficient and scalable models for groundwater resources management in real-
time operations. Although there are various modelling tools as presented in this review, their field 
applications must be ascertained.  

Furthermore, there has been an unprecedented increase in the amount of data generated by electrical 
sensors in the Internet of Things (IoT) over the years. The application of groundwater resource IoT-based 
technique is a very useful tool in data acquisition, monitoring, manipulation and management of 
groundwater resources. This technique combined with GIS has a huge potential in the field of water 
management.   However, IoT data are mostly processed via a computing resource situated in a farther data 
centre location using either internet or cloud computing. Consequently, this has led to insecurity in users’ 
privacy, low latency, and scalability problem. Since the IoT big data are transmitted into the cloud in high 
volumes, it is necessary to have an efficient and scalable IoT platform to extract valuable information in 
real-time for groundwater resource management.  

For future research directions, the challenges of high computational inefficiency and scalability must be 
addressed. This will enable the groundwater level resource management model to achieve computationally 
efficiency and scalability. Also, the current  IoT-enabled automated data processing systems for 
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transmitting the generated data from IoT sensors into the centralised cloud are not scalable and efficient. 
Therefore, there is a need to develop an alternative model for the IoT-enabled groundwater level resources 
management model. These are open research direction that should be explored.Although this is a review 
of existing management models for groundwater resources, this is not all-inclusive. Thus, there is a 
possibility of missing out on some other publications because it is impractical to review them all. Therefore, 
these gaps could also be filled with more review publications. 
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