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Abstract: Using Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) in their1

information version, this paper extends their theoretical framework to incorporate instantaneous2

Granger Causality (iGC)’s frequency domain description into a single unified perspective. We3

show that standard vector autoregressive models allow portraying iGC’s repercussions associated4

with Granger Connectivity where interactions mediated without delay between time series can be5

easily detected.6

Keywords: instantaneous Granger causality; total partial directed coherence; information partial7

directed coherence; total directed transfer function; information directed transfer function; Granger8

connectivity; Granger influentiability.9

1. Introduction10

Recent years have seen an abundance of approaches aimed at describing the ‘con-11

nectivity’ between sets of observed time series. To this end, Granger Causality based12

ideas [1] stand out prominently and involve a wide variety of time series techniques13

comprising time [1,2] and frequency domain [3–5] descriptions.14

Granger causality descriptions are centred on determining how helpful the past15

of a time series can be in so far as predicting another time series. As such, eventual16

simultaneous relationships are not taken into account. This aspect is described via the17

so called instantaneous Granger Causality (iGC) which is deemed present whenever18

modelling residues between different time series are correlated.19

This latter aspect has received relatively far less attention and, for a long time, this20

time series residue connection meant that the idea remained restricted to time domain21

considerations. This state of affairs was changed following the work of Faes and Nollo22

[6,7] who proposed adding extra coefficients to model interactions that are not mediated23

by delay from which descriptors like Directed Transfer Function (DTF) [3] and Partial24

Directed Coherence (PDC) [4] could be generalized. More recently an alternative [8] based25

on comparing models over suppressed time series has surfaced.26

Rather than contrast the latter descriptions, here we wish to show that the formalism27

behind DTF and PDC can be naturally extended to include a reasonable frequency28

domain description of instantaneous Granger effects when their information versions29

iDTF/iPDC [9] are considered without the need for employing modified models as30

required by the other previous approaches [6–8].31

This development is interesting furthermore since it also allows a rounded closed32

form description not previously available for directed frequency domain relationships33

that can be deduced from second order statistical information alone.34

In the developments that follow we shall employ the concepts of Granger Connectiv-35

ity (G–C) and Granger Influentiability (G–I) we introduced in [10] which refer respectively36
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to PDC based and DTF based descriptions of the ties between time series. The first one37

focuses on immediate connections between time series as opposed to the second one38

which summarizes all possible signal pathways that join them. More information is39

available in [11].40

The paper is organized as follows. Sec. 2 describes the main results after a brief41

recap of essential concepts (Sec. 2.1) including how to write coherency and partial42

coherency in terms of iDTF/iPDC. This is followed by the newly proposed quantities of43

total Directed Transfer Function (tDTF) and total Partial Directed Coherence (tPDC) in Sec. 3.44

Sec. 4 contains some brief numerical examples to illustrate the new concepts followed45

by a brief discussion (Sec. 5) and the ensuing conclusions (Sec. 6).46

2. Problem Formulation47

2.1. Preliminaries48

We assume that the multivariate time series data xpnq “ rx1pnq, . . . , xNpnqsT is
adequately represented by the vector autoregressive model:

xpnq “
ÿ

r
Arxpn´ rq `wpnq, r ą 0 (1)

where wpnq “ rw1pnq, . . . , wNpnqsT stand for zero mean innovation (white) processes49

with Σw as its covariance matrix.50

Instantaneous Granger causality corresponds to a non diagonal Σw.51

Under these conditions, it is possible to describe the joint spectral matrix of xpnq as

Spνq “ HpνqΣwHHpνq, (2)

where H is the Hermitian transpose and

Hpνq “ Ā´1pνq (3)

for Āpνq defined as a matrix whose elements equal

Āijpνq “

"

1´
ř

r aijprqe´j2πνr, if i “ j
´
ř

r aijprqe´j2πνr, otherwise
(4)

with j “
?
´1.52

The elements of (2) are thus given by:

Sijpνq “ hipνqΣwhH
j pνq (5)

where hkpνq “ rHk1pνq, . . . , HkNpνqs is the k-th row of Hpνq.53

This immediately leads to the coherency between xipnq and xjpnq:54

Cijpνq “
Sijpνq

b

Siipνq Sjjpνq
“

hipνqΣwhH
j pνq

b

phipνqΣwhH
i pνqqphjpνqΣwhH

j pνqq
. (6)

In [9] we defined information Directed Transfer Function (iDTF) as:

γijpνq “
σj Hijpνq

b

hipνqΣwhH
i pνq

. (7)

Hence, it is immediate to express (6) as

Cijpνq “ γγγipνqRγγγH
j pνq, (8)
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where the R matrix collects the ρij correlation coefficients between wipnq and wjpnq and
where γγγkpνq “ rγk1pνq, . . . , γkNpνqs stands for the k-th row of what we define as the iDTF
matrix Γpνq. One might collect the quantities in (8) as elements of the Coherency matrix:

Cpνq “ ΓpνqR ΓHpνq (9)

Instantaneous Granger causality is absent if and only if R reduces to the N ˆ N55

identity matrix IN .56

In [12]1 we showed that the partial coherency between pairs of time series xipnq and
xjpnqwithin the xpnq set can be written as:

κijpνq “
āH

i pνqΣ
´1
w ājpνq

b

pāH
i pνqΣ

´1
w āipνqqpāH

j pνqΣ
´1
w ājpνqq

, (10)

where ākpνq stands for the k-th column of Āpνq.57

For convenience, let D be a diagonal matrix collecting the standard deviations σi
from wipnq so that

Σw “ DRD. (11)

This implies that
Σ´1

w “ D´1R´1D´1 (12)

where one may further write:
R´1 “ D̄ rR D̄ (13)

where D̄ is a diagonal matrix with σ̃i elements that further reduce rR to a matrix of partial58

correlations ρ̃ij which is symmetric with ones along the main diagonal.59

If we rescale information partial directed coherence [9],

πijpνq “
Āijpνq{σi

b

āH
j pνqΣ

´1
w ājpνq

, (14)

as
π̄ijpνq “ σ̃iπijpνq (15)

then we can rewrite (10) as
κijpνq “ π̄̄π̄πH

i pνq
rR π̄̄π̄π jpνq (16)

in complete analogy to (8), where π̄̄π̄πkpνq “ rπ̄1kpνq, . . . , π̄Nkpνqs
T is the k-th column of

what we name the iPDC matrix Πpνqwhich allows writing the Partial Coherency matrix
as:

Kpνq “ ΠHpνq rRΠpνq (17)

The rescaling (15) is what allows writing (8) and (16) in formally similar ways.60

To simplify notation, all future reference here to iPDC will employ the π symbol
without a top bar with the implicit understanding that it is the re-scaled version
that is being employed.

As before, it is easy to show that instantaneous Granger causality is absent if and61

only if rR reduces to IN .62

3. Total DTF and Total PDC63

Before introducing the new quantities some comments are due.64

1 http://www.lcs.poli.usp.br/~baccala/pdc/papers/parlettd1.pdf
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First of all, Eqs (9) and (17) confirm the roles of iDTF and iPDC as factors of65

coherency and partial coherency as we have repeatedly stated [4] where the standard66

plots for them are organized as graph panels with the same layout portraying the67

magnitude squared values of the entries in Γ and Π, respectively.68

The originally defined Directed Transfer Function [3] and Partial Directed Coher-69

ence [4] are simplified forms of (7) and (14) respectively by fully dispensing with70

instantaneous aspects by replacing Σw with IN . Directed Coherence [13]2 and gener-71

alized PDC (gPDC) [5] lend scale invariance to the latter quantities using IN d Σw in72

lieu of Σw in (7)/(14), so, again, there is no contamination from instantaneous effects as73

opposed to iDTF/iPDC which contain the full Σw matrix in their definitions.74

A couple of things are easy to show regarding DTF (DC)/PDC (gPDC). The first75

one is that, when N “ 2, |DTFijpνq|
2 “ |PDCijpνq|

2 (|DCijpνq|
2 “ |gPDCijpνq|

2) and76

|DTFiipνq|
2 “ |PDCjjpνq|

2 (|DCiipνq|
2 “ |gPDCjjpνq|

2) . It is easy to show that the same77

properties hold between iDTF and the rescaled version of iPDC (15).78

The second one is that fixing the target structure and adding the DTF/DC mag-79

nitude squared contributions from all sources adds to 1. A similar result holds for80

PDC/gPDC, only now one must fix the source and sum over the magnitude squared81

target structures.82

However, even though at first sight a strict normalization does not encompass iDTF
or iPDC, one may show a similar property by noticing that

Ciipνq “ 1 “ γγγipνqRγγγH
i pνq “ rγrγrγipνqγγγ

H
i pνq (18)

and that
κiipνq “ 1 “ πππH

i pνq
rRπππipνq “ πππH

i pνqrπrπrπipνq (19)

for
rγrγrγipνq “ γγγipνqR (20)

rπrπrπipνq “ rRπππipνq (21)

so that indeed it is the latter terms that lead to a normalization that reduces to that of83

DTF(DC)/PDC(gPDC) when Σw is suitably replaced.84

For future reference we define rγijpνq and rπijpνq of (20) and (21) as the xjpnq to xipnq85

latent directed instantaneous influentiability and connectivity, respectively. They represent86

would-be frequency domain repercussions due to instantaneous Granger causality when87

their respective j Ñ i iDTF or iPDC are not zero.88

Finally, one should note that even though iDTF and iPDC have interpretations of89

their own in terms of mutual information rates between processes that describe the90

multivariate xpnq process [9], the fuller impact of the presence of instantaneous Granger91

causality is, however, mostly concentrated at the correlation R and partial correlation rR92

coefficient matrices.93

We can write down all terms whose addition produce the various Ciipνq along the
rows of a single matrix:

ΓpνqRd Γ˚pνq (22)

where d is Hadamard’s element-wise product and ˚ stands for complex conjugation.94

However,
R “ IN ` ρ (23)

where ρ stands for a matrix containing correlation coefficients as off-diagonal terms and95

whose main diagonal has only zeros.96

Therefore we may rewrite (22) as97

Γpνq d Γ˚pνq`Γpνqρd Γ˚pνq (24)

2 http://www.lcs.poli.usp.br/~baccala/pdc/papers/asp.pdf
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whose first term is readily recognizable as a matrix whose elements contain the mag-98

nitude squared of iDTF in the standard form. The second term isolates influences99

associated with iGC. Whereas the elements of the first term are real nonnegative, the100

entries of the second term are inherently complex.101

We propose to call (24) total DTF and denote it as
hkkkkj

Γ pνq
loomoon

total DTF

“ Γpνq d Γ˚pνq
loooooomoooooon

Squared iDTF

` Γpνqρd Γ˚pνq
looooooomooooooon

Residual directed DTF

(25)

where its first term contains the customary Granger influentiability description [10]102

and the second its directed instantaneous influentiability counterpart. Both
hkkkkj

Γ pνq and103

Γpνqρd Γ˚pνq are complex quantities.104

Clearly the row elements of (25) sum to 1. Because the elements in the rows of105

Γpνq d Γ˚pνq are all real and nonnegative, the sum of Γpνqρd Γ˚pνq along a row is also a106

real number.107

Since we can write
rR “ IN ` ρ̃ (26)

we may define total PDC as108

hkkkkj

Π pνq
loomoon

total PDC

“ Π˚pνq dΠpνq
looooooomooooooon

Squared iPDC

`Π˚pνq d ρ̃Πpνq
loooooooomoooooooon

Residual directed PDC

(27)

where the entries in Π˚pνq dΠpνq describe what we called Granger connectivity [10]109

and Π˚pνq d ρ̃Πpνq its directed instantaneous connectivity counterpart.110

The column-wise sum of the elements of (27) adds to one whereas those of the111

columns of Π˚pνq d ρ̃Πpνq sum to a real number since the elements of Π˚pνq dΠpνq are112

nonnegative real.113

To facilitate reference, key symbols are summed up in Table 1.

Table 1. Symbol definitions for the quantities in the text. Equations numbers where they first
appear are also shown.

Quantity Matrix Elements Equation

iDTF Γpνq γijpνq (7)
Latent directed instantaneous DTF ΓpνqR rγijpνq (20)
Squared iDTF Γpνq d Γ˚pνq |γijpνq|

2 (25)

Total DTF (tDTF)
hkkkkj

Γ pνq
hkkkkj

γij pνq (25)
Residual directed DTF Γpνqρd Γ˚pνq qγijpνq (25)

iPDC Πpνq πijpνq (14,15) (see text)
Latent directed instantaneous PDC rRΠpνq rπijpνq (21)
Squared iPDC Π˚pνq dΠpνq |πijpνq|

2 (27)

Total PDC (tPDC)
hkkkkj

Π pνq
hkkkkj

πij pνq (27)
Residual directed PDC Π˚pνq d ρ̃Πpνq qπijpνq (27)

114

4. Numerical Examples115

To provide some intuition we examine the following numerical examples.116

Example 1. Consider a system whose connections are contained in Figure 1. Dashed lines repre-
sent instantaneous interaction aspects while a dotted line reflects the additional instantaneous
interaction aspect that becomes explicit upon rR computation (Eq. 30). The underlying system is
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a first order one given by (1) and defined by

A1 “

»

—

—

–

0.5 0 0 0
1 0 ´0.95 0
0 0.95 0 0
0 0 1 ´0.75

fi

ffi

ffi

fl

(28)

with

Σw “

»

—

—

–

1 0 0 0.25
0 1 0 0
0 0 1 ´0.5
0.25 0 ´0.5 1

fi

ffi

ffi

fl

(29)

which allows appreciating the interplay of instantaneous effects with the connectivity/influentiability117

structures, where the lack of connections/influences measured by iPDC/iDTF is immediately118

apparent.119

4321

Figure 1. Link structure for the Example 1. Dashed lines indicate non zero covariance
in Σw. The dotted line portrays the partial correlation aspect in (30).

The computed σ̃i are contained in r1.04, 1.00, 1.17, 1.21s and

rR “

»

—

—

–

1.00 0.00 ´0.15 ´0.29
0.00 1.00 0.00 0.00

´0.15 0.00 1.00 0.52
´0.29 0.00 0.52 1.00

fi

ffi

ffi

fl

(30)

rounded to 2 decimal places.120

The various quantities are represented in the allied graphs showing that iPDC instantaneous121

effects require the joint presence of partial correlations in rR and the presence of immediate122

connections (see Figure 2). This conjunction only happens from x3pnq to x4pnq.123

Likewise, iDTF instantaneous impacts require the existence of correlations in R so that124

altered influentiability happens from x1pnq to x4pnq but not in the opposite direction. Something125

similar also takes place when x3pnq towards x4pnq is examined but not in the reverse direction126

(see Figure 3).127

Example 2. To provide a clearer idea of iGC frequency domain repercussions for the same time
domain characterization as summarized by

Σw “

„

1 0.5
0.5 1.25



(31)

we consider a set of four slightly different bivariate systems.128
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Figure 2. Squared iPDC – |πijpνq|
2 (blue lines) and total PDC magnitude – |Ňπijpνq| (red

lines) depicted for Example 1. When identical, the superposed traces are shown as dark
purple lines.
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Figure 3. Squared iDTF – |γijpνq|
2 (blue lines) and total DTF magnitude – |Ňγijpνq| (red

lines) rendered for Example 1. When identical, the superposed graphs are shown as
dark purple lines.

Ex. 2.1 Disconnected System129

Let the simplest one be described by

A1 “

„

1.3859 0
0 0.5



(32)
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and

A2 “

„

´0.9604 0
0 0



(33)

The observed total DTF/PDC are trivially equal to zero for i ‰ j, yet because of iGC as130

represented by (31), one sees that it manifests itself through a constant |rγijpνq| “ |rπijpνq| “131

0.447 that, in turn, leads to a constant magnitude coherence |C12pνq| of the same value as132

indicated by red arrows on Figure 4a,b.133

-1

0

1

      

 0 .5
-1

0

1

 0 .5

i =
 1

i =
 2

j = 2j = 1
Source

Ta
rg

et -1

0

1

-1

0

1

a

0

.5

1

 0 .5

b

Figure 4. (a) Latent directed instantaneous connectivity – rπijpνqmagnitude depicted as
green lines, shown with its real (blue lines) and imaginary (red lines) parts that portray
iGC effects before G–C inclusion. The value 0.447 of |rπijpνq|, for i ‰ j, (red arrows)
is the same as in b. (b) Cross-coherence magnitude |C12pνq| “ |C21pνq| “ 0.447 “
|rπ12pνq| “ |rπ21pνq| as the red arrow indicates (Example 2.1).

In fact, it is possible to show that absence of Granger connectivity implies |C12pνq| is134

constant. The converse, however, requires additional conditions to be valid. The results are in135

accord with the absence of delayed effects between channels (no Granger causality).136

Example 2.2 Unidirectional Granger Causality137

If (32) is replaced by

A1 “

„

1.3859 0
0.5 0.5



(34)

we obtain a total PDC that reflects this change and still detects the lack of x2pnq Ñ x1pnq138

feedback (Figure 5). Furthermore, comparing |rπ21pνq| to |κijpνq| in Figure 6, we see that the139

unidirectional effect of x1pnq over x2pnq is what solely determines the magnitude of the resulting140

partial coherence.141

Example 2.3 Instantaneous link between x1pnq and x2pnq.142

Now consider the data generation model given by143

x1pnq “ 1.3859x1pn´ 1q ´ 0.9604x1pn´ 2q ` ε1pnq (35)

x2pnq “ 0.5x1pnq ` 0.5x2pn´ 1q ` ε2pnq (36)

where εipnq are independent identically distributed zero mean innovation processes.144

Under least squares estimation, (1) ideally results in the model given by145

A1 “

„

1.3859 0
0.693 0.5



(37)

and

A2 “

„

´0.9604 0
´0.4802 0



(38)
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Figure 5. Squared iPDC – |πijpνq|
2 (blue lines)

and total PDC magnitude – |Ňπijpνq| (red lines)
for Example 2.2 portraying the absent feed-
back from x2pnq Ñ x1pnq. When identical, the
superposed traces are shown as dark purple
lines.
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Figure 6. Latent directed instantaneous con-
nectivity magnitude – |rπijpνq| (blue lines) and
partial coherence magnitude – |κijpνq| (red-
lines), which show up as dark purple when
traces are identical, for Example 2.2.

whose residual covariance matrix is also given by (31). This is easy to show by inserting (35)146

into (36).147
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Figure 7. Squared iPDC – |πijpνq|
2 (blue lines)

and total PDC magnitude – |Ňπijpνq| (red lines)
plots for Example 2.3 portraying the absent
feedback from x2pnq Ñ x1pnq.
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Figure 8. Latent directed instantaneous con-
nectivity magnitude – |rπijpνq| (blue lines) and
partial coherence magnitude – |κijpνq| (red
lines) for Example 2.3, which show up as dark
purple when traces coincide.
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Figure 9. Latent directed instantaneous connectivity – rπijpνq’s real (blue lines) and
imaginary (red lines) parts plots for Example 2.3. Note that rπ21pνq’s imaginary part
nullity is a signature of their delayless relationship.
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The resulting total PDC is shown in Figure 7 (red lines) whereas the magnitude of |rπijpνq|148

(Figure 8) is further broken into its real and imaginary parts in Figure 9 where again the nullity149

of the imaginary part of rπ21pνq constitutes a signature of the delayless relationship between150

x1pnq and x2pnq.151

Again, because iPDC from x2pnq to x1pnq is zero, the partial coherence magnitude |κijpνq| “152

|rπ21pνq| (i ‰ j).153

Example 2.4 Bidirectional Feedback154

The introduction of a 0.5x2pn´ 1q feedback into (35) leads to the total PDC in Figure155

10 with the allied magnitude rπijpνq— latent directed instantaneous connectivity — in Figure156

11 split into its real and imaginary parts in Figure 12 where the delayless x1pnq to x2pnq157

instantaneous description remains unaffected, while the partial coherence |κ12pνq| now depends158

on both directions.159

            
0

.5

1

 0 .5
0

.5

1

0

.5

1
1.5

 0 .5
0
.5

1

1.5

i =
 1

i =
 2

j = 2j = 1
Source

Ta
rg

et

Figure 10. Squared iPDC – |πijpνq|
2 (blue

lines) and total PDC magnitude – |Ňπijpνq|

(red lines) plots for Example 2.4.
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Figure 11. Example 2.4’s latent directed
instantaneous connectivity magnitude –
|rπijpνq| (blue lines) and partial coherence
magnitude – |κijpνq| (red lines) plots with
no dark purple coincidence line.
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Figure 12. Example 2.4’s latent directed instantaneous connectivity – rπijpνq real (blue)
and imaginary (red) parts. Note that rπ21pνq’s imaginary part nullity is a signature of
their delayless relationship.

Example 3. This example is borrowed from [7] whose theoretically equivalent model (Figure
6.3a in [7]) as obtained by fitting (1) is given by:

A1 “

»

–

1.27 0.00 0.00
0.64 0.00 1.00
0.32 0.00 0.50

fi

fl (39)
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A2 “

»

–

´0.81 0.00 0.00
´0.41 0.00 0.00
´0.20 0.50 ´0.64

fi

fl (40)

and

Σw “

»

–

1.000 0.500 0.250
0.500 2.250 1.125
0.250 1.125 3.562

fi

fl (41)

which leads to σ̃ “ r1.06, 1.15, 1.09s and160

rR “

»

–

1.00 ´0.31 0.00
´0.31 1.00 ´0.38

0.00 ´0.38 1.00

fi

fl (42)

rounded to 2 decimal digits.161

What stands out is that total PDC is identically zero for x1pnq Ñ x3pnq due to the presence162

of instantaneous Granger interactions (Figure 13). This nullity is consistent with the structure163

inferred in [7] when instantaneous quantities are considered by including a zero term lag in164

(1) (Figure 6.3b in [7]). This happens because qπ31pνq — the residual directed PDC from165

x1pnq Ñ x3pnq— in (27) is of the opposite sign and instantaneously undoes the effect of iPDC166

(|π31pνq|
2q as it too has no delay (look at the x1pnq Ñ x3pnq panel in Figure 14).167

Since the relationship of x1pnq to x2pnq is also instantaneous as portrayed by the nullity of168

the imaginary part of rπ21pνq, then it is clear that x2pnq mediates this total PDC nullity from169

x1pnq to x3pnq. Note as well that |rπ31pνq| “ 0 (Figure 15). The instantaneous link from x1pnq170

to x2pnq is apparent in the nullity of the imaginary part of rπ21pνq in Figure 16; note also the171

same nullity in rπ21pνq, whose real part is also zero consistently with zero total PDC from x1pnq172

to x3pnq.173

Together, these observations lead to the conclusion that the relationship from x1pnq to both174

x2pnq and x3pnq are instantaneous and mediated without delay, and that the one from x1pnq175

must occur through x2pnq since the total PDC from it to x3pnq is zero.176
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Figure 13. Squared PDC – |πijpνq|
2 (blue) and total PDC magnitude – |Ňπijpνq| (red)

plots, indicated as dark purple lines when traces coincide, from Example 3. Observe
that |Ŋπ31pνq| “ 0 points to a lack of total G-connectivity from x1pnq to x3pnq.

5. Discussion177

The present expanded formulation takes care of the problem frequently met in data178

analysis whose residuals in fitting (1) result mutually correlated and its consequences.179
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Figure 14. Residual directed PDC – qπijpνq’s real (blue lines) and imaginary (red lines)
parts plots in Example 3, which show up as dark purple when traces coincide. Note
qπ31pνq’s imaginary part nullity, which is a signature of their delayless relationship
but whose real part is equal and of opposite sign to squared iPDC (|π31pνq|

2), thereby
leading to zero total PDC from x1pnq to x3pnq.

      
0

.5

1

            

      
0

.5

1

            

0

.5

1

i =
 1

i =
 2

j = 1

i =
 3

j = 2 j = 3
Source

Ta
rg

et

0 .5 0 .5 0 .5

Figure 15. Latent directed instantaneous connectivity magnitude – |rπijpνq| for Example
3 where it is to |rπ31pνq| “ 0 that the corresponding total PDC is zero.

By examining the decomposition of coherencies and partial coherencies in terms of180

the information versions of DTF and PDC [9] we managed several things that lend the181

latter quantities a fundamental theoretical character.182

The first such result was to show that the allied properly generalized total quantities183

enjoy the same kind of normalization of the original DTF/PDC [3,4] (DC/gPDC [5,13]).184

Likewise the same ’inversion’ properties of the latter, hold for the former when N “ 2.185

A key point in obtaining the present symmetry of treatment between DTF and PDC was186

iPDC’s rescaling (15).187

The second result is that of emphasizing the importance of the magnitude squared188

iDTF/iPDC in portraying respectively Granger influentiability and connectivity that now189

allow an extended picture to be drawn: that of Granger instantaneous influentiability190

(G–iI) and connectivity (G–iC) by now considering total DTF and total PDC which are191

also directed quantities.192
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Figure 16. Latent directed instantaneous connectivity – rπijpνq real (blue lines) and
imaginary (red lines) parts plots for Example 3. Note that rπ21pνq and rπ31pνq have zero
imaginary parts that point to delayless directed relationships in this Example. The real
part of rπ31pνq is also zero (depicted in dark purple line).

One important aspect as portrayed in Example 1 is that instantaneous directedness193

effects come about because of the combined effect of non zero off-diagonal Σw terms194

and non zero iDTF/iPDC.195

Likewise the role of latent instantaneous iPDC (21) permits the careful analysis of196

instances of instantaneous interaction as illustrated in Example 2.3 and Example 3.197

Through Example 2, we learned that the very same time domain description of198

instantaneous Granger causality has quite a few distinct repercussions depending on the199

underlying G-connectivity that can only be properly described in the frequency domain.200

When compared to other Granger dynamical characterizations that include instan-201

taneous considerations, the present formulation has the advantage of dispensing with202

special model estimation approaches. No special model to include the r “ 0 lag in (1) is203

required with its more elaborate estimation considerations [7]. Likewise, also unneeded204

are the estimations of multiple models as in [8]. All that is required is a standard least205

squares model adjustment via (1), wherefrom all conclusions can be drawn.206

There is still much work ahead. Here, to keep focus, we have exclusively examined207

the details of Cijpνq and κijpνq, when i “ j, our next step is to examine the more general208

i ‰ j case. Also needed now is the establishment of detailed asymptotic results for the209

newly introduced total quantities as are available for iDTF [14] and iPDC [15].210

6. Conclusions211

The present formulation has developed the necessary formalism to address the212

repercussions of instantaneous Granger causality whose proper description demands the213

frequency domain where they have been shown to be dependent on Granger connectivity214

details for size and directedness. Also confirmed is our statement that iDTF/iPDC215

are natural fundamental quantities that result from the respective decompositions of216

Coherency and Partial Coherency.217
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Abbreviations
The following abbreviations are used in this manuscript:

iGC Instantaneous Granger causality
G–C Granger connectivity
G–I Granger influentiability
G–iI Granger instantaneous influentiability
G–iC Granger instantaneous connectivity
DTF Directed transfer function
DC Directed coherence
iDTF Information directed transfer function
tDTF Total directed transfer function
PDC Partial directed coherence
gPDC Generalized partial directed coherence
iPDC Information partial directed coherence
tPDC Total partial directed coherence
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